

Installation Instructions

TABLE OF CONTENTS

Page
SAFETY CONSIDERATIONS
INSTALLATION
Step 1-Provide Unit Support
ROOF CURB
SLAB MOUNT 2
ALTERNATE UNIT SUPPORT 2
Step 2-Field Fabricate Ductwork 2
Step 3-Install External Trap for Condensate Drain 2
Step 4-Rig and Place Unit
POSITIONING 2
Step 5 — Install Flue Hood 4
Step 6 — Install Gas Piping 4
Step 7 — Make Electrical Connections
FIELD POWER SUPPLY 8
FIELD CONTROL WIRING 8
HEAT ANTICIPATOR SETTINGS 8
Step 8 — Adjust Factory-Installed Options 16
PERFECT HUMIDITY™ ADAPTIVE DEHUMIDIFICATION SYSTEM
MANUAL OUTDOOR-AIR DAMPER
CONVENIENCE OUTLET
OPTIONAL ECONOMI\$ER IV
ECONOMI\$ER IV STANDARD SENSORS 19
ECONOMI\$ER IV CONTROL MODES 20
Step 9 — Adjust Evaporator-Fan Speed
PRE-START-UP
START-UP
SERVICE
TROUBLESHOOTING
START-UP CHECKLIST
CAPPEN CONCIDED ADIONG

SAFETY CONSIDERATIONS

Installation and servicing of air-conditioning equipment can be hazardous due to system pressure and electrical components. Only trained and qualified service personnel should install, repair, or service air-conditioning equipment.

Untrained personnel can perform basic maintenance functions of cleaning coils and filters and replacing filters. All other operations should be performed by trained service personnel. When working on air-conditioning equipment, observe precautions in the literature, tags and labels attached to the unit, and other safety precautions that may apply.

Follow all safety codes. Wear safety glasses and work gloves. Use quenching cloth for unbrazing operations. Have fire extinguishers available for all brazing operations.

Recognize safety information. This is the safety-alert symbol \triangle . When you see this symbol on the unit and in instructions or manuals, be alert to the potential for personal injury.

Understand the signal words DANGER, WARNING, and CAUTION. These words are used with the safety-alert symbol. DANGER identifies the most serious hazards which **will** result in severe personal injury or death. WARNING signifies a hazard which **could** result in personal injury or death. CAUTION is used to identify unsafe practices which **may** result in minor personal injury or product and property damage. NOTE is used to highlight suggestions which **will** result in enhanced installation, reliability, or operation.

WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could cause personal injury or death.

Before performing service or maintenance operations on unit, turn off main power switch to unit and install lockout tag. Ensure electrical service to rooftop unit agrees with voltage and amperage listed on the unit rating plate.

WARNING

FIRE, EXPLOSION HAZARD

Failure to follow this warning could cause death and/or property damage.

Disconnect gas piping from unit when leak testing at pressure greater than $^{1}/_{2}$ psig. Pressures greater than $^{1}/_{2}$ psig will cause gas valve damage resulting in hazardous condition. If gas valve is subjected to pressure greater than $^{1}/_{2}$ psig, it *must* be replaced before use. When pressure testing field-supplied gas piping at pressures of $^{1}/_{2}$ psig or less, a unit connected to such piping must be isolated by manually closing the gas valve(s).

INSTALLATION

Unit is shipped in the vertical discharge configuration. To convert to horizontal discharge application, remove duct opening covers. Using the same screws, install covers on duct openings in basepan of unit with insulation-side down. Seals around openings must be tight. (See Fig. 1.)

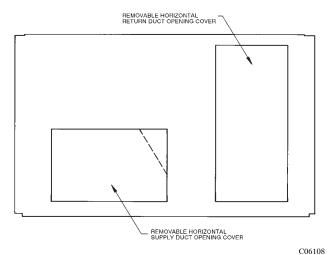


Fig. 1 - Horizontal Conversion Panels

C

Step 1 —Provide Unit Support Roof Curb

Assemble and install accessory roof curb in accordance with instructions shipped with curb. (See Fig. 2.) Install insulation, cant strips, roofing felt, and counter flashing as shown. *Ductwork must be attached to curb, not to the unit.* If electric control power or gas service is to be routed through the basepan, attach the accessory thru-the-bottom service connections to the basepan in accordance with the accessory installation instructions. Connections must be installed before unit is set on roof curb.

IMPORTANT: The gasketing of the unit to the roof curb is critical for a watertight seal. Install gasket supplied with the roof curb as shown in Fig. 2. Improperly applied gasket can result in air leaks and poor unit performance.

Curb should be level. Unit leveling tolerances are shown in Fig. 3. This is necessary for unit drain to function properly. Refer to Accessory Roof Curb Installation Instructions for additional information as required.

Slab Mount (Horizontal Units Only)

Provide a level concrete slab that extends a minimum of 6 in. beyond unit cabinet. Install a gravel apron in front of condenser-coil air inlet to prevent grass and foliage from obstructing airflow.

NOTE: Horizontal units may be installed on a roof curb if required.

Alternate Unit Support

When the curb or adapter cannot be used, support unit with sleeper rails using unit curb or adapter support area. If sleeper rails cannot be used, support the long sides of the unit with a minimum of 3 equally spaced 4-in. x 4-in. pads on each side.

Step 2 —Field Fabricate Ductwork

Secure all ducts to roof curb and building structure on vertical discharge units. *Do not connect ductwork to unit.* For horizontal applications, field-supplied isolation flanges should be attached to horizontal discharge openings and all ductwork should be secured to the flanges. Insulate and weatherproof all external ductwork, joints, and roof openings with counter flashing and mastic in accordance with applicable codes.

Ducts passing through an unconditioned space must be insulated and covered with a vapor barrier.

If a plenum return is used on a vertical unit, the return should be ducted through the roof deck to comply with applicable fire codes.

A minimum clearance is not required around ductwork. Cabinet return-air static pressure (a negative condition) shall not exceed 0.35 in. wg with economizer or 0.45 in. wg without economizer.

These units are designed for a minimum continuous return-air temperature in heating of 50°F (dry bulb), or an intermittent operation down to 45°F (dry bulb), such as when used with a night setback thermostat.

To operate at lower return-air temperatures, a field-supplied outdoor air temperature control must be used to initiate both stages of heat when the temperature is below 45°F. Indoor comfort may be compromised when these lower air temperatures are used with insufficient heating temperature rise.

Step 3 —Install External Trap for Condensate Drain

The unit's ³/₄-in. condensate drain connections are located on the bottom and side of the unit. Unit discharge connections do not determine the use of drain connections; either drain connection can be used with vertical or horizontal applications.

When using the standard side drain connection, ensure the plug (Red) in the alternate bottom connection is tight before installing the unit

To use the bottom drain connection for a roof curb installation, relocate the factory-installed plug (Red) from the bottom connection to the side connection. The center drain plug looks like a star connection, however it can be removed with a $^{1}/_{2}$ -in. socket drive extension. (See Fig. 4.) The piping for the condensate drain and external trap can be completed after the unit is in place.

All units must have an external trap for condensate drainage. Install a trap 4-in. deep and protect against freeze-up. If drain line is installed downstream from the external trap, pitch the line away from the unit at 1 in. per 10 ft of run. Do not use a pipe size smaller than the unit connection $(^{3}/_{4}$ in.). (See Fig. 5.)

Step 4 —Rig and Place Unit

Inspect unit for transportation damage, and file any claim with transportation agency. Keep unit upright and do not drop. Spreader bars are not required if top crating is left on unit, and rollers may be used to move unit across a roof. Level by using unit frame as a reference. See Table 1 and 2 and Fig. 6 for additional information. Operating weight is shown in Table 1 and 2 and Fig. 6.

Lifting holes are provided in base rails as shown in Fig. 8 and 9. Refer to rigging instructions on unit.

A WARNING

PROPERTY DAMAGE HAZARD

Failure to follow this warning could result in personal injury, death and property damage.

All panels must be in place when rigging and lifting.

Positioning

Maintain clearance around and above unit to provide minimum distance from combustible materials, proper airflow, and service access. (See Fig. 7, 8 and 9.)

Position unit on roof curb so that the following clearances are maintained: $^{1}/_{4}$ in. clearance between the roof curb and the base rail inside the front and rear, 0.0 in. clearance between the roof curb and the base rail inside on the duct end of the unit. This will result in the distance between the roof curb and the base rail inside on the condenser end of the unit being approximately equal to Fig. 2, section C-C.

Do not install unit in an indoor location. Do not locate unit air inlets near exhaust vents or other sources of contaminated air.

CONNECTOR PKG. ACCY.	В	С	D ALT DRAIN HOLE	GAS	POWER	CONTROL	ACCESSORY POWER
CRBTMPWR001A01				3/4	3/ ₄ [19] NPT		
CRBTMPWR002A01				[19] NPT	11/4 [31.7]		
CRBTMPWR003A01	1 -9 ¹¹ / ₁₆ [551]	1 -4 [406]	1 ³ / ₄ [44.5]	1/ ₂ [12.7] NPT	³ / ₄ [19] NPT	1/ ₂ [12.7]	1/ ₂ [12.7]
CRBTMPWR004A01				^{3/} 4 [19] NPT	11/4 [31.7]		

С

ROOF CURB ACCESSORY	Α	UNIT SIZE
CRRFCURB001A01	1 -2 [356]	581B036-072
CRRFCURB002A01	2 -0 [610]	581C024-060

NOTES:

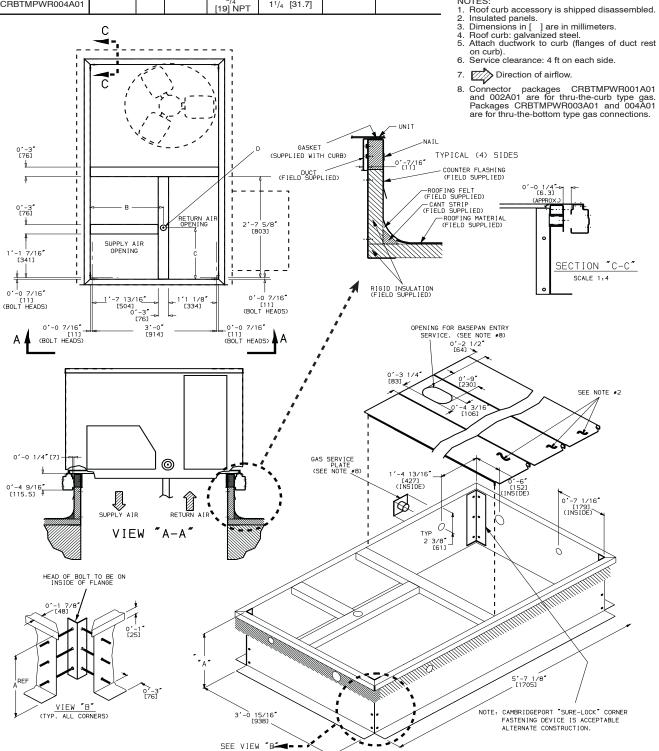
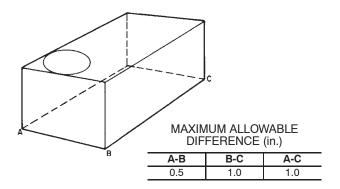



Fig. 2 - Roof Curb Details

C06345

C06110

Fig. 3 - Unit Leveling Tolerances

Be sure that unit is installed such that snow will not block the combustion intake or flue outlet.

Unit may be installed directly on wood flooring or on Class A, B, or C roof-covering material when roof curb is used.

Although unit is weatherproof, guard against water from higher level runoff and overhangs.

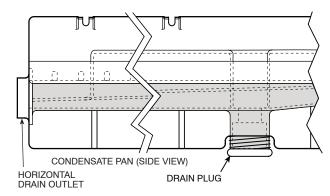
Locate mechanical draft system flue assembly at least 48 in. from an adjacent building or combustible material. When unit is located adjacent to public walkways, flue assembly must be at least 7 ft above grade.

NOTE: When unit is equipped with an accessory flue discharge deflector, allowable clearance is 18 inches.

Flue gas can deteriorate building materials. Orient unit such that flue gas will not affect building materials.

Adequate combustion-air space must be provided for proper operation of this equipment. Be sure that installation complies with all local codes and Section 5.3, Air for Combustion and Ventilation, NFGC (National Fuel Gas Code), ANSI (American National Standards Institute) Z223.1-1984 and addendum Z223.1a-1987. In Canada, installation must be in accordance with the CAN1.B149.1 and CAN1.B149.2 installation codes for gas burning appliances.

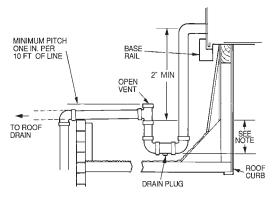
Flue vent discharge must have a minimum horizontal clearance of 4 ft from electric and gas meters, gas regulators, and gas relief equipment.


After unit is in position, remove shipping materials and rigging skids.

Step 5 —Install Flue Hood

Flue hood is shipped screwed to the burner compartment access panel. Remove from shipping location and, using screws provided, install flue hood in location shown in Fig. 8 and 9.

For units being installed in California Air Quality Management Districts which require NOx emissions of 40 nanograms/joule or less, a low NOx unit must be installed.


NOTE: Low NOx units are available for 2 to 5 ton units.

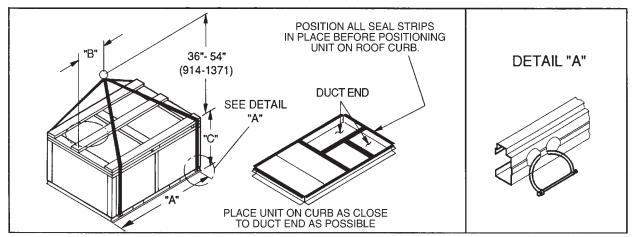
NOTE: Drain plug is shown in factory-installed position.

C06003

Fig. 4 - Condensate Drain Pan

NOTE: Trap should be deep enough to offset maximum unit static difference. A 4-in. trap is recommended.

C06004


Fig. 5 - Condensate Drain Piping Details

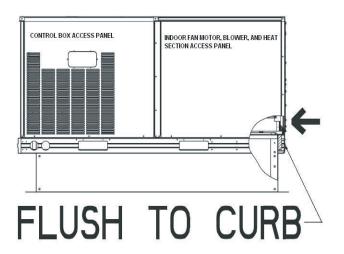
Step 6 —Install Gas Piping

Unit is equipped for use with type of gas shown on nameplate. Refer to local building codes, or in the absence of local codes, to ANSI Z223.1-1984 and addendum Z223.1A-1987 entitled National Fuel Gas Code. In Canada, installation must be in accordance with the CAN1.B149.1 and CAN1.B149.2 installation codes for gas burning appliances.

For natural gas applications, gas pressure at unit gas connection must not be less than 4 in. wg or greater than 13 in. wg while the unit is operating. On 581B036-072 and 581C036-060 high-heat units, the gas pressure at unit gas connection must not be less than 5 in. wg or greater than 13 in. wg while the unit is operating. For propane applications, the gas pressure must not be less than 5 in. wg or greater than 13 in. wg at the unit connection.

Size gas supply piping for 0.5 in. wg maximum pressure drop. Do not use supply pipe smaller than unit gas connection.

- 1. Place unit on curb as close as possible to the duct end.
- 2. Dimension in () is in millimeters.


072

- 3. Hook rigging shackles through holes in base rail as shown in detail "A." Holes in base rails are centered around the unit center of gravity. Use wooden top skid when rigging to prevent rigging straps from damaging unit.
- 4. Weights include base unit without economizer. See Table 1 for unit operating weights with accessory economizer.
- Weights include base unit without the Perfect Humidity[™] adaptive dehumidification system. See Table 1 for unit operating weights with the Perfect Humidity[™] system.

Fig. 6 - Rigging Details

			Fig. o	– Kigging De	etans			
UNIT	OPER	ATING			DIMEN	SIONS		
581C	WEI	GHT	",	Α"	"	В"	"c	; "
301C	lb	kg	in.	mm	in.	mm	in.	mm
024	530	240	73.69	1872	35.50	902	33.31	847
036	540	245	73.69	1872	35.50	902	33.31	847
048	560	254	73.69	1872	35.50	902	33.31	847
060	635	288	73.69	1872	35.50	902	41.31	1050
	OPER	ATING			DIMENS	SIONS		•
UNIT 581B	WEI	GHT	"/	۸"	"E	3"	"C	;"
3010	lb	kg	in.	mm	in.	mm	in.	mm
036	530	240	73.69	1872	35.50	902	33.31	847
048	540	245	73.69	1872	35.50	902	33.31	847
060	560	254	73.69	1872	35.50	902	33.31	847

1872

635

288

73.69

C06208

Fig. 7 - Roof Curb Alignment

Support gas piping as shown in the table in Fig. 11. For example, a ³/₄-in. gas pipe must have one field-fabricated support beam every 8 ft. Therefore, an 18-ft long gas pipe would have a minimum of 3 support beams, and a 48-ft long pipe would have a minimum of 6 support beams.

WARNING

41.31

1050

902

PROPERTY DAMAGE HAZARD

35.50

Failure to follow this warning could result in personal injury, death and property damage.

All panels must be in place when rigging and lifting.

See Fig. 11 for typical pipe guide and locations of external manual gas shutoff valve.

NOTE: If accessory thru-the-bottom connections and roof curb are used, refer to the Thru-the-Bottom Accessory Installation Instructions for information on power wiring and gas connection piping. The power wiring, control wiring and gas piping can be routed through field-drilled holes in the basepan. The basepan is specially designed and dimpled for drilling the access connection holes.

WARNING

FIRE, EXPLOSION HAZARD

Failure to follow this warning could result in personal injury, death and/or property damage.

When connecting the gas line to the unit gas valve, the installer MUST use a backup wrench to prevent damage to the valve.

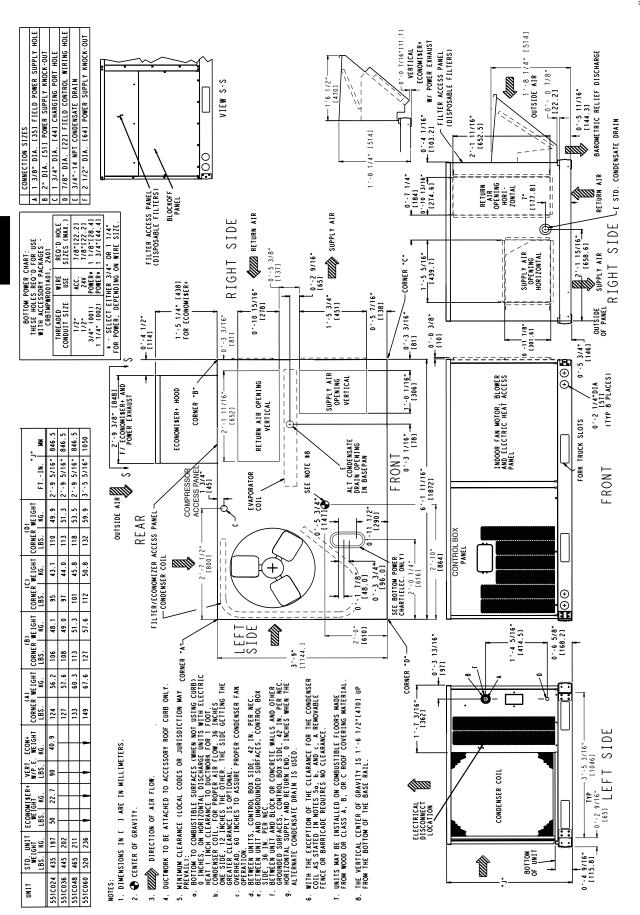


Fig. 8 - 581B 036-072 Base Unit Dimensions

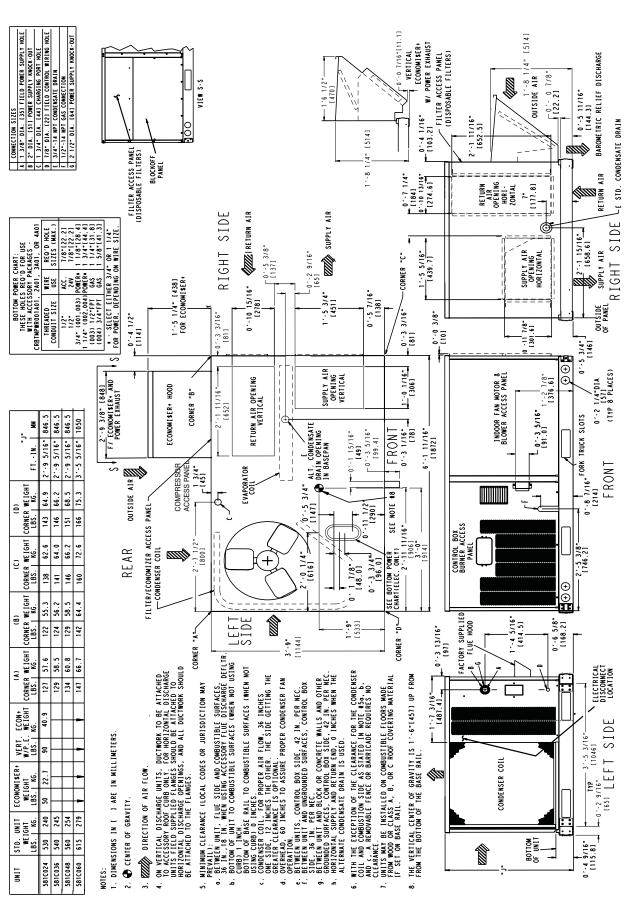
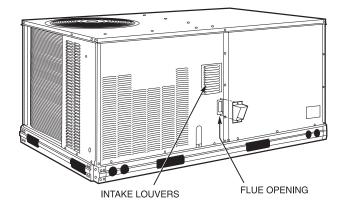
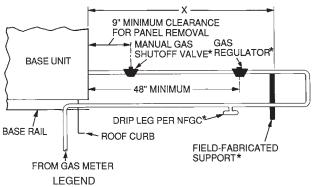




Fig. 9 - 581C 024-060 Base Unit Dimensions

C06114

Fig. 10 - Flue Hood Details

NFGC - National Fuel Gas Code

*Field supplied.

NOTE: Follow all local codes.

SPACING OF SUPPORTS

STEEL PIPE NOMINAL DIAMETER (in.)	SPACING OF SUPPORTS X DIMENSION (ft)
1/2	6
³ / ₄ or 1	8
11/4 or larger	10

C06115

Fig. 11 - Gas Piping Guide (With Accessory Thru-the-Curb Service Connections)

Step 7 — Make Electrical Connections

WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

Unit cabinet must have an uninterrupted, unbroken electrical ground to minimize the possibility of personal injury if an electrical fault should occur. This ground may consist of electrical wire connected to unit ground lug in control compartment, or conduit approved for electrical ground when installed in accordance with NEC (National Electrical Code), ANSI/NFPA (National Fire Protection Association), latest edition, and local electrical codes. *Do not use gas piping as an electrical ground*.

Field Power Supply

All units except 208/230-v units are factory wired for the voltage shown on the nameplate. If the 208/230-v unit is to be connected to a 208-v power supply, the transformer *must* be rewired by moving the black wire from the 230-v terminal on the transformer and connecting it to the 200-v terminal from the transformer.

Refer to unit label diagram for additional information. Pigtails are provided for field service. Use factory-supplied splices or UL (Underwriters' Laboratories) approved copper connector.

When installing units, provide a disconnect per NEC.

All field wiring must comply with NEC and local requirements.

Install conduit through side panel openings indicated in Fig. 8. Route power lines through connector to terminal connections as shown in Fig. 12.

Voltage to compressor terminals during operation must be within voltage range indicated on unit nameplate (also see Tables 3 and 4). On 3-phase units, voltages between phases must be balanced within 2% and the current within 10%. Use the formula shown in Tables 3 and 4, Note 3 to determine the percent voltage imbalance. Operation on improper line voltage or excessive phase imbalance constitutes abuse and may cause damage to electrical components. Such operation would invalidate any applicable Bryant warranty.

NOTE: If accessory thru-the-bottom connections and roof curb are used, refer to the Thru-the-Bottom Accessory Installation Instructions for information on power wiring and gas connection piping. The power wiring, control wiring and gas piping can be routed through field-drilled holes in the basepan. The basepan is specially designed and dimpled for drilling the access connection holes. (See Fig. 2.)

Field Control Wiring

Install a Bryant-approved accessory thermostat assembly according to installation instructions included with the accessory. Locate thermostat assembly on a solid wall in the conditioned space to sense average temperature in accordance with thermostat installation instructions.

Route thermostat cable or equivalent single leads of colored wire from subbase terminals through connector on unit to low-voltage connections (shown in Fig. 13 and 14).

Connect thermostat wires to matching screw terminals of low-voltage connection board. (See Fig. 13 and 14.)

NOTE: For wire runs up to 50 ft, use no. 18 AWG (American Wire Gauge) insulated wire (35°C minimum). For 50 to 75 ft, use no. 16 AWG insulated wire (35°C minimum). For over 75 ft, use no. 14 AWG insulated wire (35°C minimum). All wire larger than no. 18 AWG cannot be directly connected to the thermostat and will require a junction box and splice at the thermostat.

Pass the control wires through the hole provided in the corner post; then feed wires through the raceway built into the corner post to the 24-v barrier located on the left side of the control box. (See Fig. 15). The raceway provides the UL required clearance between high and low-voltage wiring.

Heat Anticipator Settings

Set heat anticipator settings at 0.14 amp for first stage and 0.14 for second stage heating, when available.

Table 1—Physical Data 581B

BASE UNIT 581B		036	048	060	072
NOMINAL CAPACITY (tons)		3	4	5	6
OPERATING WEIGHT (lb)		_			
Unit		530	540	560	635
Perfect Humidity [™] Adaptive Dehumidification S	System	15	23	25	29
EconoMi\$er IV	,	50	50	50	50
Roof Curb		115	115	115	115
COMPRESSOR		113		115	115
			Scroll		1 .
Quantity		1	1	1	1
Oil (oz)		42	53	50	60
REFRIGERANT TYPE			R-22		
Expansion Device			Acutrol [™] Meterin	g Device	
Operating Charge (lb-oz)					
Standard Unit		5-8	10-2	10-0	12- 8
Unit With Perfect Humidity Adaptive Dehumic	dification System	12-5	18-8	20-5	23-14
CONDENSER FAN			Propelle		
QuantityDiameter (in.)		122	122	122	122
Nominal Cfm		3500	3500	4100	4100
Motor HpRpm					
		¹ / ₄ 825	1/4825	¹ / ₄ 1100	¹ / ₄ 1100
Watts Input (Total)		180	180	320	320
CONDENSER COIL			in. OD Enhanced Copper Tub		1
RowsFins/in.		117	217	217	217
Total Face Area (sq ft)		14.6	16.5	16.5	21.3
EVAPORATOR COIL		3/8-in.	OD Enhanced Copper Tubes,	Aluminum Double-Wavy F	ins
Standard Unit			1	_	
RowsFins/in.		215	215	415	415
Total Face Area (sq ft)		5.5	5.5	5.5	7.3
Unit with Perfect Humidity Adaptive Dehumidific	cation System	0.0	0.5	5.5	7.0
RowsFins/in.		1 17	217	217	0 17
Total Face Area (sq ft)		117			217
EVAPORATOR FAN		3.9	3.9	3.9	5.2
			Centrifugal Type,		1
QuantitySize (in.)		110 x 10	110 x 10	110 x 10	110 x 10
Nominal Cfm		1200	1600	2000	2400
Maximum Continuous Bhp	Std	1.20	1.20	1.30/2.40*	2.40
	Hi-Static	2.40	2.40	2.90	2.90
Motor RPM	Std	1620	1620	1725	1725
	Hi-Static	1725	1725	1725	1725
Motor Frame Size	Std	48	48	48/56*	56
	Hi-Static	56	56	56	56
Fan Rpm Range	Std	680-1044	770-1185	1035-1460	1119-1585
i un ripin riunge	Hi-Static				1
Motor Bearing Type	Til-Static	1075-1455	1075-1455	1300-1685	1300-1685
9 ,		Ball	Ball	Ball	Ball
Maximum Fan Rpm	a. .	2100	2100	2100	2100
Motor Pulley Pitch Diameter A/B (in.)	Std	1.9/2.9	1.9/2.0	2.4/3.4	2.4/3.4
	Hi-Static	2.8/3.8	2.8/3.8	3.4/4.4	3.4/3.4
Nominal Motor Shaft Diameter (in.)	Std	1/2	1/2	⁵ / ₈	5/8
	J	.,2			
	Hi-Static		5/ _R	5/ ₈	7/ ₈
Fan Pulley Pitch Diameter (in.)	Hi-Static Std	5/8	⁵ / ₈	⁵ / ₈ 4.0	7/ ₈ 4.0
Fan Pulley Pitch Diameter (in.)		⁵ / ₈ 4.5	⁵ / ₈ 4.0	4.0	4.0
	Std	⁵ / ₈ 4.5 4.5	⁵ / ₈ 4.0 4.0	4.0 4.5	4.0 4.5
Fan Pulley Pitch Diameter (in.) Belt — TypeLength (in.)	Std Hi-Static Std	⁵ / ₈ 4.5 4.5 1A36	⁵ / ₈ 4.0 4.0 1A36	4.0 4.5 1440	4.0 4.5 1A38
Belt — TypeLength (in.)	Std Hi-Static	⁵ / ₈ 4.5 4.5 1A36 1A39	5/ ₈ 4.0 4.0 1A36 1A39	4.0 4.5 1440 1A40	4.0 4.5 1A38 1A40
Belt — TypeLength (in.) Pulley Center Line Distance (in.)	Std Hi-Static Std Hi-Static	5/ ₈ 4.5 4.5 1A36 1A39 10.0-12.4	5/ ₈ 4.0 4.0 1A36 1A39 10.0-12.4	4.0 4.5 1440 1A40 14.7-15.5	4.0 4.5 1A38 1A40 14.7-15.5
Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of	Std Hi-Static Std Hi-Static	5/ ₈ 4.5 4.5 1A36 1A39 10.0-12.4 65	5/ ₈ 4.0 4.0 1A36 1A39 10.0-12.4 70	4.0 4.5 1440 1A40 14.7-15.5 75	4.0 4.5 1A38 1A40 14.7-15.5 95
Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm)	Std Hi-Static Std Hi-Static Std Hi-Static	5/ ₈ 4.5 4.5 1A36 1A39 10.0-12.4 65 65	5/ ₈ 4.0 4.0 1A36 1A39 10.0-12.4 70 65	4.0 4.5 1440 1A40 14.7-15.5 75 60	4.0 4.5 1A38 1A40 14.7-15.5
Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm) Movable Pulley Maximum Full	Std Hi-Static Std Hi-Static Std Hi-Static Std	5/ ₈ 4.5 4.5 1A36 1A39 10.0-12.4 65	5/ ₈ 4.0 4.0 1A36 1A39 10.0-12.4 70	4.0 4.5 1440 1A40 14.7-15.5 75 60 6	4.0 4.5 1A38 1A40 14.7-15.5 95
Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm) Movable Pulley Maximum Full Turns from Closed Position	Std Hi-Static Std Hi-Static Std Hi-Static	5/ ₈ 4.5 4.5 1A36 1A39 10.0-12.4 65 65	5/ ₈ 4.0 4.0 1A36 1A39 10.0-12.4 70 65	4.0 4.5 1440 1A40 14.7-15.5 75 60	4.0 4.5 1A38 1A40 14.7-15.5 95 60
Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm) Movable Pulley Maximum Full	Std Hi-Static Std Hi-Static Std Hi-Static Std	5/8 4.5 4.5 1A36 1A39 10.0-12.4 65 65 5	5/ ₈ 4.0 4.0 1A36 1A39 10.0-12.4 70 65 5	4.0 4.5 1440 1A40 14.7-15.5 75 60 6	4.0 4.5 1A38 1A40 14.7-15.5 95 60 5
Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm) Movable Pulley Maximum Full Turns from Closed Position	Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static	5/8 4.5 4.5 1A36 1A39 10.0-12.4 65 65 5 6 6	5/ ₈ 4.0 4.0 1A36 1A39 10.0-12.4 70 65 5 6 3	4.0 4.5 1440 1A40 14.7-15.5 75 60 6 5	4.0 4.5 1A38 1A40 14.7-15.5 95 60 5 5
Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm) Movable Pulley Maximum Full Turns from Closed Position	Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std	5/8 4.5 4.5 1A36 1A39 10.0-12.4 65 65 65 5 6 3 3 ¹ / ₂	5/ ₈ 4.0 4.0 1A36 1A39 10.0-12.4 70 65 5 6 3 3 ¹ / ₂	4.0 4.5 1440 1A40 14.7-15.5 75 60 6 5 3 3 ¹ / ₂	4.0 4.5 1A38 1A40 14.7-15.5 95 60 5 5 3 3 ¹ / ₂
Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm) Movable Pulley Maximum Full Turns from Closed Position Factory Setting — Full Turns Open	Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static	5/8 4.5 4.5 1A36 1A39 10.0-12.4 65 65 5 6 6	5/ ₈ 4.0 4.0 1A36 1A39 10.0-12.4 70 65 5 6 3	4.0 4.5 1440 1A40 14.7-15.5 75 60 6 5	4.0 4.5 1A38 1A40 14.7-15.5 95 60 5 5

LEGEND

Bhp — Brake Horsepower

Table 1 — Physical Data 581B (cont)

UNIT SIZE 581B		036	048	060	072
FURNACE SECTION					
Rollout Switch Cutout Temp (F)†		195	195	195	195
Burner Orifice Diameter (indrill size)**	074/070	110 00	440.00	440.00	440.00
Natural Gas —Std	071/072	.11333	.11333	.11333	.11333
	114/115 149/150	.11333	.11333 .12930	.11333 .12930	.11333 .12930
	060N	.10238	.12930	.12930	.12930
	090N	.10238	.10238	.10238	_
	120N	.10250	.11632	.11632	_
Propane —Alt††	071/072	.08943	.08943	.08943	.08943
Tropano 74111	114115	.08943	.08943	.08943	.08943
	149/150	_	.10238	.10238	.10439
	060N	.08245	.08245	.08245	_
	090N	.08245	.08245	.08245	_
	120N	_	.09442	.09442	_
Thermostat Heat Anticipator Setting (amps)					
208/230/460 v					
First Stage		.14	.14	.14	.14
Second Stage		.14	.14	.14	.14
Gas Input (Btuh)	070	50.000/70.000	50,000/70,000	50.000/70.000	50.000/70.000
First Stage/Second Stage (3-phase units)	072	50,000/72,000	50,000/72,000	50,000/72,000	50,000/72,000
	115 150	82,000/115,000	82,000/115,000 120,000/150,000	82,000/115,000 120,000/150,000	82,000/115,000 120,000/150,000
	071II	— —/72,000	—/72,000	—/72,000	120,000/150,000
	11411	—/12,000 —/115,000	—/12,000 —/115,000	—/12,000 —/115,000	
	14911	—/ 115,000 —	—/150,000 —/150,000	—/150,000 —/150,000	_
	060N***	—/ 60,000	—/60,000	—/60,000	_
	090N***	—/ 90,000	—/90,000 —/90,000	—/90,000	_
	120N***		—/120.000	—/120,000	_
Efficiency (Steady State) (%)	072	82	82	82	82
	115	80	81	81	81
	150	_	80	80	80
	071	82	82	82	_
	114	80	81	81	_
	149		80	80	_
	060N	80	80	80	_
	090N	80	80 80	80 80	_
Temperature Rise Range	120N 072	 15-45	15-45	15-45	 15–45
Temperature riise riange	115	55-85	35-65	35-65	35-65
	150	_	50-80	50-80	50-80
	071	15-45	15-45	15-45	_
	114	55-85	35-65	35-65	_
	149	_	50-80	50-80	_
	060N	20-50	20-50	20-50	_
	090N	30-60	30-60	30-60	_
	120N	_	40-70	40-70	_
Manifold Pressure (in. wg)		0.5	0.5	0.5	0.5
Natural Gas —Std		3.5	3.5	3.5	3.5
Propane —Alt†† Maximum Static Pressure (in. wg)		3.5 1.0	3.5 1.0	3.5 1.0	3.5 1.0
Field Gas Connection Size (in.)		1.0	1.0	1.0	1.0
HIGH-PRESSURE SWITCH (psig)		1/4	1/4	1/4	1/4
Standard Compressor Internal Relief			450	+ 50	
Cutout				± 50 28	
Reset (Auto.)				20	
LOSS-OF-CHARGE SWITCH/LOW-PRESSURE			02		
(Liquid Line) (psig)					
Cutout			7	± 3	
Reset (Auto.)				± 5	
FREEZE PROTECTION THERMOSTAT					
Opens (F)			30	± 5	
Cioses (F)				± 5	
OUTDOOR-AIR INLET SCREENS		Cleana		size varies with option se	elected.
RETURN-AIR FILTERS				vaway	
QuantitySize (in.)			216 x 25 x 2	·-··-,	416 x 16 x 2

LEGEND

Bhp — Brake Horsepower

<sup>Bhp — Brake Horsepower
**60,000 and 72,000 Btuh heat input units have 2 burners. 90,000 and 120,000 Btuh heat input units have 3 burners. 115,000 Btuh heat input units and 150,000 Btuh Heat input units have 3 burners.
†A propane kit is available as an accessory. Kit may be used at elevations as high as 2000 ft. If a propane kit is used with Low NOx units, the Low NOx baffle must be removed and the units will no longer be classified as Low NOx units.
Il Three-phase standard models have heating inputs as shown. Single-phase standard models have one-stage heating with heating input values.
***California compliant three-phase models.
††California SCAQMD compliant low NO_x models have combustion products that are controlled to 40 nanograms per joule or less.</sup>

Table 2—Physical Data 581C

BASE UNIT 581C		024	036	048	072
NOMINAL CAPACITY (tons)		2	3	4	5
OPERATING WEIGHT (lb)			3	4	5
Unit		530	540	560	635
Perfect Humidity [™] Adaptive Dehumidification Sys	tem	13	15	23	25
EconoMi\$er IV	tom				
Roof Curb		50	50	50	50
COMPRESSOR		115	115	115	115
				Scroll	
Quantity		1	1	1	1
Oil (oz)		25	42	56	53
REFRIGERANT TYPE				R-22	
Expansion Device			Ac	cutrol™ Metering Device	1
Operating Charge (lb-oz)					
Standard Unit		5-3	7-11	8–8	12-11
Unit With Perfect Humidity Adaptive Dehumidific	cation System	10-2	14-0	14-13	21-0
CONDENSER FAN			1	Propeller	
QuantityDiameter (in.)		122	122	122	122
Nominal Cfm		3000	3500	3500	4100
Motor HpRpm		1/8825	1/8825	¹ /8825	¹ / ₄ 1100
Watts Input (Total)		180	180	180	320
CONDENSER COIL				ed Copper Tubes, Aluminum	
RowsFins/in.		117	117	217	217
Total Face Area (sq ft)		14.6	14.6	16.5	16.5
EVAPORATOR COIL				Copper Tubes, Aluminum Do	
Standard Unit		`	CD Elinariosa		
RowsFins/in.		215	215	215	415
Total Face Area (sq ft)		4.2	5.5	5.5	5.5
Unit with Perfect Humidity Adaptive Dehumidificat	ion System	7.2	3.3	5.5	3.5
RowsFins/in.	ion Cyclom	1 17	117	217	217
Total Face Area (sq ft)		117 3.5		3.9	3.9
EVAPORATOR FAN		3.5	3.9		3.9
QuantitySize (in.)				ntrifugal Type, Belt Drive	1 40 40
Nominal Cfm		110 x 10	110 x 10	110 x 10	110 x 10
	Ctd	800	1200	1600	2000
Maximum Continuous Bhp	Std	0.58	1.20	1.20	1.30/2.40*
Matau France Oine	Hi-Static		2.40	2.40	2.90
Motor Frame Size	Std	48	48	48	48/56*
	Hi-Static		56	56	56
Motor Rpm		1620	1620	1620	1725
Fan Rpm Range	Std	400-1000	680-1044	770-1185	1035-1460
	Hi-Static		1075-1455	1075-1455	1300-1685
Motor Bearing Type		Ball	Ball	Ball	Ball
Maximum Fan Rpm		1620	2100	2100	2100
Motor Pulley Pitch Diameter A/B (in.)	Std	2.4/3.2	1.9/2.9	1.9/2.0	2.4/3.4
	Hi-Static		2.8/3.8	2.8/3.8	3.4/4.4
Nominal Motor Shaft Diameter (in.)	Std	5/8	1/2	1/2	5/8
	Hi-Static	7/8	5/8	5/8	5/8
Fan Pulley Pitch Diameter (in.)	Std	4.0	4.5	4.0	4.0
, ,	Hi-Static	4.5	4.5	4.0	4.5
Belt — TypeLength (in.)	Std	1A36	1A36	1A36	1440
] 3 ()	Hi-Static	1	1A39	1A39	1440 1A40
Pulley Center Line Distance (in.)		10.0-12.4	10.0-12.4	10.0-12.4	14.7-15.5
Speed Change per Full Turn of	Std	60	65	70	75
Movable Pulley Flange (rpm)	Hi-Static	50			
1	Std	_	65	65	60
Movable Pulley Maximum Full Turns from Closed Position	Hi-Static	5	5	5	6
			6	6	5
Factory Setting — Full Turns Open	Std	3	3	3	3
Footoms On and Onthings ()	Hi-Static		3 ¹ / ₂	31/2	31/2
Factory Speed Setting (rpm)	Std	756	826	936	1248
	Hi-Static	_	1233	1233	1396
Fan Shaft Diameter at Pulley (in.)		5/8	5/8	⁵ / ₈	⁵ / ₈

Table 2 — Physical Data 581C (cont)

UNIT SIZE 581C FURNACE SECTION Rollout Switch Cutout Temp (F)† Burner Orifice Diameter (indrill size)** Natural Gas —Std Propane —Alt†† Thermostat Heat Anticipator Setting (amps) 208/230/460 v First Stage	071/072 114/115 149/150 060N 090N 120N 071/072 114115 149/150 060N 090N 120N	195 .11333 .1133310238 .1023808943 .08943 .08945	195 11333 .11333 .12930 .10238 .10238 .11632 .08943 .08943 .10238	195 .11333 .11333 .12930 .10238 .10238 .11632 .08943 .08943	195 .11333 .11333 .12930
Rollout Switch Cutout Temp (F)† Burner Orifice Diameter (indrill size)** Natural Gas —Std Propane —Alt†† Thermostat Heat Anticipator Setting (amps) 208/230/460 v First Stage	114/115 149/150 060N 090N 120N 071/072 114115 149/150 060N 090N	.11333 .11333 	.11333 .11333 .12930 .10238 .10238 .11632 .08943	.11333 .11333 .12930 .10238 .10238 .11632 .08943	.11333 .11333 .12930 — — — .08943
Burner Orifice Diameter (indrill size)** Natural Gas —Std Propane —Alt†† Thermostat Heat Anticipator Setting (amps) 208/230/460 v First Stage	114/115 149/150 060N 090N 120N 071/072 114115 149/150 060N 090N	.11333 .11333 	.11333 .11333 .12930 .10238 .10238 .11632 .08943	.11333 .11333 .12930 .10238 .10238 .11632 .08943	.11333 .11333 .12930 — — — .08943
Natural Gas —Std Propane —Alt†† Thermostat Heat Anticipator Setting (amps) 208/230/460 v First Stage	114/115 149/150 060N 090N 120N 071/072 114115 149/150 060N 090N	.11333 .10238 .10238 .10238 	.11333 .12930 .10238 .10238 .11632 .08943	.11333 .12930 .10238 .10238 .11632 .08943	.11333 .12930 — — — — .08943
Propane —Alt†† Thermostat Heat Anticipator Setting (amps) 208/230/460 v First Stage	114/115 149/150 060N 090N 120N 071/072 114115 149/150 060N 090N	.11333 .10238 .10238 .10238 	.11333 .12930 .10238 .10238 .11632 .08943	.11333 .12930 .10238 .10238 .11632 .08943	.11333 .12930 — — — — .08943
Thermostat Heat Anticipator Setting (amps) 208/230/460 v First Stage	149/150 060N 090N 120N 071/072 114115 149/150 060N 090N	.10238 .10238 	.12930 .10238 .10238 .11632 .08943 .08943	.12930 .10238 .10238 .11632 .08943	.12930 — — — — .08943
Thermostat Heat Anticipator Setting (amps) 208/230/460 v First Stage	060N 090N 120N 071/072 114115 149/150 060N 090N	.10238 .10238 	.10238 .10238 .11632 .08943 .08943	.10238 .10238 .11632 .08943 .08943	
Thermostat Heat Anticipator Setting (amps) 208/230/460 v First Stage	090N 120N 071/072 114115 149/150 060N 090N	.10238 .08943 .08943 .08245	.10238 .11632 .08943 .08943	.10238 .11632 .08943 .08943	.08943
Thermostat Heat Anticipator Setting (amps) 208/230/460 v First Stage	120N 071/072 114115 149/150 060N 090N	.08943 .08943 43 	.11632 .08943 .08943	.11632 .08943 .08943	.08943
Thermostat Heat Anticipator Setting (amps) 208/230/460 v First Stage	071/072 114115 149/150 060N 090N	.08943 .08943 — .08245	.08943 .08943	.08943 .08943	
Thermostat Heat Anticipator Setting (amps) 208/230/460 v First Stage	114115 149/150 060N 090N	.08943 — .08245	.08943	.08943	
208/230/460 v First Stage	149/150 060N 090N	 .08245			
208/230/460 v First Stage	060N 090N	.08245	.10238		.08943
208/230/460 v First Stage	090N			.10238	.10439
208/230/460 v First Stage		082 45	.08245	.08245	_
208/230/460 v First Stage	120N	.00240	.08245	.08245	_
208/230/460 v First Stage		_	.09442	.09442	_
208/230/460 v First Stage		ļ		· · · · · · · · · · · · · · · · · · ·	
First Stage				· '	
		.14	.14	.14	.14
Cocond Stone			.14		
Second Stage		.14	.14	.14	.14
Gas Input (Btuh)	272	50.000/70.000	50,000/70,000	F0 000/ 70 000	50.000/70.005
First Stage/Second Stage (3-phase units)	072	50,000/ 72,000	50,000/ 72,000	50,000/ 72,000	50,000/ 72,000
	115	82,000/115,000	82,000/115,000	82,000/115,000	82,000/115,000
	150	_	120,000/150,000	120,000/150,000	120,000/150,000
	071II	/72,000	—/72,000	—/72,000	_
	114II	—/115,000	—/115,000	—/115,000	_
	149II	<u> </u>	—/150,000	—/150,000	_
	060N***	/ 60,000	— /60,000	— /60,000	_
	090N***	—/ 90,000	—/90,000	—/90,000	_
	120N***	7 00,000	—/120,000	—/120,000	_
Efficiency (Steady State) (%)	072	82	82	—/ 120,000 82	82
Efficiency (Steady State) (%)					
	115	80	81	81	81
	150		80	80	80
	071	82	82	82	_
	114	80	81	81	_
	149	_	80	80	_
	060N	80	80	80	_
	090N	80	80	80	_
	120N	_	80	80	_
Temperature Rise Range	072	15-45	15-45	15-45	15-45
Tomporataro Historiango	115	55-85	35–65	35-65	35-65
	150	33 33	50-80	50-80	50-80
	071	15-45	15-45	15-45	30-00
	114	55-85	35-65	35-65	_
		55-65			_
	149		50-80	50-80	_
	060N	20-50	20-50	20-50	_
	090N	30-60	30-60	30-60	_
	120N	_	40-70	40-70	_
Manifold Pressure (in. wg)	l	· ·		· · · · · · · · · · · · · · · · · · ·	
Natural Gas —Std		3.5	3.5	3.5	3.5
Propane —Alt††		3.5	3.5	3.5	3.5
Maximum Static Pressure (in. wg)		1.0	1.0	1.0	1.0
Field Gas Connection Size (in.)		1/2	1/2	1/2	1/2
HIGH-PRESSURE SWITCH (psig)		-,-	-7-		.,-
Standard Compressor Internal Relief				50	
			450 :		
Cutout			42		
Reset (Auto.)			32	:0	
OSS-OF-CHARGE SWITCH/LOW-PRESSURE					
Liquid Line) (psig)					
Cutout			7 .	± 3	
Reset (Auto.)			22 :		
REEZE PROTECTION THERMOSTAT			22 :	<u> </u>	
				-	
Opens (F)			30 :		
Closes (F)			45 :	± 5	
OUTDOOR-AIR INLET SCREENS		Cleana	ble. Screen quantity and	size varies with option se	elected.
RETURN-AIR FILTERS			Throw	•	
QuantitySize (in.)			216 x 25 x 2	unuy	416 x 16 x 2

LEGEND

Bhp — Brake Horsepower

removed and the units will no longer be classified as Low NOx units.

Il Three-phase standard models have heating inputs as shown. Single-phase standard models have one-stage heating with heating input values.

***California compliant three-phase models.

†††California SCAQMD compliant low NO_x models have combustion products that are controlled to 40 nanograms per joule or less.

^{**60,000} and 72,000 Btuh heat input units have 2 burners. 90,000 and 120,000 Btuh heat input units have 3 burners. 115,000 Btuh heat input units and 150,000 Btuh Heat input units have 3 burners.

115,000 Btuh heat input units have 3 burners. 115,000 Btuh heat input units have 3 burners. 114 propane kit is available as an accessory. Kit may be used at elevations as high as 2000 ft. If a propane kit is used with Low NOx units, the Low NOx baffle must be

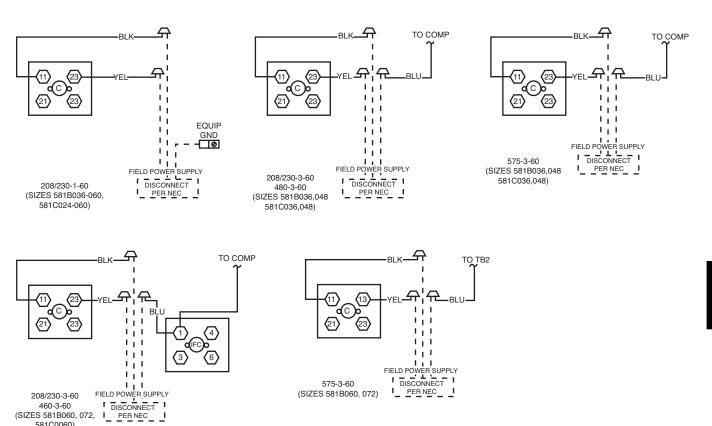


Fig. 12 - Power Wiring Connections

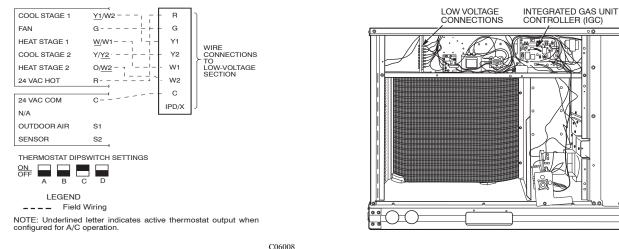


Fig. 13 - Low-Voltage Connections With or Without Economizer or Two-Position Damper

(SIZES 581B060, 072, I_ 581C0060)

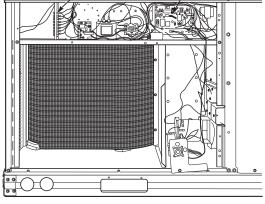


Fig. 14 - Field Control Wiring

C06125

C06346

Table 3—Electrical Data 581C

							1000		, inclination) 107 mm						
	581C024-060	0.	VOL	VOLTAGE RANGE	00	COMPRESSOR	В	OFM	>	COMBUSTION FAN MOTOR	IFM	CONV	РОМ	POWER SUPPLY *	MINIMUM UNIT DISCONNECT SIZE	M UNIT ECT SIZE
UNIT SIZE	NOMINAL V-PH-Hz	IFM TYPE	Min	Мах	ΩTΛ	RLA	LRA	ΔTΛ	Ą	FLA	FLA		MCA	MOCP**	A.	LRA
024	208/230_1_60	CTS	187	25.4	-	10.0	8		0.7	90	00	ON	16.3	20	15.6	69
(2 tons)	20-1-02/02		2	1	-	9.	3			2.0	5.3	YES	22.3	25	21.2	73
	208/230-1-60	STD	187	254	-	16	88	-	0.7	9.0	4.9	O S	25.6	S 4	24.8	101
	-						l						0.0	8 8	183	901
		STD	ļ	į	,	,	ı	,	į	•	4.9	YES	24.5	3 68	23.8	95
	208/230-3-60	9	187	254	-	10.3	!	-	0.7	9.0	0	ON	19.4	52	19.3	120
		Ê									0.0	YES	25.4	30	24.9	124
6		STD									66	ON.	9.0	15	8.9	46
036	460-3-60	5	414	508	-	1.0	8	-	4.0	0.3	1	YES	11.7	15	11.4	48
(3 tons)	}	¥	:		-	;	3		;	}	2.6	NO NES	9.4	ა 12	9.3	9
		d					l				,	NO	7.6	10	7.5	36
		S C							Š		Di	YES	9.7	15	9.5	38
	575-3-60	Ä	2	630	-	0.7	7	_	4.	÷	c	ON	7.7	10	9.7	43
	00-0-070	2	5	260	-	t V	5			0.9	2.0	YES	9.8	15	9.6	44
		Perfect						-	0.4+		26+	ON	7.7	10	8.0	48
		Humidity						-	-		-	YES	9.8	15	9.6	20
	208/230-1-60	STD	197	254	-	21	115	-	5:	9.0	6.4		32.7	40	31.5	130
												S CN	24.0	£ 6.	23.6	110
		STD		į						;	4.9	YES	30.0	8 88	29.1	112
	208/230-3-60	9	187	254	-	14.1	8	-	.	9.0	-	ON.	24.9	30	24.6	140
		S E									20.	YES	30.9	32	30.1	145
		CTO									c	ON	11.9	15	11.6	23
048	460 2 60	פֿוּ	7.7	90	•	7.4	Ą	,	0	0	V. V	YES	14.6	20	14.1	22
(4 tons)	400-2-00	Ä	1	900	-	-:	5	_	0.0	6.0	90	ON	12.3	15	12.1	29
		2									0.9	YES	15.0	20	14.6	20
		STD									σ.	2	10.1	15	9.6	44
								-	90		2	YES	12.3	15	11.9	46
	575-3-60	Ÿ	518	632	-	٠ -	8)	0.34	00	2	10.2	15	10.0	51
		400	!	!			;			-	i	YES	4 2 4	ر د ا	0.2.0	25
		Perfect						-	0.8†		2.6†		10.3	ت پ	0.0	000
		Junimariy											5.5	2 2	12.1	30 187
	208/230-1-60	STD	187	254	-	22	150	-	.	9.0	9.9	YES	45.4	8 8	43.6	191
		ć									ı	ON	28.9	32	28.3	168
	000,000	o is	707	7 10	•	1	9	,	U	q	o O	YES	34.9	40	33.8	173
	200/230-3-00	Ä	ò	422	-		2	_	ņ.	0.0	7.5	ON	30.6	32	30.2	187
		2										YES	36.6	40	35.8	192
0		STD									2.6	ON	13.9	50	13.6	92
090	460-3-60		414	202	-	24	۶	-	800	+80		YES	16.6	50	16.1	95
(5 tons)	3	£	:		-	- 5	2		9	5	3.4	S E	14.7	8 8	14.5	102
												ខ្ម	4.7.	2 .	0.7	40.0
		STD									2.0	2 5		១ដុ	7.0	90
								-	9.0			2 2	9.0	១ ដុ	13.2	72
	575-3-60	£	518	632	-	7.1	23			0.3†	2.8	2 6	12.3	<u>e</u> e	12.1	0/2
		Darfact					- -					20	10.01	5 £	19.0	0 0
		T T T T T T T T T T T T T T T T T T T						-	†6:T		3.4†	Z E	144	2 6	14.0) C
		ומוומווא										3	ŕ	3	Ė	8

FLA – Full Load Amps
HACR – Heating, Air Conditioning and Refrigeration
IFM – Indoor (Evaporator) Fan Motor
LRA – Locked Rotor Amps
MCA – Marimum Circuit Amps
MCA – Maximum Overcurrent Protection
NEC – National Electrical Code
OFM – Outdoor (Condenser) Fan Motor
RLA – Rated Load Amps

NOTES:

* The values listed in this table do not include power exhaust. See power exhaust table for power exhaust requirements.

** Fuse or HACR breaker

† 460v motor

8
81B
ta 5
Da
ca
ctri.
Elec
T
le 4
ap
Ξ

							Table 4—	-Electric	—Electrical Data 581B	881B				-		
	581B036-072		PANGE	VOLIAGE	CON	COMPRESSOR (each)	each)	OFM (each)	(each)	COMBUSTION FAN MOTOR	FLA	OUTLET	POWER SUPPLY	SUPPLY *	DISCON	MINIMUM UNI DISCONNECT SIZE
UNIT SIZE	NOMINAL V – PH – Hz	IFM TYPE	Min	Max	QTY	RLA	LRA	QTY	FLA	FLA			MCA	MOCP**	FLA	LRA
	208/230-1-60	STD	187	254	-	9	88	-	0.7	0.6	4.9	NO	25.6	30	25	101
		E										NO NO	18.5	3 83	18	06
	208/230-3 60	O O	187	254	-	103	1	-	0.7	9	y.	YES	24.5	30	24	95
		£							;	3	5.2	NO VES	19.4	8 8	19	120
		CIS									2.2	ON	0.6	15	6	46
036 (3 Tons)	460-3-60		414	208	-	5.1	36	-	4.0	0.3		2 CN	7.10	<u>o</u>	_ o	60
		£									2.6	YES	12.1	ट्	12	83
		STD									1.9	ON X	7.6	10	۲ ٥	36
		•				1	,	-	0.4	0.3 †		NO NO	7.7	0	n ω	43
	575-3-60	HS	518	632	-	4.2	31				2.0	YES	9.8	15	10	44
		Perfect						1	0.4†	16:0	2.6†	NO	8.3	10	10	52
	208/230-1-60	STD	187	254	-	23.7	126	-	0.7	9.0	4.9	ON	35.2	45	34	139
		!	:				!				!	YES	41.2 2.55	200	38	108
	000000	STD	7	200	,	L C	8	,	1	9	6.4	YES	28.5	32	27	111
	200/230-3-00	HS.	/ 0	4c2		c:	8	-	ò	9.0	5.8	ON S	23.4	30	23	136
												SE	10.6	છે દ	67	140
F 7 0 7 0	000	STD	;	ç	,	,	Ĺ	,	,	Ġ	2.2	YES	13.3	र द	3 5	26
048 (4 Ions)	460-3-60	ų.	414	208	-	4.0	46.5	-	4.0	e:0	90	ON	11.0	15	11	89
		2									5	YES	13.7	15	13	20
		STD									6.1	YES	12.5	<u>n</u>	1 20	45
	2 60	0	1	COG		4	Ş	-	4.0	0.3 †	c	ON	10.4	15	10	52
		2	5	200	_	t Ö	P				6.0	YES	12.6	15	12	23
		Humidity						-	0.4	و.o و.و	2.6†	YES	13.2	<u>c</u> 42	13	63
	208/230-1-60	STD	187	254	-	28.8	169	-	7	9.0	99	ON	44.1	09	42	206
	20				-		3		2		;	YES	50.1	09	8 8	210
		STD								;	5.8	YES	34.9	S 04	34	173
	208/230-3-60	ğ	187	254	-	17.3	123	-	د .	9.0	7.5	ON	30.6	32	30	187
		2									2:	YES	36.6	9 8	36	192
		STD									2.6	O S	14./	2 8	14	84
060 (5 Tons)	460-3-60	:	414	208	-	6	62	-	9.0	0.3		200	15.5	8 8	- 12	94
		S.									3.4	YES	18.2	20	18	96
		CES									0.0	ON	11.5	15	11	63
	575 3 BO	1	-						9.0	0.3 †	i	YES	13.6	र म	13	64
	00-5-676	HS	518	632	-	7.1	20	-			2.8	YES	14.4	20 2	2 4	73
		Perfect						1	100	400	17.0	NO	12.2	15	12	9/
		Humidity							0.01	0.0	0.4	YES	14.4	20	14	77
		STD								9.0	5.8	NO	32.8	40	32	200
	208/230-3-60	•	187	254	-	20.5	156	-	4.1			NO NO	34.5	\$ \$	34	219
		S E								9.0	7.5	YES	40.5	45	39	224
		STD								0.3	2.6	NO	15.2	20	15	97
	460-3-60		414	208	-	9.6	75	-	9.0			YES C	17.9	2 8	1/2	107
072 (6 Tons)		HS.								0.3	3.4	YES	18.7	23 23	18 2	109
		G. C.									c	ON	12.4	15	12	69
		SID							ď	- C	2.0	YES	14.6	50	14	20
	575-3-60	£	518	632	-	7.7	56	-)	5	2.8	NO	13.2	200	13	79
		Perfect	-					-			;	2N N	12.8	22	13 5	84 83
		Humidity							0.6†	0.3+	3.4†	YES	15.0	20	15	83
	+			<u> </u>		1	Į.	ţ					<u> </u>			-

Step 8—Adjust Factory-Installed Options Perfect Humidity™ Adaptive Dehumidification

System

Perfect Humidity system operation can be controlled by field installation of a Bryant-approved humidistat. (See Fig. 15.)

NOTE: A light commercial Thermidistat[™] device (Fig. 16) can be used instead of the humidistat if desired. The Thermidistat device includes a thermostat and a humidistat. The humidistat is normally used in applications where a temperature sensor is already provided.

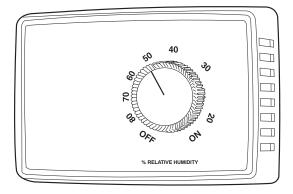


Fig. 15 - Accessory Field-Installed Humidistat

Fig. 16 - Light Commercial Thermidistat Device

To install the humidistat:

- 1. Route humidistat cable through hole provided in unit control box.
- 2. Some models may be equipped with a raceway built into the corner post located on the left side of control box (See Fig. 14). This raceway provides the required clearance between high-voltage and low voltage wiring. For models without a raceway, ensure to provide the NEC required clearance between the high-voltage and low-voltage wiring.
- 3. Use a wire nut to connect humidistat cable into lowvoltage wiring as shown in Fig. 17.

To install Thermidistat device:

- 1. Route Thermidistat cable through hole provided in unit control box.
- 2. Some models may be equipped with a raceway built into the corner post located on the left side of control box (See Fig. 14). This raceway provides the required clearance between high-voltage and low voltage wiring. For models without a raceway, ensure to provide the NEC required clearance between the high-voltage and low-voltage wiring.
- 3. A field-supplied relay must be installed between the Thermidistat and the Humidi-Mizer circuit (recommended relay: HN61KK324). (See Fig. 18.) The relay coil is connected between the DEHUM output and C (common) of the unit. The relay controls the Perfect Humidity solenoid valve and must be wired between the Perfect Humidity fuse and the low-pressure switch. Refer to the installation instructions included with the Bryant Light Commercial Thermidistat device for more information.

Manual Outdoor Damper

The outdoor-air hood and screen are attached to the basepan at the bottom of the unit for shipping.

Assembly:

- 1. Determine quantity of ventilation required for building. Record amount for use in Step 8.
- 2. Remove and save outdoor air opening panel and screws. (See Fig. 19.)
- 3. Remove evaporator coil access panel. Separate hood and screen from basepan by removing the 4 screws securing them. Save all screws.
- 4. Replace evaporator coil access panel.
- 5. Place hood on front of outdoor air opening panel. See Fig. 20 for hood details. Secure top of hood with the 4 screws removed in Step 3. (See Fig. 21.)
- 6. Remove and save 6 screws (3 on each side) from sides of the manual outdoor-air damper.
- 7. Align screw holes on hood with screw holes on side of manual outdoor-air damper. (See Fig. 28 and 21.) Secure hood with 6 screws from Step 6.
- 8. Adjust minimum position setting of the damper blade by adjusting the manual outdoor-air adjustment screws on the front of the damper blade. (See Fig. 19.) Slide blade vertically until it is in the appropriate position determined by Fig. 22. Tighten screws.
- 9. Remove and save screws currently on sides of hood. Insert screen. Secure screen to hood using the screws. (See Fig. 21.)

Convenience Outlet

An optional convenience outlet provides power for rooftop use. For maintenance personnel safety, the convenience outlet power is off when the unit disconnect is off. Adjacent unit outlets may be used for service tools.

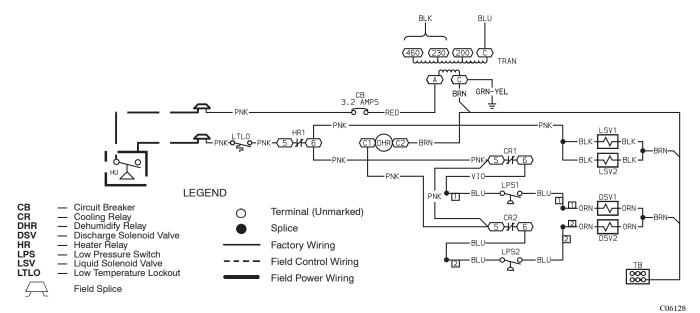


Fig. 17 - Typical Perfect Humidity M Adaptive Dehumidification System Humidistat Wiring (208/230-V Unit Shown)

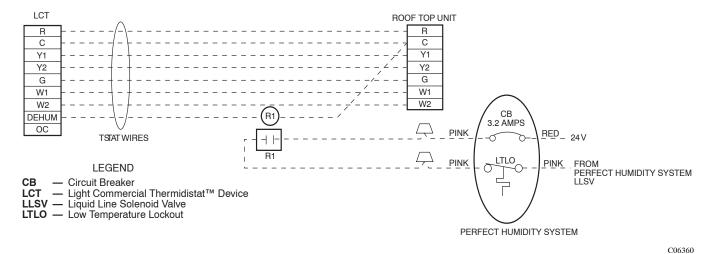


Fig. 18 - Typical Rooftop Unit with Perfect Humidity Adaptive Dehumidification System with Thermidistat Device

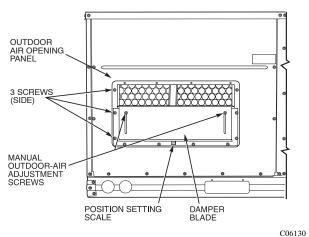


Fig. 19 - Damper Panel with Manual Outdoor-Air Damper Installed

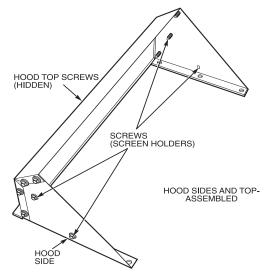


Fig. 20 - Outdoor-Air Hood Details

C06013

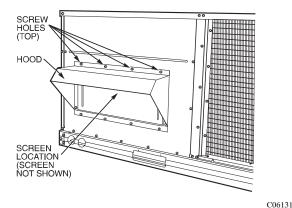


Fig. 21 - Outdoor-Air Damper With Hood Attached

Fig. 22 - Outdoor-Air Damper Position Setting

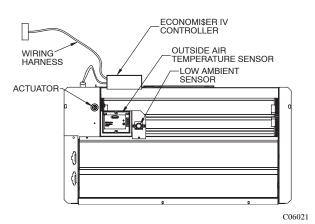
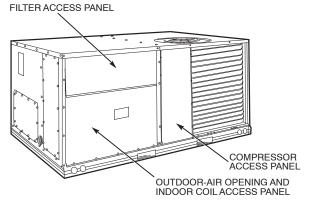


Fig. 23 - EconoMi\$er IV Component Locations

Optional Economi\$er IV

See Fig. 23 for EconoMi\$er IV component locations.


NOTE: These instructions are for installing the optional EconoMi\$er IV. Refer to the accessory EconoMi\$er IV when field installing an EconoMi\$er IV accessory.

- To remove the existing unit filter access panel, raise the panel and swing the bottom outward. The panel is now disengaged from the track and can be removed. (See Fig. 24.)
- 2. The box with the economizer hood components is shipped in the compartment behind the economizer. The EconoMi\$er IV controller is mounted on top of the EconoMi\$er IV. To remove the component box from its shipping position, remove the screw holding the hood box bracket to the top of the economizer. Slide the hood box out of the unit. (See Fig. 25.)

IMPORTANT: If the power exhaust accessory is to be installed on the unit, the hood shipped with the unit will not be used and must be discarded. Save the aluminum filter for use in the power exhaust hood assembly.

- 3. The indoor coil access panel will be used as the top of the hood. Remove the screws along the sides and bottom of the indoor coil access panel. (See Fig. 26.)
- 4. Swing out indoor coil access panel and insert the hood sides under the panel (hood top). Use the screws provided to attach the hood sides to the hood top. Use screws provided to attach the hood sides to the unit. (See Fig. 27.)
- 5. Remove the shipping tape holding the economizer barometric relief damper in place.
- 6. Insert the hood divider between the hood sides. (See Fig. 28 and 29.) Secure hood divider with 2 screws on each hood side. The hood divider is also used as the bottom filter rack for the aluminum filter.
- 7. Open the filter clips which are located underneath the hood top. Insert the aluminum filter into the bottom filter rack (hood divider). Push the filter into position past the open filter clips. Close the filter clips to lock the filter into place. (See Fig. 28.)
- 8. Caulk the ends of the joint between the unit top panel and the hood top. (See Fig. 26.)
- 9. Replace the filter access panel.
- Install all EconoMi\$er IV accessories. EconoMi\$er IV wiring is shown in Fig. 29.

Barometric flow capacity is shown in Fig. 30. Outdoor air leakage is shown in Fig. 33. Return air pressure drop is shown in Fig. 32.

C06023

Fig. 24 - Typical Access Panel Locations

C06132

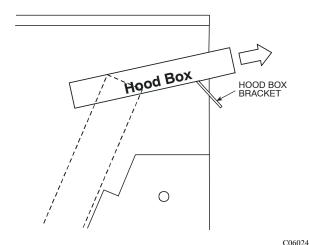


Fig. 25 - Hood Box Removal

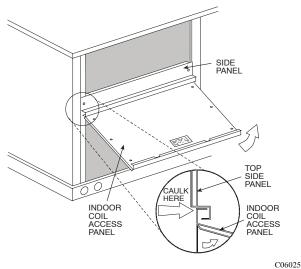


Fig. 26 - Indoor Coil Access Panel Relocation

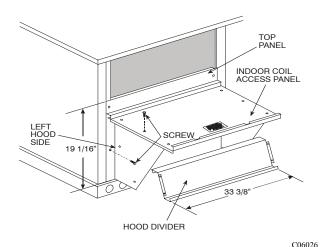


Fig. 27 - Outdoor-Air Hood Construction

Economi\$er IV Standard Sensors

Outdoor Air Temperature (OAT) Sensor

The outdoor air temperature sensor (HH57AC074) is a 10 to 20 mA device used to measure the outdoor-air temperature. The outdoor-air temperature is used to determine when the EconoMi\$er IV can be used for free cooling. The sensor is factory-installed on the EconoMi\$er IV in the outdoor airstream. (See Fig. 23 and 33.) The operating range of temperature measurement is 40° to 100° F.

Supply Air Temperature (SAT) Sensor

The supply air temperature sensor is a 3k ohm thermistor located at the inlet of the indoor fan. (See Fig. 34.) This sensor is factory installed. The operating range of temperature measurement is 0° to $158^{\circ}F$. See Table 5 for sensor temperature/resistance values.

Table 5—Supply Air Sensor Temperature/ Resistance Values

TEMPERATURE (F)	RESISTANCE (ohms)
-58	200,250
-40	100,680
-22	53,010
-4	29,091
14	16,590
32	9,795
50	5,970
68	3,747
77	3,000
86	2,416
104	1,597
122	1,080
140	746
158	525
176	376
185	321
194	274
212	203
230	153
248	116
257	102
266	89
284	70
302	55

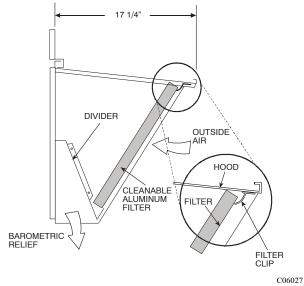


Fig. 28 - Filter Installation

The temperature sensor looks like an eyelet terminal with wires running to it. The sensor is located in the "crimp end" and is sealed from moisture.

Outdoor Air Lockout Sensor

The Economi\$er IV is equipped with an ambient temperature lockout switch located in the outdoor air stream which is used to lockout the compressors below a 42°F ambient temperature. (See Fig. 23.)

Economi\$er IV Control Modes

Determine the EconoMi\$er IV control mode before set up of the control. Some modes of operation may require different sensors. (See Table 6.) The EconoMi\$er IV is supplied from the factory with a supply-air temperature sensor and an outdoor-air temperature sensor. This allows for operation of the EconoMi\$er IV with outdoor air dry bulb changeover control. Additional accessories can be added to allow for different types of changeover control and operation of the EconoMi\$er IV and unit.

Outdoor Dry Bulb Changeover

The standard controller is shipped from the factory configured for outdoor dry bulb changeover control. The outdoor-air and supply-air temperature sensors are included as standard. For this control mode, the outdoor temperature is compared to an adjustable set point selected on the control. If the outdoor-air temperature is above the set point, the EconoMi\$er IV will adjust the outdoor-air dampers to minimum position. If the outdoor air temperature is below the set point, the position of the outdoor air dampers will be controlled to provide free cooling using outdoor air. When in this mode, the LED next to the free cooling set point potentiometer will be on. The changeover temperature set point is controlled by the free cooling set point potentiometer located on the control. (See Fig. 35.) The scale on the potentiometer is A, B, C, and D. See Fig. 36 for the corresponding temperature changeover values.

Table 6—Economi\$er IV Sensor Usage

APPLICATION	DRY	BULI	VITH OUTDOOR AIR B SENSOR					
			es Required					
Outdoor Air	None. The out	dooi	air dry bulb sensor					
Dry Bulb	is fa	ctory	installed.					
Differential Dry Bulb	CRTE	MPS	SN002A00*					
Single Enthalpy	F	H57	AC078					
	HH57AC078							
Differential	and							
Enthalpy	CRE	NTD	IF004A00*					
CO ₂ for DCV Control using a Wall-Mounted CO ₂ Sensor	33	zcs	ENCO2					
CO ₂ for DCV Control using a Duct-Mounted CO ₂ Sensor	33ZCSENCO2† and 33ZCASPCO2**	O R	CRCBDIOX005A00††					

^{*}CRENTDIF004A00 and CRTEMPSN002A00 accessories are used on many different base units. As such, these kits may contain parts that will not be needed for installation.

Differential Dry Bulb Control

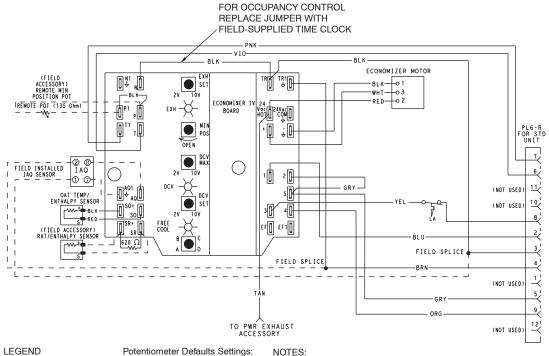
For differential dry bulb control the standard outdoor dry bulb sensor is used in conjunction with an additional accessory dry bulb sensor (part number CRTEMPSN002A00). The accessory sensor must be mounted in the return airstream. (See Fig. 37.) Wiring is provided in the EconoMi\$er IV wiring harness. (See Fig. 29.)

In this mode of operation, the outdoor-air temperature is compared to the return-air temperature and the lower temperature airstream is used for cooling. When using this mode of changeover control, turn the enthalpy setpoint potentiometer fully clockwise to the D setting. (See Fig. 35.)

Outdoor Enthalpy Changeover

For enthalpy control, accessory enthalpy sensor (part number HH57AC078) is required. Replace the standard outdoor dry bulb temperature sensor with the accessory enthalpy sensor in the same mounting location. (See Fig. 23 and 33.) When the outdoor air enthalpy rises above the outdoor enthalpy changeover set point, the outdoor-air damper moves to its minimum position. The outdoor enthalpy changeover set point is set with the outdoor enthalpy set point potentiometer on the EconoMi\$er IV controller. The set points are A, B, C, and D. (See Fig. 38.) The factory-installed 620-ohm jumper must be in place across terminals SR and SR+ on the EconoMi\$er IV controller. (See Fig. 23 and 39.)

Differential Enthalphy Control


For differential enthalpy control, the EconoMi\$er IV controller uses two enthalpy sensors (HH57AC078 and CRENTDIF004A00), one in the outside air and one in the return air duct. The EconoMi\$er IV controller compares the outdoor air enthalpy to the return air enthalpy to determine EconoMi\$er IV use. The controller selects the lower enthalpy air (return or outdoor) for cooling. For example, when the outdoor air has a lower enthalpy than the return air, the EconoMi\$er IV opens to bring in outdoor air for free cooling.

Replace the standard outside air dry bulb temperature sensor with the accessory enthalpy sensor in the same mounting location. (See Fig. 23.) Mount the return air enthalpy sensor in the return air duct. (See Fig. 37.) Wiring is provided in the EconoMi\$er IV wiring harness. (See Fig. 29.) The outdoor enthalpy changeover set point is set with the outdoor enthalpy set point potentiometer on the EconoMi\$er IV controller. When using this mode of changeover control, turn the enthalpy setpoint potentiometer fully clockwise to the D setting.

^{† 33}ZCSENCO2 is an accessory CO₂ sensor.

^{** 33}ZCASPCO2 is an accessory aspirator box required for duct-mounted applications.

^{††} CRCBDIOX005A00 is an accessory that contains both 33ZCSENCO2 and 33ZCASPCO2 accessories.

- Demand Controlled Ventilation

IAQ — Indoor Air Quality

LA — Low Ambient Lockout Device

OAT — Outdoor-Air Temperature

POT — Potentiometer

RAT — Return-Air Temperature

Middle Fully Closed Middle Power Exhaust Minimum Pos DCV Max. DCV Set Middle Enthalpy C Settina

- 620 ohm, 1 watt 5% resistor should be removed only when using differential enthalpy or dry bulb.
- If a separate field-supplied 24 v transformer is used for the IAQ sensor power supply, it cannot have the secondary of the transformer grounded.

 For field-installed remote minimum position POT, remove black wire jumper between P and P1 and set control minimum position POT to the minimum

C06028

Fig. 29 - EconoMi\$er IV Wiring

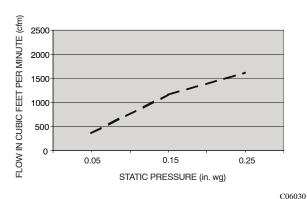


Fig. 30 - Barometric Flow Capacity

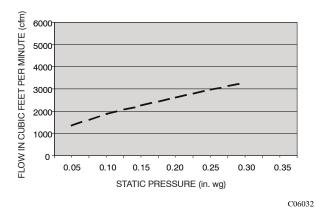


Fig. 32 - Return-Air Pressure Drop

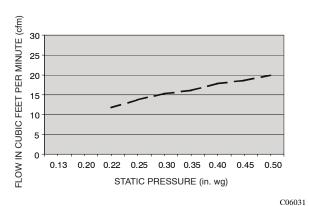


Fig. 31 - Outdoor-Air Damper Leakage

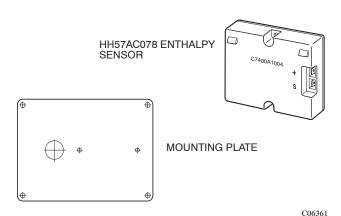


Fig. 33 - Enthalpy Sensor and Mounting Plate

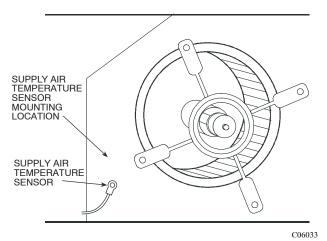


Fig. 34 - Supply Air Sensor Location

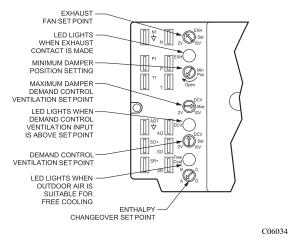


Fig. 35 - EconoMi\$er IV Controller Potentiometer and LED Locations

Indoor Air Quality (IAQ) Sensor Input

The IAQ input can be used for demand control ventilation control based on the level of ${\rm CO_2}$ measured in the space or return air duct.

Mount the accessory IAQ sensor according to manufacturer specifications. The IAQ sensor is wired to the AQ and AQ1 terminals of the controller. Adjust the DCV potentiometers to correspond to the DCV voltage output of the indoor air quality sensor at the user-determined set point. (See Fig. 40.)

If a separate field-supplied transformer is used to power the IAQ sensor, the sensor must not be grounded or the EconoMi\$er IV control board will be damaged.

Exhaust Set Point Adjustment

The exhaust set point will determine when the exhaust fan runs based on damper position (if accessory power exhaust is installed). The set point is modified with the Exhaust Fan Set Point (EXH SET) potentiometer. (See Fig. 35.) The set point represents the damper position above which the exhaust fans will be turned on. When there is a call for exhaust, the EconoMi\$er IV controller provides a 45 ± 15 second delay before exhaust fan activation to allow the dampers to open. This delay allows the damper to reach the appropriate position to avoid unnecessary fan overload.

Minimum Position Control

There is a minimum damper position potentiometer on the EconoMi\$er IV controller. (See Fig. 35.) The minimum damper position maintains the minimum airflow into the building during the occupied period.

When using demand ventilation, the minimum damper position represents the minimum ventilation position for VOC (volatile organic compound) ventilation requirements. The maximum demand ventilation position is used for fully occupied ventilation.

When demand ventilation control is not being used, the minimum position potentiometer should be used to set the occupied ventilation position. The maximum demand ventilation position should be turned fully clockwise.

Adjust the minimum position potentiometer to allow the minimum amount of outdoor air, as required by local codes, to enter the building. Make minimum position adjustments with at least 10°F temperature difference between the outdoor and return-air temperatures.

To determine the minimum position setting, perform the following procedure:

 Calculate the appropriate mixed air temperature using the following formula:

$$(T_{Ox} \frac{OA}{100}) + (TRx \frac{RA}{100}) = T_M$$

 T_O = Outdoor-Air Temperature

OA = Percent of Outdoor Air

 T_R = Return-Air Temperature

RA = Percent of Return Air

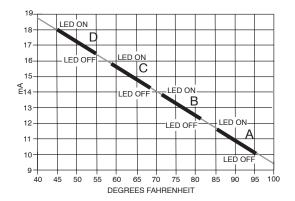
 $T_M = Mixed-Air Temperature$

As an example, if local codes require 10% outdoor air during occupied conditions, outdoor-air temperature is 60° F, and return-air temperature is 75° F.

$$(60 \text{ x} .10) + (75 \text{ x} .90) = 73.5^{\circ}\text{F}$$

- 2. Disconnect the supply air sensor from terminals T and T1.
- 3. Ensure that the factory-installed jumper is in place across terminals P and P1. If remote damper positioning is being used, make sure that the terminals are wired according to Fig. 29 and that the minimum position potentiometer is turned fully clockwise.
- 4. Connect 24 vac across terminals TR and TR1.
- Carefully adjust the minimum position potentiometer until the measured supply air temperature matches the calculated value.
- 6. Reconnect the mixed air sensor to terminals T and T1.

Remote control of the EconoMi\$er IV damper is desirable when requiring additional temporary ventilation. If a field-supplied remote potentiometer (Honeywell part number S963B1128) is wired to the EconoMi\$er IV controller, the minimum position of the damper can be controlled from a remote location.


To control the minimum damper position remotely, remove the factory-installed jumper on the P and P1 terminals on the EconoMi\$er IV controller. Wire the field-supplied potentiometer to the P and P1 terminals on the EconoMi\$er IV controller. (See Fig. 39.)

Damper Movement

Damper movement from full open to full closed (or vice versa) takes $2^{1}/_{2}$ minutes.

Thermostats

The EconoMi\$er IV control works with conventional thermostats that have a Y1 (cool stage 1), Y2 (cool stage 2), W1 (heat stage 1), W2 (heat stage 2), and G (fan). The EconoMi\$er IV control does not support space temperature sensors. Connections are made at the thermostat terminal connection board located in the main control box.

C06035

Fig. 36 - Outside Air Temperature Changeover Set Points

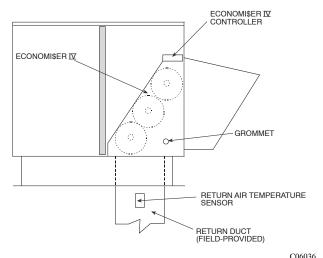


Fig. 37 - Return Air Temperature or Enthalpy Sensor Mounting Location

Occupancy Control

The factory default configuration for the EconoMi\$er IV control is occupied mode. Occupied mode is provided by the black jumper from terminal TR to terminal N. When unoccupied mode is desired, install a field-supplied timeclock function in place of the jumper between TR and N. (See Fig. 29.) When the timeclock contacts are closed, the EconoMi\$er IV control will be in occupied mode. When the timeclock contacts are open (removing the 24-v signal from terminal N), the EconoMi\$er IV will be in unoccupied mode.

Typically the maximum ventilation rate will be about 5 to 10% more than the typical cfm required per person, using normal outside air design criteria.

Demand Controlled Ventilation (DCV)

When using the EconoMi\$er IV for demand controlled ventilation, there are some equipment selection criteria which should be considered. When selecting the heat capacity and cool capacity of the equipment, the maximum ventilation rate must be evaluated for design conditions. The maximum damper position must be calculated to provide the desired fresh air.

A proportional anticipatory strategy should be taken with the following conditions: a zone with a large area, varied occupancy, and equipment that cannot exceed the required ventilation rate at design conditions. Exceeding the required ventilation rate means the equipment can condition air at a maximum ventilation rate that is greater than the required ventilation rate for maximum occupancy. A proportional-anticipatory strategy will cause the fresh air supplied to increase as the room CO₂ level increases even though the CO₂ set point has not been reached. By the time the CO₂ level reaches the set point, the damper will be at maximum ventilation and should maintain the set point.

In order to have the CO₂ sensor control the economizer damper in this manner, first determine the damper voltage output for minimum or base ventilation. Base ventilation is the ventilation required to remove contaminants during unoccupied periods. The following equation may be used to determine the percent of outside-air entering the building for a given damper position. For best results there should be at least a 10 degree difference in outside and return-air temperatures.

$$(T_{O_X} \frac{OA}{100}) + (TR_X \frac{RA}{100}) = T_M$$

 T_{O} = Outdoor-Air Temperature

OA = Percent of Outdoor Air

 T_R = Return-Air Temperature

RA = Percent of Return Air

 T_{M} = Mixed-Air Temperature

Once base ventilation has been determined, set the minimum damper position potentiometer to the correct position.

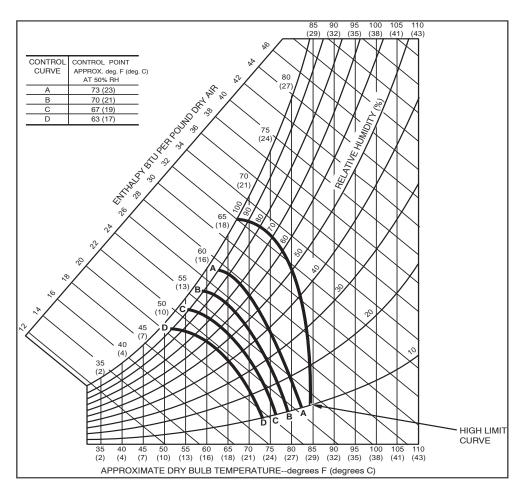


Fig. 38 - Enthalpy Changeover Set Points

The same equation can be used to determine the occupied or maximum ventilation rate to the building. For example, an output of 3.6 volts to the actuator provides a base ventilation rate of 5% and an output of 6.7 volts provides the maximum ventilation rate of 20% (or base plus 15 cfm per person). Use Fig. 37 to determine the maximum setting of the CO₂ sensor. For example, a 1100 ppm set point relates to a 15 cfm per person design. Use the 1100 ppm curve on Fig. 40 to find the point when the CO₂ sensor output will be 6.7 volts. Line up the point on the graph with the left side of the chart to determine that the range configuration for the CO₂ sensor should be 1800 ppm. The EconoMi\$er IV controller will output the 6.7 volts from the CO₂ sensor to the actuator when the CO₂ concentration in the space is at 1100 ppm. The DCV set point may be left at 2 volts since the CO2 sensor voltage will be ignored by the EconoMi\$er IV controller until it rises above the 3.6 volt setting of the minimum position potentiometer.

Once the fully occupied damper position has been determined, set the maximum damper demand control ventilation potentiometer to this position. Do not set to the maximum position as this can result in over-ventilation to the space and potential high-humidity levels.

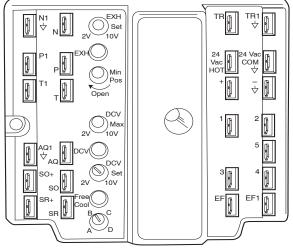


Fig. 39 - EconoMi\$er IV Control

C06038

C06037

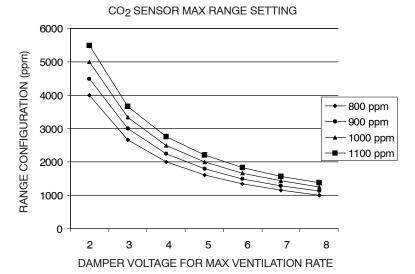


Fig. 40 - CO₂ Sensor Maximum Range Setting

C06039

CO₂ Sensor Configuration

The CO₂ sensor has preset standard voltage settings that can be selected anytime after the sensor is powered up. (See Table 7.) Use setting 1 or 2 for Bryant equipment. (See Table 7.)

- 1. Press Clear and Mode buttons. Hold at least 5 seconds until the sensor enters the Edit mode.
- 2. Press Mode twice. The STDSET Menu will appear.
- 3. Use the Up/Down button to select the preset number. (See Table 7.)
- 4. Press Enter to lock in the selection.
- 5. Press Mode to exit and resume normal operation.

The custom settings of the CO₂ sensor can be changed anytime after the sensor is energized. Follow the steps below to change the non-standard settings:

- 1. Press Clear and Mode buttons. Hold at least 5 seconds until the sensor enters the Edit mode.
- 2. Press Mode twice. The STDSET Menu will appear.
- 3. Use the Up/Down button to toggle to the NONSTD menu and press Enter.
- Use the Up/Down button to toggle through each of the nine variables, starting with Altitude, until the desired setting is reached.
- 5. Press Mode to move through the variables.
- Press Enter to lock in the selection, then press Mode to continue to the next variable.

Dehumidification of Fresh Air with DCV Control

Information from ASHRAE indicates that the largest humidity load on any zone is the fresh air introduced. For some applications, a device such as an energy recovery unit can be added to reduce the moisture content of the fresh air being brought into the building when the enthalpy is high. In most cases, the normal heating and cooling processes are more than adequate to remove the humidity loads for most commercial applications.

If normal rooftop heating and cooling operation is not adequate for the outdoor humidity level, an energy recovery unit and/or a dehumidification option should be considered.

Step 9 —Adjust Evaporator-Fan Speed

Adjust evaporator-fan speed to meet jobsite conditions.

Tables 8 and 9 show fan rpm at motor pulley settings. Tables 10 and 14 show maximum amp draw of belt-drive motor. Table 13 shows sound data. Refer to Tables 15-34 for performance data. See Table 11 for accessory static pressure drop. See Fig. 41 for the Perfect Humidity ™ system static pressure drops.

Belt Drive Motors

Fan motor pulleys are factory set for speed shown in Table 1 or 2. Check pulley alignment and belt tension prior to start-up.

To change fan speed:

- 1. Shut off the unit power supply and tag disconnect.
- 2. Loosen the belt by loosening the fan motor mounting nuts. (See Fig. 42.)
- 3. Loosen movable pulley flange setscrew. (See Fig. 43.)
- 4. Screw movable flange toward fixed flange to increase speed and away from fixed flange to decrease speed. Increasing fan speed increases load on motor. Do not exceed maximum speed specified in Table 1 or 2.
- 5. Set movable flange at nearest keyway of pulley hub and tighten setscrew. (See Table 1 or 2 for speed change for each full turn of pulley flange.)
- Adjust belt tension and align fan and motor pulleys per guidance below.

NOTE: Once the required flange position is determined for the correct blower rpm, it is recommended (bu not required) that the variable pitch pulley be replaced with a corresponding size fixed sheave pulley.

To align fan and motor pulleys, loosen fan pulley setscrews and slide fan pulley along fan shaft. Make angular alignment by loosening motor from mounting.

Additional motor and fan alignment, as well as angular alignment can be made by loosening the four motor mounting bolts from the mounting plate.

To adjust belt tension:

- 1. Loosen the two motor mounting nuts as shown in Fig. 42. Some models may have a third mounting nut located on the opposite side of the fan motor mounting plate.
- Slide motor mounting plate away from fan scroll for proper belt tension (¹/₂-in. deflection with 8 to 10 lb of force) and tighten mounting nuts.
- Adjust lock bolt and nut on mounting plate to secure motor in fixed position.

Table 7—CO₂ Sensor Standard Settings

SETTING	EQUIPMENT	OUTPUT	VENTILATION RATE (cfm/Person)	ANALOG OUTPUT	CO ₂ CONTROL RANGE (ppm)	OPTIONAL RELAY SETPOINT (ppm)	RELAY HYSTERESIS (ppm)
1		Proportional	Any	0-10V 4-20 mA	0-2000	1000	50
2	Interface w/Standard Building Control System	Proportional	Any	2-10V 7-20 mA	0-2000	1000	50
3		Exponential	Any	0-10V 4-20 mA	0-2000	1100	50
4		Proportional	15	0-10V 4-20 mA	0-1100	1100	50
5		Proportional	20	0-10V 4-20 mA	0- 900	900	50
6	Economizer	Exponential	15	0-10V 4-20 mA	0-1100	1100	50
7		Exponential	20	0-10V 4-20 mA	0- 900	900	50
8	Health & Safety	Proportional	_	0-10V 4-20 mA	0-9999	5000	500
9	Parking/Air Intakes/ Loading Docks	Proportional	_	0-10V 4-20 mA	0-2000	700	50

LEGEND

ppm — Parts Per Million

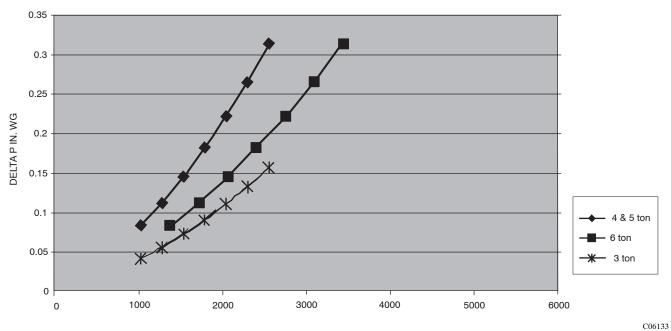


Fig. 41 - Perfect Humidity™ Adaptive Dehumidification System Static Pressure Drop (in. wg)

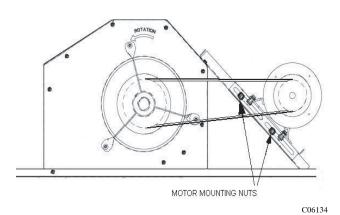


Fig. 42 - Belt Drive Motor Mounting

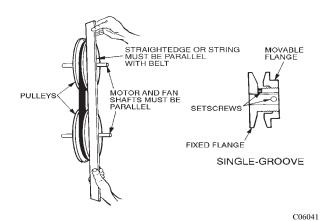


Fig. 43 - Indoor-Fan Pulley Adjustment

Table 8-581B and 581C Fan Rpm at Motor Pulley Setting With Standard Motor*

LINUT		MOTOR PULLEY TURNS OPEN												
UNIT	0	1/2	1	1 ¹ / ₂	2	2 ¹ / ₂	3	3 ¹ / ₂	4	4 ¹ / ₂	5	5 ¹ / ₂	6	
024	936	906	876	846	816	786	756	726	696	666	639		_	
036	1044	1008	971	935	898	862	826	789	753	716	680	_	_	
048	1185	1144	1102	1061	1019	978	936	895	853	812	770	_	_	
060	1460	1425	1389	1354	1318	1283	1248	1212	1177	1141	1106	1070	1035	
072	1585	1538	1492	1445	1399	1352	1305	1259	1212	1166	1119		_	

^{*}Approximate fan rpm shown (standard motor/drive).

Table 9—581B Fan Rpm at Motor Pulley Setting With High-Static Motor*

LINUT					N	IOTOR PU	JLLEY TU	RNS OPE	1						
UNIT	0	0 $\frac{1}{2}$ 1 $\frac{1^{1}}{2}$ 2 $\frac{2^{1}}{2}$ 3 $\frac{3^{1}}{2}$ 4 $\frac{4^{1}}{2}$ 5 $\frac{5^{1}}{2}$ 6													
036	1455	1423	1392	1360	1328	1297	1265	1233	1202	1170	1138	1107	1075		
048	1455	1423	1392	1360	1328	1297	1265	1233	1202	1170	1138	1107	1075		
060	1685	1589	1557	1525	1493	1460	1428	1396	1364	1332	1300	_	_		
072	1685	1589	1557	1525	1493	1460	1428	1396	1364	1332	1300		_		

^{*}Approximate fan rpm shown (high-static motor/drive).

Table 10-Evaporator-Fan Motor Data - Standard Motor

UNIT 581B 581C	UNIT PHASE	MAXIMUM CONTINUOUS BHP*	MAXIMUM OPERATING WATTS*	UNIT VOLTAGE	MAXIMUM AMP DRAW
024	Single	0.58	580	208/230	2.0
	Single	1.20	1000	208/230	4.9
036	-			208/230	4.9
036	Three	1.20	1000	460	2.2
				575	2.2
	Single	1.20	1000	208/230	4.9
048				208/230	4.9
040	Three	1.20	1000	460	2.2
				575	2.2
	Single	1.30	1455	208/230	7.0
060				208/230	6.7
000	Three	2.40	2120	460	3.0
				575	3.0
				208/230	6.7
072	Three	2.40	2120	460	3.0
				575	3.0

LEGEND

Bhp — Brake Horsepower

Table 11—Accessory Static Pressure

COMPONENT	CFM										
COMPONENT	600	800	1000	1250	1500	1750	2000	2250	2500	2750	3000
Vertical EconoMi\$er IV	0.010	0.020	0.035	0.045	0.065	0.080	0.120	0.145	0.175	0.220	0.255
Horizontal EconoMi\$er IV	_	_	_	_	_	0.100	0.125	0.150	0.180	0.225	0.275

Table 12—Evaporator-Fan Motor Data — High-Static Motors

UNIT 581B	UNIT PHASE	MAXIMUM CONTINUOUS BHP*	MAXIMUM OPERATING WATTS*	UNIT VOLTAGE	MAXIMUM AMP DRAW
				208/230	6.7
036	Three	2.40	2120	460	3.0
				575	3.0
				208/230	6.7
048	Three	2.40	2.40 2120 460		3.0
				575	3.0
				208/230	8.6
060	Three	2.90	2615	460	3.9
				575	3.9
				208/230	8.6
072	072 Three	2.90	2615	460	3.9
				575	3.9

LEGEND

Bhp — Brake Horsepower

^{*}Extensive motor and electrical testing on these units ensures that the full horsepower and watts range of the motors can be utilized with confidence. Using the fan motors up to the ratings shown in this table will not result in nuisance tripping or premature motor failure. Unit warranty will not be affected.

^{*}Extensive motor and electrical testing on these units ensures that the full horsepower and watts range of the motors can be utilized with confidence. Using the fan motors up to the ratings shown in this table will not result in nuisance tripping or premature motor failure. Unit warranty will not be affected.

Table 13—581B Outdoor Sound Power (Total Unit)

UNIT	ARI RATING				OCTAVE	BANDS								
UNII	(decibels)	63	63 125 250 500 1000 2000 4000 8000											
036, 048	76	55.9	66.0	64.0	66.2	68.4	64.5	61.7	57.3					
060, 072	80	59.1	68.9	68.7	71.9	74.0	68.9	65.7	59.0					

LEGEND

ARI - Air Conditioning and Refrigeration Institute

Table 14—581C Outdoor Sound Power (Total Unit)

UNIT	ARI RATING	A- WEIGHTED	OCTAVEBANDS FED										
ONIT	(decibels)	(db)	63	125	250	500	1000	2000	4000	8000			
024-048	76	76	55.9	66.0	64.0	66.2	68.4	64.5	61.7	57.3			
060	80	80	59.1	68.9	68.7	71.9	74.0	68.9	65.7	59.0			

GENERAL FAN PERFORMANCE NOTES

- 1. Values include losses for filters, unit casing, and wet coils. See Table 11 and Fig. 38 for accessory/FIOP static pressure information.
- 2. Extensive motor and electrical testing on these units ensures that the full range of the motor can be utilized with confidence. Using the fan motors up to the ratings shown will not result in nuisance tripping or premature motor failure. Unit warranty will not be affected. See Tables 8 and 9 for additional information.
- 3. Use of a field-supplied motor may affect wire sizing. Contact your Bryant representative to verify.
- 4. Interpolation is permissible. Do not extrapolate.

Table 15—Fan Performance 581C 024 — Vertical Discharge Units; Standard Motor (Belt Drive)**

		EXTERNAL STATIC PRESSURE (in. wg)													
AIRFLOW (Cfm)	0.	1	0.2		0.4		0.6		0.8		1.0				
(Cilli)	Rpm Bhp		Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp			
600	500	0.08	531	0.08	607	0.14	713	0.21	788	0.29	878	0.37			
700	529	0.09	567	0.09	633	0.16	739	0.24	816	0.32	902	0.41			
800	547	0.10	592	0.12	660	0.19	761	0.27	845	0.37	937	0.47			
900	570	0.13	620	0.14	691	0.22	793	0.32	870	0.42	957	0.53			
1000	599	0.15	650	0.16	717	0.26	818	0.36	894 0.47		981	0.58			

Table 16—Fan Performance 581B 036, 581C 036 — Vertical Discharge Units; Standard Motor (Belt Drive)*

AIRFLOW						EXTER	NAL STA	TIC PRE	SSURE	(in. wg)					
		0.2		0.4			0.6				0.8			1.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	567	0.15	145	688	0.22	222	786	0.30	296	871	0.37	368	947	0.44	437
1000	599	0.18	177	717	0.27	265	814	0.35	349	897	0.43	430	972	0.51	509
1100	632	0.22	215	747	0.31	313	842	0.41	407	925	0.50	498	999	0.59	587
1200	666	0.26	257	778	0.37	367	871	0.47	471	952	0.57	572	1025	0.67	670
1300	701	0.31	306	810	0.43	426	901	0.54	540	981	0.65	651	1053	0.76	760
1400	737	0.36	361	842	0.49	491	931	0.62	616	1010	0.74	738	1081	0.86	856
1500	773	0.42	422	875	0.57	564	963	0.70	699	1040	0.84	831	1110	0.96	960

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		1.2			1.4			1.6			1.8			2.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	1016	0.51	505	1080	0.57	572	1139	0.64	637	1195	0.71	702	1249	0.77	765
1000	1041	0.59	587	1104	0.67	662	1163	0.74	737	1219	0.81	811	1272	0.89	883
1100	1066	0.68	674	1129	0.76	759	1188	0.85	843	1243	0.93	925	1296	1.01	1007
1200	1093	0.77	767	1155	0.87	861	1213	0.96	955	1268	1.05	1047	1321	1.14	1137
1300	1119	0.87	866	1181	0.98	970	1239	1.08	1073	1294	1.18	1175	_	_	_
1400	1147	0.98	972	1208	1.09	1086		_	_		1	_	_		
1500	1175	1.09	1086	_			_		_	_	_	_	_		

- 1. Grey cells indicate field-supplied drive is required.
 2. Maximum continuous bhp is 1.20.
 3. See general fan performance notes.

LEGEND

Bhp — Brake Horsepower
Watts — Input Watts to Motor
*Motor drive range: 680 to 1044 rpm. All other rpms require field-supplied drive.

Table 17—Fan Performance 581B 036, 581C 036 — Vertical Discharge Units; High-Static Motor (Belt Drive)*

AIRFLOW						EXTER	NAL STA	TIC PRE	SSURE (i	n. wg)					
		0.2			0.4			0.6			0.8			1.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	567	0.15	145	688	0.22	222	786	0.30	296	871	0.37	368	947	0.44	437
1000	599	0.18	177	717	0.27	265	814	0.35	349	897	0.43	430	972	0.51	509
1100	632	0.22	215	747	0.31	313	842	0.41	407	925	0.50	498	999	0.59	587
1200	666	0.26	257	778	0.37	367	871	0.47	471	952	0.57	572	1025	0.67	670
1300	701	0.31	306	810	0.43	426	901	0.54	540	981	0.65	651	1053	0.76	760
1400	737	0.36	361	842	0.49	491	931	0.62	616	1010	0.74	738	1081	0.86	856
1500	773	0.42	422	875	0.57	564	963	0.70	699	1040	0.84	831	1110	0.96	960

AIRFLOW						EXTER	NAL STA	TIC PRE	SSURE (i	n. wg)					
		1.2			1.4			1.6			1.8			2.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	1016	0.51	505	1080	0.57	572	1139	0.64	637	1195	0.71	702	1249	0.77	765
1000	1041	0.59	587	1104	0.67	662	1163	0.74	737	1219	0.81	811	1272	0.89	883
1100	1066	0.68	674	1129	0.76	759	1188	0.85	843	1243	0.93	925	1296	1.01	1007
1200	1093	0.77	767	1155	0.87	861	1213	0.96	955	1268	1.05	1047	1321	1.14	1137
1300	1119	0.87	866	1181	0.98	970	1239	1.08	1073	1294	1.18	1175	1346	1.28	1275
1400	1147	0.98	972	1208	1.09	1086	1265	1.21	1199	1320	1.32	1310	1371	1.43	1419
1500	1175	1.09	1086	1235	1.22	1209	1292	1.34	1332	1346	1.46	1452	1397	1.58	1572

NOTES:

- Grey cells indicate field-supplied drive is required.
 Maximum continuous bhp is 2.40.
 See general fan performance notes.

LEGEND

Bhp — Brake Horsepower
Watts — Input Watts to Motor

*Motor drive range: 1075 to 1455 rpm. All other rpms require field-supplied

Table 18—Fan Performance 581B 048, 581C 048 — Vertical Discharge Units; Standard Motor (Belt Drive)*

AIRFLOW						EXTER	NAL STA	TIC PRE	SSURE (i	n. wg)					
		0.2			0.4			0.6			0.8			1.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	666	0.26	257	778	0.37	367	871	0.47	471	952	0.57	572	1025	0.67	670
1300	701	0.31	306	810	0.43	426	901	0.54	540	981	0.65	651	1053	0.76	760
1400	737	0.36	361	842	0.49	491	931	0.62	616	1010	0.74	738	1081	0.86	856
1500	773	0.42	422	875	0.57	564	963	0.70	699	1040	0.84	831	1110	0.96	960
1600	810	0.49	491	909	0.65	643	994	0.79	790	1070	0.94	932	1140	1.08	1070
1700	847	0.57	567	943	0.73	730	1027	0.89	888	1101	1.05	1040	1170	1.20	1189
1800	885	0.66	652	978	0.83	826	1060	1.00	994	1133	1.16	1157	_	_	_
1900	923	0.75	745	1014	0.94	930	1093	1.11	1109			_	_	_	_
2000	962	0.85	847	1049	1.05	1043	_	_	_	_	_	_	_	_	_

AIRFLOW						EXTER	NAL STA	TIC PRE	SSURE (i	n. wg)					
		1.2			1.4			1.6			1.8			2.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	1093	0.77	767	1155	0.87	861	1213	0.96	955	1268	1.05	1047	1321	1.14	1137
1300	1119	0.87	866	1181	0.98	970	1239	1.08	1073	1294	1.18	1175	_	_	_
1400	1147	0.98	972	1208	1.09	1086	_	_	_	_	_	_	_	_	_
1500	1175	1.09	1086	_	_	_	_	_	_	_	_	_	_	_	_
1600	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1700	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1800	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2000	_	_	_	_		_	_			_	_	_	_	_	_

- NOTES:

 1. **Grey cells** indicate field-supplied drive is required.
 2. Maximum continuous bhp is 2.40.
 3. See general fan performance notes.

LEGEND

Bhp — Brake Horsepower

Watts — Input Watts to Motor

*Motor drive range: 770 to 1185 rpm. All other rpms require field-supplied drive.

Table 19—Fan Performance 581B 048, 581C 048 — Vertical Discharge Units; High-Static Motor (Belt Drive)*

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		0.2			0.4			0.6			0.8			1.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	666	0.26	257	778	0.37	367	871	0.47	471	952	0.57	572	1025	0.67	670
1300	701	0.31	306	810	0.43	426	901	0.54	540	981	0.65	651	1053	0.76	760
1400	737	0.36	361	842	0.49	491	931	0.62	616	1010	0.74	738	1081	0.86	856
1500	773	0.42	422	875	0.57	564	963	0.70	699	1040	0.84	831	1110	0.96	960
1600	810	0.49	491	909	0.65	643	994	0.79	790	1070	0.94	932	1140	1.08	1070
1700	847	0.57	567	943	0.73	730	1027	0.89	888	1101	1.05	1040	1170	1.20	1189
1800	885	0.66	652	978	0.83	826	1060	1.00	994	1133	1.16	1157	1200	1.32	1316
1900	923	0.75	745	1014	0.94	930	1093	1.11	1109	1165	1.29	1283	1231	1.46	1453
2000	962	0.85	847	1049	1.05	1043	1127	1.24	1233	1198	1.42	1417	1263	1.61	1598

AIRFLOW						EXTER	NAL STA	TIC PRE	SSURE	(in. wg)					
		1.2			1.4			1.6			1.8			2.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	1093	0.77	767	1155	0.87	861	1213	0.96	955	1268	1.05	1047	1321	1.14	1137
1300	1119	0.87	866	1181	0.98	970	1239	1.08	1073	1294	1.18	1175	1346	1.28	1275
1400	1147	0.98	972	1208	1.09	1086	1265	1.21	1199	1320	1.32	1310	1371	1.43	1419
1500	1175	1.09	1086	1235	1.22	1209	1292	1.34	1332	1346	1.46	1452	1397	1.58	1572
1600	1204	1.21	1207	1263	1.35	1340	1320	1.48	1472	1373	1.61	1603	1424	1.74	1732
1700	1233	1.34	1336	1292	1.49	1480	1348	1.63	1622	1401	1.77	1762	1451	1.91	1901
1800	1262	1.48	1473	1321	1.64	1627	1376	1.79	1779	1428	1.94	1930	1479	2.09	2078
1900	1293	1.63	1620	1350	1.79	1784	1405	1.96	1946	1457	2.12	2106	1506	2.28	2265
2000	1323	1.79	1776	1380	1.96	1950	1434	2.13	2123	1486	2.31	2293	_	_	_

- 1. Grey cells indicate field-supplied drive is required.
- 2. Maximum continuous bhp is 2.40.
- 3. See general fan performance notes.

LEGEND

Bhp — Brake Horsepower
Watts — Input Watts to Motor

*Motor drive range: 1075 to 1455 rpm. All other rpms require field-supplied drive

Table 20—Fan Performance 581B 060, 581C 060 Single-Phase — Vertical Discharge Units; Standard Motor (Belt Drive)*

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		0.2			0.4			0.6			0.8			1.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	848	0.42	371	968	0.55	486	1069	0.68	600	1158	0.80	715	1238	0.94	831
1600	887	0.49	433	1004	0.63	556	1103	0.76	678	1190	0.90	800	1269	1.04	922
1700	927	0.57	502	1040	0.71	633	1137	0.86	763	1223	1.00	892	1302	1.15	1022
1800	967	0.65	579	1077	0.81	718	1172	0.96	856	1257	1.12	993	1334	1.27	1130
1900	1007	0.75	663	1115	0.91	811	1208	1.08	957	1291	1.24	1101	_	_	
2000	1048	0.85	757	1153	1.03	913	1244	1.20	1066	_	_	_	_	_	
2100	1090	0.97	859	1191	1.15	1023	_	-	_	_	_	_	_	_	
2200	1131	1.09	970	1230	1.29	1143		1	_			_	_	_	_
2300	1173	1.23	1091	1		_	_		_		_		_	_	_
2400			_	1	1	_	_	1	_			_	_	_	_
2500			_			_			_		_	_	_	_	_

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		1.2			1.4			1.6			1.8			2.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	1312	1.07	948	1380	1.20	1067	_	_	_	_	_	_	_	_	_
1600	1342	1.18	1047	_	_	_	_	_	_	_	_	_	_	_	_
1700	1374	1.30	1153	_	_	_	_	_	_	_	_	_	_	_	_
1800	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1900	_	_	_	_		_	_	_	_	_	_	_	_	_	_
2000	_	_	_	_	_		_	_	_	_	_	_	_	_	_
2100	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
2200	_	_	_	_		_	_	_	_	_	_	_	_	_	_
2300	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2400	_	_	_	_		_	_	_	_	_	_	_	_	_	_
2500	_	_	_	_		_	_	_	_	_	_	_	_	_	_

NOTES:

- 1. Grey cells indicate field-supplied drive is required.
- 2. Maximum continuous bhp is 1.30.
- 3. See general fan performance notes.

LEGEND

Bhp — Brake Horsepower

Watts — Input Watts to Motor

*Motor drive range: 1035 to 1460 rpm. All other rpms require field-supplied drive.

Table 21—Fan Performance 581B 060, 581C 060 Three-Phase — Vertical Discharge Units; Standard Motor (Belt Drive)*

AIRFLOW						EXTER	NAL STA	TIC PRE	SSURE	(in. wg)					
		0.2			0.4			0.6			0.8			1.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	848	0.42	371	968	0.55	486	1069	0.68	600	1158	0.80	715	1238	0.94	831
1600	887	0.49	433	1004	0.63	556	1103	0.76	678	1190	0.90	800	1269	1.04	922
1700	927	0.57	502	1040	0.71	633	1137	0.86	763	1223	1.00	892	1302	1.15	1022
1800	967	0.65	579	1077	0.81	718	1172	0.96	856	1257	1.12	993	1334	1.27	1130
1900	1007	0.75	663	1115	0.91	811	1208	1.08	957	1291	1.24	1101	1368	1.40	1246
2000	1048	0.85	757	1153	1.03	913	1244	1.20	1066	1326	1.37	1219	1401	1.54	1371
2100	1090	0.97	859	1191	1.15	1023	1281	1.33	1185	1361	1.51	1345	1435	1.69	1505
2200	1131	1.09	970	1230	1.29	1143	1318	1.48	1313	1397	1.67	1481	1470	1.86	1649
2300	1173	1.23	1091	1269	1.43	1273	1355	1.63	1451	1433	1.83	1627	1505	2.03	1803
2400	1215	1.38	1223	1309	1.59	1413	1393	1.80	1600	1470	2.01	1784	1540	2.21	1967
2500	1258	1.54	1365	1349	1.76	1564	1431	1.98	1759	1506	2.20	1951			

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		1.2			1.4			1.6			1.8			2.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	1312	1.07	948	1380	1.20	1067	1445	1.34	1189	1506	1.48	1312	1564	1.62	1437
1600	1342	1.18	1047	1411	1.32	1173	1474	1.46	1300	1535	1.61	1429	1593	1.76	1560
1700	1374	1.30	1153	1441	1.45	1286	1505	1.60	1420	1565	1.75	1555	1622	1.91	1692
1800	1406	1.43	1268	1473	1.58	1407	1535	1.74	1548	1595	1.90	1690	1652	2.06	1833
1900	1438	1.57	1391	1504	1.73	1537	1567	1.90	1685	1626	2.06	1833	1682	2.23	1983
2000	1471	1.72	1523	1536	1.89	1677	1598	2.06	1831	1657	2.24	1986	_		_
2100	1504	1.87	1665	1569	2.06	1825	1630	2.24	1986	_		_	_	_	_
2200	1538	2.04	1816	1602	2.23	1984	_	_	_	_		_	_	_	_
2300	1572	2.23	1978	_	_	_	_	_	_	_		_	_	_	_
2400	_	_	_	_	_	_	_	_	_	_	I	_	_	_	_
2500	_	_								_				_	

- 1. Grey cells indicate field-supplied drive is required.
- 2. Maximum continuous bhp is 2.40.
- 3. See general fan performance notes.

LEGEND

Bhp — Brake Horsepower **Watts** — Input Watts to Motor

*Motor drive range: 1035 to 1460 rpm. All other rpms require field-supplied drive.

Table 22—Fan Performance 581B 060, 581C 060 — Vertical Discharge Units; High-Static Motor (Belt Drive)*

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		0.2			0.4			0.6			0.8			1.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	848	0.42	371	968	0.55	486	1069	0.68	600	1158	0.80	715	1238	0.94	831
1600	887	0.49	433	1004	0.63	556	1103	0.76	678	1190	0.90	800	1269	1.04	922
1700	927	0.57	502	1040	0.71	633	1137	0.86	763	1223	1.00	892	1302	1.15	1022
1800	967	0.65	579	1077	0.81	718	1172	0.96	856	1257	1.12	993	1334	1.27	1130
1900	1007	0.75	663	1115	0.91	811	1208	1.08	957	1291	1.24	1101	1368	1.40	1246
2000	1048	0.85	757	1153	1.03	913	1244	1.20	1066	1326	1.37	1219	1401	1.54	1371
2100	1090	0.97	859	1191	1.15	1023	1281	1.33	1185	1361	1.51	1345	1435	1.69	1505
2200	1131	1.09	970	1230	1.29	1143	1318	1.48	1313	1397	1.67	1481	1470	1.86	1649
2300	1173	1.23	1091	1269	1.43	1273	1355	1.63	1451	1433	1.83	1627	1505	2.03	1803
2400	1215	1.38	1223	1309	1.59	1413	1393	1.80	1600	1470	2.01	1784	1540	2.21	1967
2500	1258	1.54	1365	1349	1.76	1564	1431	1.98	1759	1506	2.20	1951	1576	2.41	2142

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		1.2			1.4			1.6			1.8			2.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	1312	1.07	948	1380	1.20	1067	1445	1.34	1189	1506	1.48	1312	1564	1.62	1437
1600	1342	1.18	1047	1411	1.32	1173	1474	1.46	1300	1535	1.61	1429	1593	1.76	1560
1700	1374	1.30	1153	1441	1.45	1286	1505	1.60	1420	1565	1.75	1555	1622	1.91	1692
1800	1406	1.43	1268	1473	1.58	1407	1535	1.74	1548	1595	1.90	1690	1652	2.06	1833
1900	1438	1.57	1391	1504	1.73	1537	1567	1.90	1685	1626	2.06	1833	1682	2.23	1983
2000	1471	1.72	1523	1536	1.89	1677	1598	2.06	1831	1657	2.24	1986	1713	2.41	2142
2100	1504	1.87	1665	1569	2.06	1825	1630	2.24	1986	1688	2.42	2149	1744	2.60	2312
2200	1538	2.04	1816	1602	2.23	1984	1663	2.42	2152	1720	2.61	2321	1775	2.81	2491
2300	1572	2.23	1978	1635	2.42	2153	1695	2.62	2328	1753	2.82	2504	_	_	_
2400	1607	2.42	2150	1669	2.63	2332	1729	2.83	2515	_	_		_	_	_
2500	1642	2.63	2333	1704	2.84	2523	_								

NOTES:

- 1. Grey cells indicate field-supplied drive is required.
- 2. Maximum continuous bhp is 2.90.
- 3. See general fan performance notes.

LEGEND

Bhp — Brake Horsepower **Watts** — Input Watts to Motor

*Motor drive range: 1300 to 1685 rpm. All other rpms require field-supplied drive.

Table 23—Fan Performance 581C 072 — Vertical Discharge Units; Standard Motor (Belt Drive)*

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		0.2			0.4			0.6			0.8			1.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	967	0.63	563	1075	0.80	715	1170	0.97	861	1255	1.13	1002	1333	1.28	1139
1900	1008	0.72	643	1112	0.91	805	1205	1.08	960	1289	1.25	1111	1366	1.42	1258
2000	1049	0.82	731	1151	1.02	903	1241	1.20	1068	1323	1.38	1228	1399	1.56	1384
2100	1091	0.93	827	1189	1.14	1008	1278	1.33	1183	1358	1.52	1353	1433	1.71	1519
2200	1133	1.05	933	1229	1.26	1123	1315	1.47	1308	1393	1.67	1487	1467	1.87	1662
2300	1176	1.18	1047	1268	1.40	1247	1352	1.62	1441	1429	1.84	1630	1501	2.04	1815
2400	1218	1.32	1170	1308	1.55	1380	1390	1.78	1584	1466	2.01	1782	1537	2.23	1977
2500	1261	1.47	1304	1349	1.72	1523	1429	1.96	1736	1503	2.19	1945	_	_	_
2600	1305	1.63	1448	1390	1.89	1677	1468	2.14	1900	1540	2.38	2117	_	_	_
2700	1348	1.80	1602	1431	2.07	1841	1507	2.33	2073	_	_	_	_	_	_
2800	1392	1.99	1768	1472	2.27	2016	_	_	_	_		_	_	_	_
2900	1435	2.19	1945	_		_	_	_	_	_	_	_	_	_	_
3000	1479	2.40	2135	_											_

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		1.2			1.4			1.6			1.8			2.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	1406	1.43	1273	1475	1.58	1403	1540	1.72	1531	1601	1.87	1657	1660	2.00	1780
1900	1438	1.58	1401	1505	1.73	1541	1569	1.89	1678	1630	2.04	1813	1689	2.19	1945
2000	1470	1.73	1537	1537	1.90	1686	1600	2.06	1833	1660	2.23	1977	1718	2.38	2118
2100	1502	1.89	1681	1568	2.07	1840	1631	2.25	1996			_	_		_
2200	1535	2.06	1834	1600	2.25	2002	_		_	_		_	_		
2300	1569	2.25	1996	_	_	_	_	_	_	_		_	_	_	_
2400	_		_	_	_	_	_	_	_	_		_	_	_	_
2500		1	_				_	_	_	_	-		_	_	_
2600	_		_		_	_	_	_	_	_		_	_	_	_
2700	_		_	1	_	_	_	_	_	_		_	_	_	_
2800			_				_	_	_	_			_	_	_
2900			_							_		_			_
3000	_				_		_	_	_	_				_	

- Grey cells indicate field-supplied drive is required.
 Maximum continuous bhp is 2.40.
 See general fan performance notes.

LEGEND

Bhp — Brake Horsepower
Watts — Input Watts to Motor
*Motor drive range: 1119 to 1585 rpm. All other rpms require field-supplied drive.

Table 24—Fan Performance 581C 072 — Vertical Discharge Units; High-Static Motor (Belt Drive)*

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		0.2			0.4			0.6			0.8			1.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	967	0.63	563	1075	0.80	715	1170	0.97	861	1255	1.13	1002	1333	1.28	1139
1900	1008	0.72	643	1112	0.91	805	1205	1.08	960	1289	1.25	1111	1366	1.42	1258
2000	1049	0.82	731	1151	1.02	903	1241	1.20	1068	1323	1.38	1228	1399	1.56	1384
2100	1091	0.93	827	1189	1.14	1008	1278	1.33	1183	1358	1.52	1353	1433	1.71	1519
2200	1133	1.05	933	1229	1.26	1123	1315	1.47	1308	1393	1.67	1487	1467	1.87	1662
2300	1176	1.18	1047	1268	1.40	1247	1352	1.62	1441	1429	1.84	1630	1501	2.04	1815
2400	1218	1.32	1170	1308	1.55	1380	1390	1.78	1584	1466	2.01	1782	1537	2.23	1977
2500	1261	1.47	1304	1349	1.72	1523	1429	1.96	1736	1503	2.19	1945	1572	2.42	2149
2600	1305	1.63	1448	1390	1.89	1677	1468	2.14	1900	1540	2.38	2117	1608	2.62	2331
2700	1348	1.80	1602	1431	2.07	1841	1507	2.33	2073	1578	2.59	2301	1645	2.84	2524
2800	1392	1.99	1768	1472	2.27	2016	1547	2.54	2258	1616	2.81	2495	_	_	_
2900	1435	2.19	1945	1514	2.48	2203	1587	2.76	2455		_	_	_	_	_
3000	1479	2.40	2135	1556	2.70	2402	_	1	_		_	_	_	_	_

AIRFLOW						EXTER	NAL STA	TIC PRE	SSURE	(in. wg)					
		1.2			1.4			1.6			1.8			2.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	1406	1.43	1273	1475	1.58	1403	1540	1.72	1531	1601	1.87	1657	1660	2.00	1780
1900	1438	1.58	1401	1505	1.73	1541	1569	1.89	1678	1630	2.04	1813	1689	2.19	1945
2000	1470	1.73	1537	1537	1.90	1686	1600	2.06	1833	1660	2.23	1977	1718	2.38	2118
2100	1502	1.89	1681	1568	2.07	1840	1631	2.25	1996	1690	2.42	2149	1747	2.59	2300
2200	1535	2.06	1834	1600	2.25	2002	1662	2.44	2167	1721	2.62	2330	1778	2.80	2490
2300	1569	2.25	1996	1633	2.45	2174	1694	2.64	2348	1752	2.84	2520	_	_	_
2400	1603	2.44	2167	1666	2.65	2355	1727	2.86	2539			_			_
2500	1638	2.64	2349	1700	2.87	2546	_	_	_	_		_	_	_	_
2600	1673	2.86	2541	_		_	_		_	_		_		_	_
2700	_		_	_	_	_	_		_	_	-	_	_	_	_
2800			_	_	_	_	_	_	_	_		_	_	_	
2900			_	_		_	_	_		_		_		_	_
3000	_	_		_	_	_	_	_	_	_			_	_	

- Grey cells indicate field-supplied drive is required.
 Maximum continuous bhp is 2.90.
 See general fan performance notes.

LEGEND

Bhp — Brake Horsepower
Watts — Input Watts to Motor

*Motor drive range: 1300 to 1685 rpm. All other rpms require field-supplied drive.

Table 25—Fan Performance 581B 024 — Horizontal Discharge Units; Standard Motor (Belt Drive)**

				EX	TERNAI	L STATI	C PRES	SURE (in. wg)			
AIRFLOW (Cfm)	0.	1	0.	2	0.	4	0.	6	0.	8	1.	.0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
600	490	0.08	521	0.08	597	0.14	703	0.21	788	0.29	868	0.37
700	519	0.09	557	0.09	623	0.16	729	0.24	816	0.32	892	0.41
800	537	0.10	582	0.12	650	0.19	751	0.27	845	0.37	927	0.47
900	560	0.13	610	0.14	681	0.22	783	0.32	870	0.42	947	0.53
1000	589	0.15	640	0.16	707	0.26	808	0.36	894	0.47	971	0.58

Table 26—Fan Performance 581B 036, 581C 036 — Horizontal Discharge Units; Standard Motor (Belt Drive)*

AIRFLOW						EXTER	NAL STA	TIC PRE	SSURE	(in. wg)					
		0.2			0.4			0.6			0.8			1.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	553	0.14	134	681	0.22	221	782	0.32	316	870	0.42	417	948	0.53	526
1000	582	0.16	163	707	0.26	257	807	0.36	358	894	0.47	466	971	0.58	580
1100	612	0.20	196	734	0.30	297	833	0.41	405	919	0.52	519	995	0.64	639
1200	643	0.23	234	762	0.34	343	859	0.46	458	944	0.58	579	1020	0.71	705
1300	675	0.28	277	790	0.40	394	886	0.52	517	969	0.65	644	1044	0.78	777
1400	707	0.33	326	819	0.45	452	913	0.58	581	996	0.72	716	1070	0.86	855
1500	740	0.38	382	849	0.52	515	941	0.66	653	1023	0.80	795	1096	0.95	941

AIRFLOW						EXTER	NAL STA	TIC PRE	SSURE	(in. wg)					
		1.2			1.4			1.6			1.8			2.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	1019	0.64	640	1084	0.76	760	1146	0.89	885	1203	1.02	1016	1258	1.16	1152
1000	1042	0.70	700	1107	0.83	825	1168	0.96	956	1225	1.10	1091	_	_	_
1100	1065	0.77	765	1130	0.90	896	1190	1.04	1032	1247	1.18	1173		_	
1200	1089	0.84	837	1153	0.98	974	1213	1.12	1115	_	_	_	_	_	_
1300	1113	0.92	915	1177	1.06	1058	_	_	_	_	_	_	_	_	_
1400	1138	1.01	1000	1201	1.15	1149	_	_	_	_	_	_	_		_
1500	1163	1.10	1092	_		_	_	_	_	_	_	_	_	_	_

- 1. Grey cells indicate field-supplied drive is required.
 2. Maximum continuous bhp is 1.20.
 3. See general fan performance notes.

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Motor drive range: 680 to 1044 rpm. All other rpms require field-supplied drive.

Table 27—Fan Performance 581B 036, 581C 036 — Horizontal Discharge Units; High-Static Motor (Belt Drive)*

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		0.2			0.4			0.6			0.8			1.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	553	0.14	134	681	0.22	221	782	0.32	316	870	0.42	417	948	0.53	526
1000	582	0.16	163	707	0.26	257	807	0.36	358	894	0.47	466	971	0.58	580
1100	612	0.20	196	734	0.30	297	833	0.41	405	919	0.52	519	995	0.64	639
1200	643	0.23	234	762	0.34	343	859	0.46	458	944	0.58	579	1020	0.71	705
1300	675	0.28	277	790	0.40	394	886	0.52	517	969	0.65	644	1044	0.78	777
1400	707	0.33	326	819	0.45	452	913	0.58	581	996	0.72	716	1070	0.86	855
1500	740	0.38	382	849	0.52	515	941	0.66	653	1023	0.80	795	1096	0.95	941

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		1.2			1.4			1.6			1.8			2.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	1019	0.64	640	1084	0.76	760	1146	0.89	885	1203	1.02	1016	1258	1.16	1152
1000	1042	0.70	700	1107	0.83	825	1168	0.96	956	1225	1.10	1091	1279	1.24	1232
1100	1065	0.77	765	1130	0.90	896	1190	1.04	1032	1247	1.18	1173	1301	1.33	1319
1200	1089	0.84	837	1153	0.98	974	1213	1.12	1115	1270	1.27	1262	1324	1.42	1413
1300	1113	0.92	915	1177	1.06	1058	1237	1.21	1205	1293	1.36	1358	1347	1.52	1514
1400	1138	1.01	1000	1201	1.15	1149	1261	1.31	1303	1317	1.47	1461	1370	1.63	1623
1500	1163	1.10	1092	1226	1.25	1247	1285	1.41	1407	1341	1.58	1571	1394	1.75	1740

NOTES:

- Grey cells indicate field-supplied drive is required.
 Maximum continuous bhp is 2.40.
- 3. See general fan performance notes.

LEGEND

Bhp — Brake Horsepower
Watts — Input Watts to Motor

*Motor drive range: 1075 to 1455 rpm. All other rpms require field-supplied drive.

Table 28—Fan Performance 581B 048, 581C 048 — Horizontal Discharge Units; Standard Motor (Belt Drive)*

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		0.2			0.4			0.6			0.8			1.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	643	0.23	234	762	0.34	343	859	0.46	458	944	0.58	579	1020	0.71	705
1300	675	0.28	277	790	0.40	394	886	0.52	517	969	0.65	644	1044	0.78	777
1400	707	0.33	326	819	0.45	452	913	0.58	581	996	0.72	716	1070	0.86	855
1500	740	0.38	382	849	0.52	515	941	0.66	653	1023	0.80	795	1096	0.95	941
1600	773	0.45	444	879	0.59	586	970	0.73	731	1050	0.88	880	1123	1.04	1034
1700	807	0.52	513	910	0.67	663	999	0.82	817	1078	0.98	973	1150	1.14	1134
1800	841	0.59	589	942	0.75	749	1029	0.91	910	1106	1.08	1074	_	_	_
1900	875	0.68	674	974	0.85	842	1059	1.02	1012	1135	1.19	1184	_	_	_
2000	910	0.77	767	1006	0.95	944	1090	1.13	1122	_	_	_	_	_	

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		1.2			1.4			1.6			1.8			2.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	1089	0.84	837	1153	0.98	974	1213	1.12	1115	_	_	_	_	_	_
1300	1113	0.92	915	1177	1.06	1058	_	_	_	_			1	_	_
1400	1138	1.01	1000	1201	1.15	1149	_	_	_	_	1		1	_	_
1500	1163	1.10	1092			_	_		_	_	1	_	1	_	_
1600	1189	1.20	1191	1		_	_	_	_	_	1		1	_	_
1700	_		_	_	_	_	_	_	_	_				_	_
1800	_		_	_	_	_	_		_	_		_	1		_
1900		I	_	1		_	_	_	_	_	1		1	_	_
2000	_	_	_			_			_	_			_	_	_

- 1. Grey cells indicate field-supplied drive is required.
- 2. Maximum continuous bhp is 1.20.
- 3. See general fan performance notes.

LEGEND

Bhp — Brake Horsepower **Watts** — Input Watts to Motor

*Motor drive range: 770 to 1185 rpm. All other rpms require field-supplied drive.

Table 29—Fan Performance 581B 048, 581C 048 — Horizontal Discharge Units; High-Static Motor (Belt Drive)*

AIRFLOW	EXTERNAL STATIC PRESSURE (in. wg)														
	0.2			0.4			0.6			0.8			1.0		
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	643	0.23	234	762	0.34	343	859	0.46	458	944	0.58	579	1020	0.71	705
1300	675	0.28	277	790	0.40	394	886	0.52	517	969	0.65	644	1044	0.78	777
1400	707	0.33	326	819	0.45	452	913	0.58	581	996	0.72	716	1070	0.86	855
1500	740	0.38	382	849	0.52	515	941	0.66	653	1023	0.80	795	1096	0.95	941
1600	773	0.45	444	879	0.59	586	970	0.73	731	1050	0.88	880	1123	1.04	1034
1700	807	0.52	513	910	0.67	663	999	0.82	817	1078	0.98	973	1150	1.14	1134
1800	841	0.59	589	942	0.75	749	1029	0.91	910	1106	1.08	1074	1177	1.25	1242
1900	875	0.68	674	974	0.85	842	1059	1.02	1012	1135	1.19	1184	1205	1.37	1360
2000	910	0.77	767	1006	0.95	944	1090	1.13	1122	1165	1.31	1302	1234	1.49	1485

AIRFLOW	EXTERNAL STATIC PRESSURE (in. wg)														
	1.2			1.4			1.6			1.8			2.0		
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	1089	0.84	837	1153	0.98	974	1213	1.12	1115	1270	1.27	1262	1324	1.42	1413
1300	1113	0.92	915	1177	1.06	1058	1237	1.21	1205	1293	1.36	1358	1347	1.52	1514
1400	1138	1.01	1000	1201	1.15	1149	1261	1.31	1303	1317	1.47	1461	1370	1.63	1623
1500	1163	1.10	1092	1226	1.25	1247	1285	1.41	1407	1341	1.58	1571	1394	1.75	1740
1600	1189	1.20	1191	1252	1.36	1353	1310	1.53	1520	1365	1.70	1690	1418	1.87	1865
1700	1216	1.31	1299	1277	1.48	1468	1335	1.65	1640	1390	1.83	1817	1442	2.01	1998
1800	1242	1.42	1414	1303	1.60	1590	1361	1.78	1770	1415	1.96	1953	1467	2.15	2140
1900	1270	1.55	1538	1330	1.73	1721	1387	1.92	1908	1441	2.11	2098	1493	2.30	2292
2000	1297	1.68	1672	1357	1.87	1862	1414	2.07	2055	1467	2.26	2252		_	_

NOTES

- 1. Grey cells indicate field-supplied drive is required.
- 2. Maximum continuous bhp is 2.40.
- 3. See general fan performance notes.

LEGEND

Bhp — Brake Horsepower **Watts** — Input Watts to Motor

*Motor drive range: 1075 to 1455 rpm. All other rpms require field-supplied drive.

Table 30—Fan Performance 581B 060, 581C 060 Single-Phase — Horizontal Discharge Units; Standard Motor (Belt Drive)*

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		0.2			0.4			0.6			0.8			1.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	800	0.39	350	904	0.49	438	999	0.60	535	1087	0.72	640	1169	0.85	753
1600	839	0.46	412	938	0.57	505	1030	0.68	605	1115	0.80	714	1195	0.93	829
1700	879	0.54	483	974	0.65	580	1062	0.77	684	1144	0.90	796	1221	1.03	914
1800	919	0.63	561	1010	0.75	663	1095	0.87	771	1174	1.00	886	1250	1.14	1008
1900	960	0.73	648	1047	0.85	754	1129	0.98	867	1206	1.11	986	1279	1.25	1111
2000	1001	0.84	744	1085	0.96	855	1163	1.09	972	1238	1.23	1095	_	_	
2100	1043	0.96	850	1123	1.09	965	1199	1.22	1086	_	1	_	_	_	_
2200	1085	1.09	966	1162	1.22	1086	_	_	_	_		_	_	_	_
2300	1127	1.23	1092	_			_		_				_	_	
2400	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		1.2			1.4			1.6			1.8			2.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	1247	0.98	873	1320	1.13	1002	1390	1.28	1137	_		_	_		_
1600	1270	1.07	952	1342	1.22	1083	_	_	_	_	_	_	_	_	
1700	1295	1.17	1040	_	_	_	_	_	_	_	_		_	_	_
1800	1321	1.28	1137	_	_	_	_	_	_	_	_	_	_	_	_
1900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2000	_	_		_	_		_	_	_		_		_	_	_
2100	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
2200	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2300	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2400	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

- 1. Grey cells indicate field-supplied drive is required.
 2. Maximum continuous bhp is 1.30.
 3. See general fan performance notes.

LEGEND

Bhp — Brake Horsepower

Watts — Input Watts to Motor

*Motor drive range: 1035 to 1460 rpm. All other rpms require field-supplied drive.

Table 31—Fan Performance 581B 060, 581C 060 Three-Phase — Horizontal Discharge Units; Standard Motor (Belt Drive)*

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		0.2			0.4			0.6			0.8			1.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	800	0.39	350	904	0.49	438	999	0.60	535	1087	0.72	640	1169	0.85	753
1600	839	0.46	412	938	0.57	505	1030	0.68	605	1115	0.80	714	1195	0.93	829
1700	879	0.54	483	974	0.65	580	1062	0.77	684	1144	0.90	796	1221	1.03	914
1800	919	0.63	561	1010	0.75	663	1095	0.87	771	1174	1.00	886	1250	1.14	1008
1900	960	0.73	648	1047	0.85	754	1129	0.98	867	1206	1.11	986	1279	1.25	1111
2000	1001	0.84	744	1085	0.96	855	1163	1.09	972	1238	1.23	1095	1309	1.38	1224
2100	1043	0.96	850	1123	1.09	965	1199	1.22	1086	1271	1.37	1213	1340	1.52	1346
2200	1085	1.09	966	1162	1.22	1086	1235	1.36	1211	1305	1.51	1342	1372	1.67	1479
2300	1127	1.23	1092	1201	1.37	1217	1272	1.52	1347	1340	1.67	1482	1405	1.83	1623
2400	1169	1.38	1229	1241	1.53	1359	1310	1.68	1493	1375	1.84	1633	1439	2.00	1778
2500	1212	1.55	1378	1281	1.70	1513	1348	1.86	1652	1412	2.02	1796	1473	2.19	1945

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		1.2			1.4			1.6			1.8			2.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	1247	0.98	873	1320	1.13	1002	1390	1.28	1137	1457	1.44	1280	1522	1.61	1430
1600	1270	1.07	952	1342	1.22	1083	1411	1.37	1221	1476	1.54	1365	1540	1.71	1517
1700	1295	1.17	1040	1365	1.32	1173	1432	1.48	1313	1497	1.64	1459	1559	1.82	1612
1800	1321	1.28	1137	1390	1.43	1273	1455	1.59	1415	1518	1.76	1563	1579	1.93	1718
1900	1348	1.40	1243	1415	1.56	1381	1479	1.72	1526	1541	1.89	1677	1601	2.06	1834
2000	1377	1.53	1359	1442	1.69	1500	1505	1.86	1648	1565	2.03	1801	1624	2.21	1961
2100	1406	1.67	1485	1470	1.83	1629	1531	2.00	1780	1591	2.18	1936	1648	2.36	2098
2200	1437	1.83	1621	1499	1.99	1769	1559	2.16	1923	1617	2.34	2082		_	_
2300	1468	1.99	1769	1529	2.16	1920	1587	2.34	2077	_	-	_	_	_	_
2400	1500	2.17	1928	1559	2.35	2083	_	_	_	_	-	_		_	_
2500	1533	2.36	2098	_	_	_	_	_	_	_		_		_	

- Grey cells indicate field-supplied drive is required.
 Maximum continuous bhp is 2.40.
 See general fan performance notes.

LEGEND

Bhp — Brake Horsepower
Watts — Input Watts to Motor

*Motor drive range: 1035 to 1460 rpm. All other rpms require field-supplied drive.

Table 32—Fan Performance 581B 060, 581C 060 — Horizontal Discharge Units; High-Static Motor (Belt Drive)*

AIRFLOW						EXTER	NAL STA	TIC PRE	SSURE	(in. wg)					
		0.2			0.4			0.6			0.8			1.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	800	0.39	350	904	0.49	438	999	0.60	535	1087	0.72	640	1169	0.85	753
1600	839	0.46	412	938	0.57	505	1030	0.68	605	1115	0.80	714	1195	0.93	829
1700	879	0.54	483	974	0.65	580	1062	0.77	684	1144	0.90	796	1221	1.03	914
1800	919	0.63	561	1010	0.75	663	1095	0.87	771	1174	1.00	886	1250	1.14	1008
1900	960	0.73	648	1047	0.85	754	1129	0.98	867	1206	1.11	986	1279	1.25	1111
2000	1001	0.84	744	1085	0.96	855	1163	1.09	972	1238	1.23	1095	1309	1.38	1224
2100	1043	0.96	850	1123	1.09	965	1199	1.22	1086	1271	1.37	1213	1340	1.52	1346
2200	1085	1.09	966	1162	1.22	1086	1235	1.36	1211	1305	1.51	1342	1372	1.67	1479
2300	1127	1.23	1092	1201	1.37	1217	1272	1.52	1347	1340	1.67	1482	1405	1.83	1623
2400	1169	1.38	1229	1241	1.53	1359	1310	1.68	1493	1375	1.84	1633	1439	2.00	1778
2500	1212	1.55	1378	1281	1.70	1513	1348	1.86	1652	1412	2.02	1796	1473	2.19	1945

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		1.2			1.4			1.6			1.8			2.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	1247	0.98	873	1320	1.13	1002	1390	1.28	1137	1457	1.44	1280	1522	1.61	1430
1600	1270	1.07	952	1342	1.22	1083	1411	1.37	1221	1476	1.54	1365	1540	1.71	1517
1700	1295	1.17	1040	1365	1.32	1173	1432	1.48	1313	1497	1.64	1459	1559	1.82	1612
1800	1321	1.28	1137	1390	1.43	1273	1455	1.59	1415	1518	1.76	1563	1579	1.93	1718
1900	1348	1.40	1243	1415	1.56	1381	1479	1.72	1526	1541	1.89	1677	1601	2.06	1834
2000	1377	1.53	1359	1442	1.69	1500	1505	1.86	1648	1565	2.03	1801	1624	2.21	1961
2100	1406	1.67	1485	1470	1.83	1629	1531	2.00	1780	1591	2.18	1936	1648	2.36	2098
2200	1437	1.83	1621	1499	1.99	1769	1559	2.16	1923	1617	2.34	2082	1673	2.53	2246
2300	1468	1.99	1769	1529	2.16	1920	1587	2.34	2077	1644	2.52	2239	1699	2.71	2406
2400	1500	2.17	1928	1559	2.35	2083	1616	2.53	2243	1672	2.71	2408	1726	2.90	2579
2500	1533	2.36	2098	1591	2.54	2257	1647	2.73	2421		_	_	_		

NOTES:

- Grey cells indicate field-supplied drive is required.
 Maximum continuous bhp is 2.90.
 See general fan performance notes.

LEGEND

 ${\bf Bhp} - {\bf Brake\ Horsepower}$

Watts — Input Watts to Motor

*Motor drive range: 1300 to 1685 rpm. All other rpms require field-supplied drive.

Table 33—Fan Performance 581B 072 — Horizontal Discharge Units; Standard Motor (Belt Drive)*

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		0.2			0.4			0.6			0.8			1.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	913	0.64	569	1010	0.80	715	1098	0.98	869	1178	1.16	1032	1252	1.35	1203
1900	952	0.73	652	1046	0.91	805	1131	1.09	965	1210	1.28	1134	1282	1.48	1311
2000	992	0.84	744	1083	1.02	903	1166	1.21	1070	1242	1.40	1245	1313	1.61	1427
2100	1032	0.95	844	1120	1.14	1010	1200	1.33	1184	1275	1.54	1365	1345	1.75	1553
2200	1073	1.07	954	1158	1.27	1127	1236	1.47	1307	1308	1.68	1495	1377	1.90	1689
2300	1114	1.21	1074	1196	1.41	1254	1272	1.62	1440	1343	1.84	1634	1409	2.07	1834
2400	1155	1.36	1204	1234	1.57	1391	1308	1.78	1584	1377	2.01	1784	1443	2.24	1990
2500	1196	1.51	1345	1273	1.73	1538	1345	1.96	1738	1412	2.19	1945	_	_	
2600	1238	1.69	1497	1312	1.91	1697	1382	2.14	1904	1448	2.38	2117	_	_	
2700	1280	1.87	1660	1352	2.10	1867	1420	2.34	2081	_	1	_	_	_	_
2800	1322	2.07	1835	1392	2.31	2050	_	-	_	_		_	_	_	_
2900	1364	2.28	2023	1	1	_	_	1	_	_	1	_	_	_	_
3000					-					_			_	_	

AIRFLOW						EXTER	NAL STA	TIC PRE	SSURE	(in. wg)					
		1.2			1.4			1.6			1.8			2.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	1322	1.56	1382	1388	1.77	1568	1451	1.98	1762	1510	2.21	1962	_	_	_
1900	1351	1.68	1495	1416	1.90	1686	1477	2.12	1885	1536	2.35	2090	_	_	_
2000	1380	1.82	1617	1444	2.04	1814	1505	2.27	2017	_	_	_	_	_	_
2100	1411	1.97	1748	1473	2.20	1950	_	_	_	_	_	_	_	_	_
2200	1441	2.13	1890	1503	2.36	2097	_	_	_	_	_	_	_	_	_
2300	1473	2.30	2041	_	_	_	_	_	_	_	_	_	_	_	_
2400	_	_	_	_	_	_	_	_	_	_	_		_	_	_
2500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2600	_	_	_	_	_	_	_	_	_	_	_		_	_	_
2700	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2800	_	_	_	_		_	_	_	_	_	_	_	_	_	_
2900		_			_			_		_			_	_	
3000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

- Grey cells indicate field-supplied drive is required.
 Maximum continuous bhp is 2.40.
 See general fan performance notes.

LEGEND

Bhp — Brake Horsepower
Watts — Input Watts to Motor
*Motor drive range: 1119 to 1585 rpm. All other rpms require field-supplied drive.

Table 34—Fan Performance 581B 072 — Horizontal Discharge Units; High-Static Motor (Belt Drive)*

AIRFLOW						EXTERI	NAL STA	TIC PRE	SSURE	(in. wg)					
		0.2			0.4			0.6			0.8			1.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	913	0.64	569	1010	0.80	715	1098	0.98	869	1178	1.16	1032	1252	1.35	1203
1900	952	0.73	652	1046	0.91	805	1131	1.09	965	1210	1.28	1134	1282	1.48	1311
2000	992	0.84	744	1083	1.02	903	1166	1.21	1070	1242	1.40	1245	1313	1.61	1427
2100	1032	0.95	844	1120	1.14	1010	1200	1.33	1184	1275	1.54	1365	1345	1.75	1553
2200	1073	1.07	954	1158	1.27	1127	1236	1.47	1307	1308	1.68	1495	1377	1.90	1689
2300	1114	1.21	1074	1196	1.41	1254	1272	1.62	1440	1343	1.84	1634	1409	2.07	1834
2400	1155	1.36	1204	1234	1.57	1391	1308	1.78	1584	1377	2.01	1784	1443	2.24	1990
2500	1196	1.51	1345	1273	1.73	1538	1345	1.96	1738	1412	2.19	1945	1477	2.43	2157
2600	1238	1.69	1497	1312	1.91	1697	1382	2.14	1904	1448	2.38	2117	1511	2.63	2335
2700	1280	1.87	1660	1352	2.10	1867	1420	2.34	2081	1484	2.59	2300	1546	2.84	2526
2800	1322	2.07	1835	1392	2.31	2050	1458	2.56	2270	1521	2.81	2496			_
2900	1364	2.28	2023	1432	2.53	2245	1496	2.78	2472	_	-	_	_	_	_
3000	1406	2.50	2224	1472	2.76	2452	_	_	_	_	_		_	_	_

AIRFLOW						EXTER	NAL STA	TIC PRE	SSURE	(in. wg)					
		1.2			1.4			1.6			1.8			2.0	
CFM	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	1322	1.56	1382	1388	1.77	1568	1451	1.98	1762	1510	2.21	1962	1568	2.44	2169
1900	1351	1.68	1495	1416	1.90	1686	1477	2.12	1885	1536	2.35	2090	1593	2.59	2302
2000	1380	1.82	1617	1444	2.04	1814	1505	2.27	2017	1563	2.51	2227	1619	2.75	2443
2100	1411	1.97	1748	1473	2.20	1950	1533	2.43	2159	1590	2.67	2374	_	_	_
2200	1441	2.13	1890	1503	2.36	2097	1562	2.60	2311	1618	2.85	2532	_	_	_
2300	1473	2.30	2041	1533	2.54	2254	1591	2.79	2474	_	_	_	_	_	_
2400	1505	2.48	2203	1564	2.73	2422	_	_	_	_	_	_	_	_	_
2500	1537	2.68	2376			_	_		_	_	_	_	_		_
2600	1571	2.88	2560	_	_	_	_	_	_	_	_	_	_	_	_
2700		_	_			_	_		_	_	_	_	_	_	_
2800	_	_	_		_	_	_	_	_	_	_	_		_	_
2900	_	_	_	1		_	_	_	_	_	_	_	_	_	_
3000	_	_	_		_	_	_			_	_			_	_

- Grey cells indicate field-supplied drive is required.
 Maximum continuous bhp is 2.90.
 See general fan performance notes.

LEGEND

Bhp — Brake Horsepower
Watts — Input Watts to Motor
*Motor drive range: 1300 to 1685 rpm. All other rpms require field-supplied drive.

PRE-START-UP

A WARNING

FIRE, EXPLOSION, ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury, death and/or property damage:

- 1. Follow recognized safety practices and wear protective goggles when checking or servicing a refrigerant system.
- 2. Do not operate the compressor or provide any electric power to the unit unless the compressor terminal cover is in place and secured.
- 3. Do not remove the compressor terminal cover until all electrical sources are disconnected and tagged with lockout tags.
- 4. Relieve all pressure from the system before touching or disturbing anything inside the terminal box if a refrigerant leak is suspected around the compressor terminals. Use accepted methods to recover the refrigerant.
- 5. Never attempt to repair a soldered connection while the refrigerant system is under pressure.
- 6. Do not use a torch to remove any component. The system contains oil and refrigerant under pressure. To remove a component, wear protective goggles and proceed as follows:
 - a. Shut off electrical power to the unit and tag disconnect.
 - Recover refrigerant to relieve all pressure from the system using both high-pressure and low-pressure ports.
 - c. Cut component connection tubing with a tubing cutter, and remove the component from the unit.
 - d. Carefully unsweat the remaining tubing stubs when necessary. Oil can ignite when exposed to a torch flame.

Proceed as follows to inspect and prepare the unit for initial start-up:

- 1. Remove all access panels.
- Read and follow instructions on all WARNING, CAUTION, and INFORMATION labels attached to, or shipped with, unit.
- 3. Make the following inspections:
 - a. Inspect for shipping and handling damages such as broken lines, loose parts, or disconnected wires, etc.
 - b. Inspect for oil at all refrigerant tubing connections and on unit base. Detecting oil generally indicates a refrigerant leak. Leak-test all refrigerant tubing connections using electronic leak detector, halide torch, or liquid-soap solution.
 - c. Inspect all field-wiring and factory-wiring connections. Be sure that connections are completed and tight. Be sure that wires are not in contact with refrigerant tubing or sharp edges.
 - d. Inspect coil fins. If damaged during shipping and handling, carefully straighten fins with a fin comb.
- 4. Verify the following conditions:
 - a. Make sure that condenser-fan blade are correctly positioned in fan orifice. See Condenser-Fan Adjustment section for more details.
 - b. Make sure that air filter(s) is in place.

- Make sure that condensate drain trap is filled with water to ensure proper drainage.
- d. Make sure that all tools and miscellaneous loose parts have been removed.

START-UP

Unit Preparation

Make sure that the unit has been installed in accordance with installation instructions and applicable codes.

Gas Piping

Check gas piping for leaks.

WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could cause personal injury or death.

Disconnect gas piping from unit when leak testing at pressure greater than $^{1}/_{2}$ psig. Pressures greater than $^{1}/_{2}$ psig will cause gas valve damage resulting in hazardous condition. If gas valve is subjected to pressure greater than $^{1}/_{2}$ psig, it *must* be replaced before use. When pressure testing field-supplied gas piping at pressures of $^{1}/_{2}$ psig or less, a unit connected to such piping must be isolated by manually closing the gas valve.

Return-Air Filters

Make sure the correct filters are installed in the unit (See Table 1 or 2). Do not operate the unit without return-air filters.

Outdoor-Air Inlet Screens

Outdoor-air inlet screen(s) must be in place before operating the unit.

Compressor Mounting

Compressors are internally spring mounted. Do not loosen or remove the compressor holddown bolts.

Internal Wiring

Check all electrical connections in unit control boxes; tighten them as required.

Refrigerant Service Ports

Each unit system has 4 Schrader-type service ports: one on the suction line, one on the liquid line, and 2 on the compressor discharge line. Be sure that caps on the ports are tight. Two additional Schrader valves are located under the high-pressure and low-pressure switches, respectively.

High Flow Refrigerant Valves

Two high flow valves are located on the hot gas tube coming out of the compressor and the suction tube going into the compressor. Large black plastic caps identify these valves. These valves have O-rings inside which screw the cap onto a brass body to prevent leaks. No field access to these valves is available at this time. Ensure the plastic caps remain on the valves and are tight or the possibility of refrigerant leakage could occur.

Compressor Rotation

On 3-phase units be certain that the compressor is rotating in the proper direction. To determine whether or not compressor is rotating in the proper direction:

- Connect the service gauges to suction and discharge pressure fittings.
- 2. Energize the compressor.
- 3. The suction pressure should drop and the discharge pressure should rise, as is normal on any start-up.

If the suction pressure does not drop and the discharge pressure does not rise to normal levels:

- 1. Note that the indoor fan (006 and 007 three-phase units only) is probably also rotating in the wrong direction.
- 2. Turn off power to the unit and tag disconnect.
- 3. Reverse any two of the unit power leads.
- 4. Turn on power to the unit and energize the compressor.

The suction and discharge pressure levels should now move to their normal start-up levels.

NOTE: When the compressor is rotating in the wrong direction, the unit makes more noise and does not provide cooling.

Cooling

Set the space thermostat to the OFF position. Set the system selector switch at COOL position and the fan switch at AUTO position. Adjust the thermostat to a setting below room temperature. The compressor starts when contactor closes.

Check the unit charge. Refer to Refrigerant Charge section.

Reset the thermostat at a position above room temperature. The compressor will shut off. Evaporator fan will shut off after a 30-second delay.

To Shut Off Unit - Set the system selector switch at OFF position. Resetting the thermostat at a position above room temperature shuts off the unit temporarily until the space temperature exceeds the thermostat setting. Units are equipped with a Cycle-LOCTM protection device. The unit shuts down on any safety trip and remains off; an indicator light on the thermostat comes on. Check the reason for the safety trip.

Main Burners

Main burners are factory set and should require no adjustment.

TO CHECK ignition of main burners and heating controls, move thermostat set point above room temperature and verify that the burners light and evaporator fan is energized. Check heating effect, then lower the thermostat setting below the room temperature and verify that the burners and evaporator fan turn off.

Refer to Tables 35 and 36 for the correct orifice to use at high altitudes.

Table 35—Altitude Compensation* 581B 036-072, 581C 024-060 Standard Units

ELEVATION	115,00	0 AND 0 BTUH AL INPUT		0 BTUH AL INPUT
(ft)	Natural Gas Orifice Size†	Liquid Propane Orifice Size†	Natural Gas Orifice Size†	Liquid Propane Orifice Size†
0-2,000	33	43	30	37
2,000	36	44	31	39
3,000	36	45	31	40
4,000	37	45	32	41
5,000	38	46	32	42
6,000	40	47	34	43
7,000	41	48	35	43
8,000	42	49	36	44
9,000	43	50	37	45
10,000	44	50	39	46
11,000	45	51	41	47
12,000	46	52	42	48
13,000	47	52	43	49
14,000	48	53	44	50

^{*}As the height above sea level increases, there is less oxygen per cubic foot of air. Therefore, heat input rate should be reduced at higher altitudes.

Table 36—Altitude Compensation* — 581B 036-072, 581C 024-060 Low NOx Units

FLEVATION	90,000	0 AND 0 BTUH AL INPUT		0 BTUH AL INPUT
ELEVATION (ft)	Natural Gas Orifice Size†	Liquid Propane Orifice Size†	Natural Gas Orifice Size	Liquid Propane Orifice Size†
0-2,000	38	45	32	42
2,000	40	47	33	43
3,000	41	48	35	43
4,000	42	49	36	44
5,000	43	49	37	45
6,000	43	50	38	45
7,000	44	50	39	46
8,000	45	51	41	47
9,000	46	52	42	48
10,000	47	52	43	49
11,000	48	53	44	50
12,000	49	53	44	51
13,000	50	54	46	52
14,000	51	54	47	52

^{*}As the height above sea level increases, there is less oxygen per cubic foot of air. Therefore, the input rate should be reduced at higher altitudes

[†]Orifices available through your Bryant distributor.

[†]Orifices are available through your local Bryant distributor.

Heating

- Purge gas supply line of air by opening union ahead of the gas valve. If gas odor is detected, tighten union and wait 5 minutes before proceeding.
- 2. Turn on electrical supply and manual gas valve.
- 3. Set system switch selector at HEAT position and fan switch at AUTO or ON position. Set heating temperature lever above room temperature.
- 4. The induced-draft motor will start.
- 5. After a call for heating, the main burners should light within 5 seconds. If the burner does not light, then there is a 22-second delay before another 5-second try. If the burner still does not light, the time delay is repeated. If the burner does not light within 15 minutes, there is a lockout. To reset the control, break the 24 v power to W1.
- 6. The evaporator-fan motor will turn on 45 seconds after burner ignition.
- 7. The evaporator-fan motor will turn off in 45 seconds after the thermostat temperature is satisfied.
- 8. Adjust airflow to obtain a temperature rise within the range specified on the unit nameplate.

NOTE: The default value for the evaporator-fan motor on/off delay is 45 seconds. The Integrated Gas Unit Controller (IGC) modifies this value when abnormal limit switch cycles occur. Based upon unit operating conditions, the on delay can be reduced to 0 seconds and the off delay can be extended to 180 seconds. When one flash of the LED (light-emitting diode) is observed, the evaporator-fan on/off delay has been modified.

If the limit switch trips at the start of the heating cycle during the evaporator on delay, the time period of the on delay for the next cycle will be 5 seconds less than the time at which the switch tripped. (Example: If the limit switch trips at 30 seconds, the evaporator-fan on delay for the next cycle will occur at 25 seconds.) To prevent short-cycling, a 5-second reduction will only occur if a minimum of 10 minutes has elapsed since the last call for heating.

The evaporator-fan off delay can also be modified. Once the call for heating has ended, there is a 10-minute period during which the modification can occur. If the limit switch trips during this period, the evaporator-fan off delay will increase by 15 seconds. A maximum of 9 trips can occur, extending the evaporator-fan off delay to 180 seconds.

To restore the original default value, reset the power to the unit.

To Shut Off Unit —Set system selector switch at off position. Resetting heating selector lever below room temperature will temporarily shut unit off until space temperature falls below thermostat setting.

Safety Relief

A soft solder joint at the suction line fitting provides pressure relief under abnormal temperature and pressure conditions.

Ventilation (Continuous Fan)

Set fan and system selector switches at ON and OFF positions, respectively. Evaporator fan operates continuously to provide constant air circulation. When the evaporator-fan selector switch is turned to the OFF position, there is a 30-second delay before the fan turns off.

Operating Sequence

Cooling - Units Without Economizer

When thermostat calls for cooling, terminals G and Y1 are energized. The indoor-fan contactor (IFC), reversing valve solenoid (RVS) and compressor contactor are energized and indoor-fan motor, compressor, and outdoor fan starts. The outdoor fan motor runs continuously while unit is cooling.

Heating - Units Without Economizer

When the thermostat calls for heating, terminal W1 is energized. To prevent thermostat short-cycling, the unit is locked into the Heating mode for at least 1 minute when W1 is energized. The induced-draft motor is energized and the burner ignition sequence begins. The indoor (evaporator) fan motor (IFM) is energized 45 seconds after a flame is ignited. On units equipped for two stages of heat, when additional heat is needed, W2 is energized and the high-fire solenoid on the main gas valve (MGV) is energized. When the thermostat is satisfied and W1 is deenergized, the IFM stops after a 45-second time-off delay.

Cooling - Units With Economi\$er IV

When free cooling is not available, the compressors will be controlled by the zone thermostat. When free cooling is available, the outdoor-air damper is modulated by the EconoMi\$er IV control to provide a 50° to 55°F supply-air temperature into the zone. As the supply-air temperature fluctuates above 55° or below 50°F, the dampers will be modulated (open or close) to bring the supply-air temperature back within the set point limits. Integrated EconoMi\$er IV operation on single-stage units

requires a 2-stage thermostat (Y1 and Y2).

For EconoMi\$er IV operation, there must be a thermostat call for the fan (G). This will move the damper to its minimum position during the occupied mode.

If the increase in cooling capacity causes the supply-air temperature to drop below 45°F, then the outdoor-air damper position will be fully closed. If the supply-air temperature continues to fall, the outdoor-air damper will close. Control returns to normal once the supply-air temperature rises above 48°F.

If optional power exhaust is installed, as the outdoor-air damper opens and closes, the power exhaust fans will be energized and deenergized.

If field-installed accessory CO_2 sensors are connected to the EconoMi\$er IV control, a demand controlled ventilation strategy will begin to operate. As the CO_2 level in the zone increases above the CO_2 set point, the minimum position of the damper will be increased proportionally. As the CO_2 level decreases because of the increase in fresh air, the outdoor-air damper will be proportionally closed. Damper position will follow the higher demand condition from DCV mode or free cooling mode.

Damper movement from full closed to full open (or vice versa) will take between 1-1/2 and 2-1/2 minutes.

If free cooling can be used as determined from the appropriate changeover command (switch, dry bulb, enthalpy curve, differential dry bulb, or differential enthalpy), a call for cooling (Y1 closes at the thermostat) will cause the control to modulate the dampers open to maintain the supply air temperature set point at 50° to 55° F.

As the supply air temperature drops below the set point range of 50° to 55° F, the control will modulate the outdoor-air dampers closed to maintain the proper supply-air temperature.

Heating - Units With Economi\$er IV

When the room temperature calls for heat, the heating controls are energized as described in the Heating, Units Without Economizer section. During the occupied mode, whenever the indoor fan contactor is energized, the economizer damper moves to the minimum position.

<u>Units With Perfect Humidity™ Adaptive</u> Dehumidification System

Normal Design Operation

When the rooftop operates under the normal sequence of operation, the compressors will cycle to maintain indoor conditions. (See Fig. 44.)

The Perfect Humidity adaptive dehumidification system includes a factory-installed Motormaster® low ambient control to keep the head and suction pressure high, allowing normal design cooling mode operation down to 0°F.

Subcooling Mode

When subcooling mode is initiated, this will energize (close) the liquid line solenoid valve (LLSV) forcing the hot liquid refrigerant to enter into the subcooling coil. (See Fig. 45.)

As the hot liquid refrigerant passes through the subcooling/ reheat dehumidification coil, it is exposed to the cold supply airflow coming through the evaporator coil. The liquid is further subcooled to a temperature approaching the evaporator leaving-air temperature. The liquid then enters a thermostatic expansion valve (TXV) where the liquid drops to a lower pressure. The TXV does not have a pressure drop great enough to change the liquid to a 2-phase fluid, so the liquid then enters the Acutrol $^{\text{\tiny TM}}$ device at the evaporator coil.

The liquid enters the evaporator coil at a temperature lower than in standard cooling operation. This lower temperature increases the latent capacity of the rooftop unit. The refrigerant passes through the evaporator and is turned into a vapor. The air passing over the evaporator coil will become colder than during normal operation. However, as this same air passes over the subcooling coil, it will be slightly warmed, partially reheating the air.

Subcooling mode operates only when the outside air temperature is warmer than $40^{\circ}F$. A factory-installed temperature switch located in the condenser section will lock out subcooling mode when the outside temperature is cooler than $40^{\circ}F$.

The scroll compressors are equipped with crankcase heaters to provide protection for the compressors due to the additional refrigerant charge required by the subcooling/reheat coil.

When in subcooling mode, there is a slight decrease in system total gross capacity (5% less), a lower gross sensible capacity (20% less), and a greatly increased latent capacity (up to 40% more).

Hot Gas Reheat Mode

When the humidity levels in the space require humidity control, a hot gas solenoid valve (specific to hot gas reheat mode only) will open to bypass a portion of hot gas refrigerant around the condenser coil. (See Fig. 46.)

This hot gas will mix with liquid refrigerant leaving the condenser coil and flow to the subcooling/reheat dehumidification coil. Now the conditioned air coming off the evaporator will be cooled and dehumidified, but will be warmed to neutral conditions (72°F to 75°F) by the subcooling/reheat dehumidification coil.

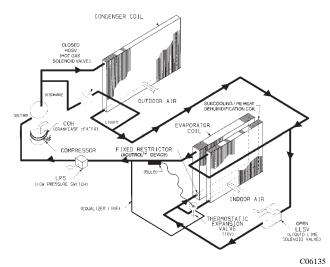


Fig. 44 - Perfect Humidity™ Normal Design Cooling Operation

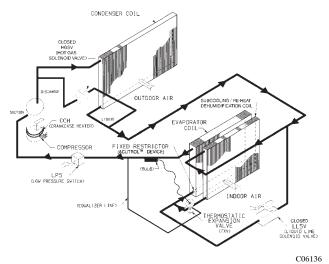


Fig. 45 - Perfect Humidity Subcooling Mode Operation

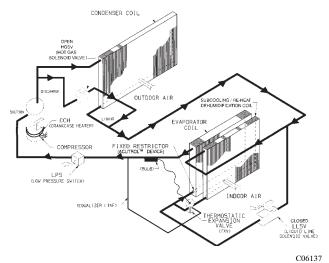


Fig. 46 - Perfect Humidity Hot Gas Reheat Mode Operation

See Table 37 for the Perfect Humidity adaptive dehumidification system sequence of operation.

Table 37—Perfect Humidity Adaptive Dehumidification System Sequence of Operation and System Response — Single Compressor Unit (581C 024-060, 581B 036-072)

THERMOSTAT INPUT		INPUT	ECONOMIZER FUNCT	581B,C UNIT OPERATION				
Н	Y1	Y2	OAT. < Economizer Set Point	Economizer	Comp. 1	Subcooling Mode	Hot Gas Reheat Mode	
Off	_	_	Normal Operation					
On	On	On	No	Off	On	Yes	No	
On	On	Off	No	Off	On	Yes	No	
On	On	On	Yes	On	On	Yes	No	
On	On	Off	Yes	On	On	No	Yes	
On	Off	Off	No	Off	On	No	Yes	

NOTE: On a thermostat call for W1, all cooling and dehumidification will be off. LEGEND

OAT - Outdoor Air Temperature

The net effect of the rooftop when in hot gas reheat mode is to provide nearly all latent capacity removal from the space when sensible loads diminish (when outdoor temperature conditions are moderate). When in hot gas reheat mode, the unit will operate to provide mostly latent capacity and extremely low sensible heat ratio capability.

Similar to the subcooling mode of operation, hot gas reheat mode operates only when the outside air temperature is warmer than 40°F. Below this temperature, a factory installed outside air temperature switch will lockout this mode of operation.

SERVICE

WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could cause personal injury or death.

When sevicing unit, shut off all electrical power to unit and install lockout tag.

Step 1 —Cleaning

Inspect unit interior at the beginning of heating and cooling season and as operating conditions require.

Evaporator Coil

- Turn unit power off, tag disconnect. Remove evaporator coil access panel.
- If economizer or two-position damper is installed, remove economizer by disconnecting Molex plug and removing mounting screws.
- 3. Slide filters out of unit.
- 4. Clean coil using a commercial coil cleaner or dishwasher detergent in a pressurized spray canister. Wash both sides of coil and flush with clean water. For best results, back-flush toward return-air section to remove foreign material. Flush condensate pan after completion.
- 5. Reinstall economizer and filters.
- 6. Reconnect wiring.
- 7. Replace access panels.

Condenser Coil

Inspect coil monthly. Clean condenser coil annually, and as required by location and outdoor air conditions.

One-Row Coils

Wash coil with commercial coil cleaner. It is not necessary to remove top panel.

2-Row Coils

Clean coil as follows:

- 1. Turn off unit power, tag disconnect.
- 2. Remove top panel screws on condenser end of unit.
- 3. Remove condenser coil corner post. (See Fig. 47.) To hold top panel open, place coil corner post between top panel and center post. (See Fig. 48.)

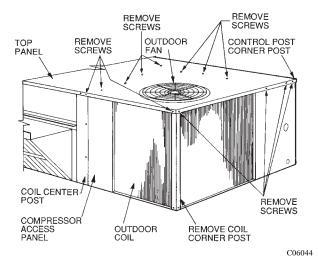


Fig. 47 - Cleaning Condenser Coil

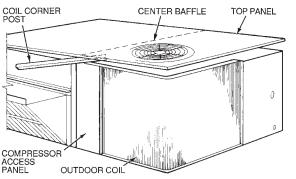


Fig. 48 - Propping Up Top Panel

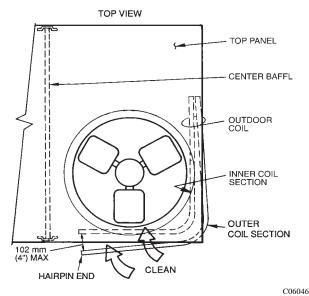


Fig. 49 - Separating Coil Sections

- Remove screws securing coil to compressor plate and compressor access panel.
- 5. Remove fastener holding coil sections together at return end of condenser coil. Carefully separate the outer coil section 3 to 4 in. from the inner coil section. (See Fig. 49.)
- 6. Use a water hose or other suitable equipment to flush down between the 2 coil sections to remove dirt and debris. Clean the outer surfaces with a stiff brush in the normal manner.
- 7. Secure inner and outer coil rows together with a field-supplied fastener.
- 8. Reposition the outer coil section and remove the coil corner post from between the top panel and center post. Reinstall the coil corner post and replace all screws.

Condensate Drain

Check and clean each year at the start of the cooling season. In winter, keep the drain dry or protect it against freeze-up.

Filters

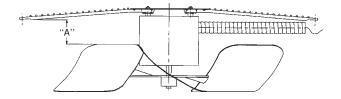
Clean or replace at the start of each heating and cooling season, or more often if operating conditions require it. Replacement filters must be the same dimensions as the original filters.

Outdoor-Air Inlet Screens

Clean the screens with steam or hot water and a mild detergent. Do not use disposable filters in place of screens.

Step 2 —Lubrication

Compressor


The compressor is charged with the correct amount of oil at the factory.

Fan Motor Bearings

Fan motor bearings are permanently lubricated. No further lubrication is required. No lubrication of condenser-fan or evaporator-fan motors is required.

Step 3 —Condenser-Fan Adjustment

Shut off unit power supply. Remove condenser-fan assembly (grille, motor, motor cover, and fan) and loosen fan hub setscrews. Adjust fan height as shown in Fig. 50. Tighten setscrews and replace condenser-fan assembly.

UNIT	FAN HEIGHT (in.) - A
024-060 and 072 (208/230 v)	2.75
072 (460 v)	3.50

C06138

Fig. 50 - Condenser-Fan Adjustment

Step 4 —EconoMi\$er IV Adjustment

Refer to Optional EconoMi\$er IV section.

Step 5 —Evaporator Fan Belt Inspection

Check condition of evaporator belt or tension during heating and cooling inspections or as conditions require. Replace belt or adjust as necessary.

Step 6 —High Pressure Switch

The high-pressure switch contains a Schrader core depressor, and is located on the compressor hot gas line. This switch opens at 428 psig and closes at 320 psig. No adjustments are necessary.

Step 7 —Loss-of-Charge Switch

The loss-of-charge switch contains a Schrader core depressor, and is located on the compressor liquid line. This switch opens at 7 psig and closes at 22 psig. No adjustments are necessary.

Step 8 —Freeze-Stat

The freeze-stat is a bimetal temperature-sensing switch that is located on the "hair-pin" end of the evaporator coil. The switch protects the evaporator coil from freeze-up due to lack of airflow. The switch opens at 30°F and closes at 45°F. No adjustments are necessary.

Step 9 —Refrigerant Charge

Amount of refrigerant charge is listed on unit nameplate (also refer to Table 1). Refer to HVAC Servicing Procedures literature available at your local distributor and the following procedures.

Unit panels must be in place when unit is operating during charging procedure. Unit must operate a minimum of 10 minutes before checking or adjusting refrigerant charge.

An accurate superheat, thermocouple-type or thermistor-type thermometer, and a gauge manifold are required when using the superheat charging method for evaluating the unit charge. Do not use mercury or small dial-type thermometers because they are not adequate for this type of measurement.

No Charge

Use standard evacuating techniques. After evacuating system to 500 microns, weigh in the specified amount of refrigerant. (Refer to Table 1 or 2 and unit information plate.)

Low Charge Cooling

Using Cooling Charging Charts, Fig. 51-54 and 59-62, vary refrigerant until the conditions of the charts are met. Note the charging charts are different from type normally used. Charts are based on charging the units to the correct superheat for the various operating conditions. Accurate pressure gauge and temperature sensing device are required. Connect the pressure gauge to the service port on the suction line. Mount the temperature sensing device on the suction line and insulate it so that outdoor ambient temperature does not affect the reading. Indoor-air cfm must be within the normal operating range of the unit.

Perfect Humidity™ System Charging

The system charge for units with the Perfect Humidity adaptive dehumidification system is greater than that of the standard unit alone. The charge for units with this option is indicated on the unit nameplate drawing. Also refer to Fig. 55-58. To charge systems using the Perfect Humidity adaptive dehumidification system, fully evacuate, recover, and recharge the system to the nameplate specified charge level. To check or adjust refrigerant charge on systems using the Perfect Humidity adaptive dehumidification system, charge per Fig. 55-58.

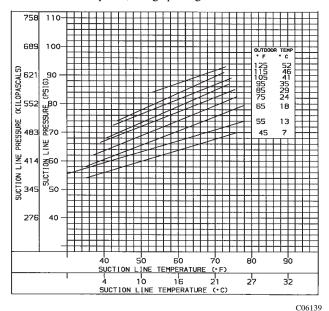
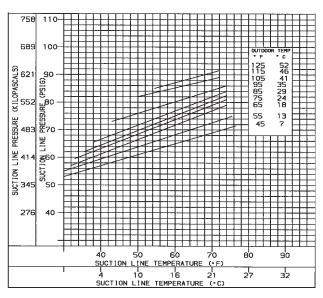



Fig. 51 - Cooling Charging Chart, Standard 581B 036

C06140

Fig. 52 - Cooling Charging Chart, Standard 581B 048

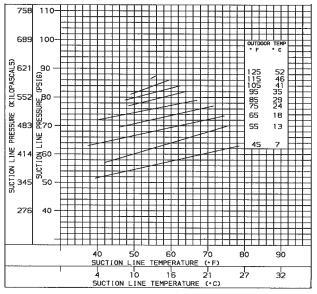


Fig. 53 - Cooling Charging Chart, Standard 581B 060

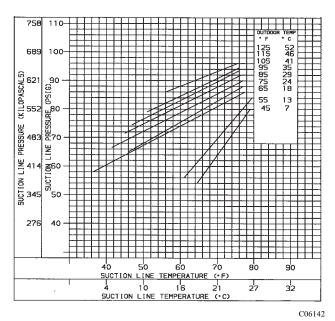


Fig. 54 - Cooling Charging Chart, Standard 581B 072

COOLING MODE CHARGING CHART
3 TON - SOHZ
(APPLICABLE ONLY WHEN COILIS IN SUBCOOLING MODE)

OUTDOOR FAN MUST BE OPERATING

140

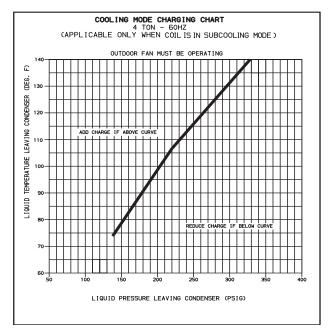
ADD CHARGE IF ABOVE CURVE

110

ADD CHARGE IF ABOVE CURVE

100

100


REDUCE CHARGE IF BELOW CURVE

100

100

LIQUID PRESSURE LEAVING CONDENSER (PSIG)

Fig. 55 – Cooling Charging Chart, 581B 036 with Optional Perfect Humidity Adaptive Dehumidification System

C06144

Fig. 56 - Cooling Charging Chart, 581B 048 with Optional Perfect Humidity Adaptive Dehumidification System

NOTE: When using the charging charts, it is important that only the subcooling/reheat dehumidification coil liquid line solenoid valve be energized. The subcooling/reheat dehumidification coil liquid line solenoid valve MUST be energized to use the charging charts and the outdoor motor speed controller jumpered to run the fan at full speed.

The charts reference a liquid pressure (psig) and temperature at a point between the condenser coil and the subcooling/reheat dehumidification coil. A tap is provided on the unit to measure liquid pressure entering the subcooling/reheat dehumidification coil

IMPORTANT: The subcooling mode charging charts (Fig. 55-58) are to be used ONLY with units having the Perfect Humidity adaptive dehumidification system. DO NOT use standard charge (Fig. 51-54 and 59-62) for units with Perfect Humidity system, and DO NOT use Fig. 55-58 for standard units.

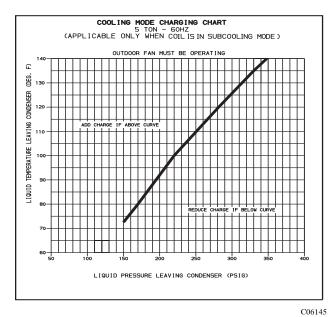


Fig. 57 - Cooling Charging Chart, 581B 048 with **Optional Perfect Humidity Adaptive Dehumidification** System

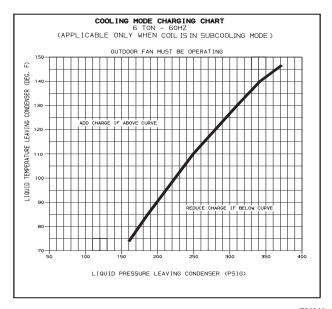


Fig. 58 - Cooling Charging Chart, 581B 072 with Optional Perfect Humidity Adaptive Dehumidification System

To Use Cooling Charging Chart, Standard Unit

Take the outdoor ambient temperature and read the suction pressure gauge. Refer to charts to determine what suction temperature should be. If suction temperature is high, add refrigerant. If suction temperature is low, carefully recover some of the charge. Recheck the suction pressure as charge is adjusted. Example (Fig. 52):

Outdoor Temperature	F
Suction Pressure 70 psi	g
Suction Temperature should be	F
(Suction temperature may vary + 5°E.)	

If a charging device is used, temperature and pressure readings must be accomplished using the charging charts.

To Use Cooling Charging Charts, Units With Perfect **Humidity™** Adaptive Dehumidification System

Refer to charts (Fig. 55-58) to determine the proper leaving condenser pressure and temperature.

Example (Fig. 55):	
Leaving Condenser Pressure	50 psig
Leaving Condenser Temperature	105°F

NOTE: When using the charging charts, it is important that only the subcooling/reheat dehumidification coil liquid line solenoid valve be energized. The subcooling/reheat dehumidification coil liquid line solenoid valve MUST be energized to use the charging charts and the outdoor motor speed controller jumpered to run the fan at full speed.

Step 10 —Flue Gas Passageways

To inspect the flue collector box and upper areas of the heat exchanger:

- 1. Remove the combustion blower wheel and motor assembly according to directions in Combustion-Air Blower section below.
- 2. Remove the 3 screws holding the blower housing to the flue cover.
- 3. Remove the flue cover to inspect the heat exchanger.
- 4. Clean all surfaces as required using a wire brush.

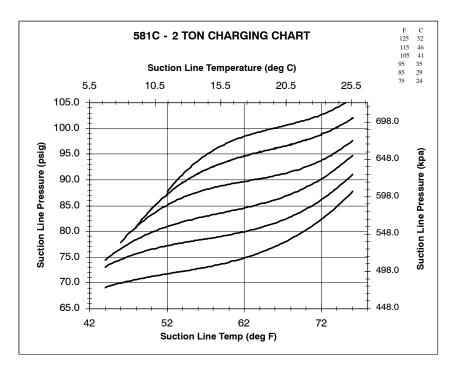


Fig. 59 - Cooling Charging Chart, Standard 581C 024

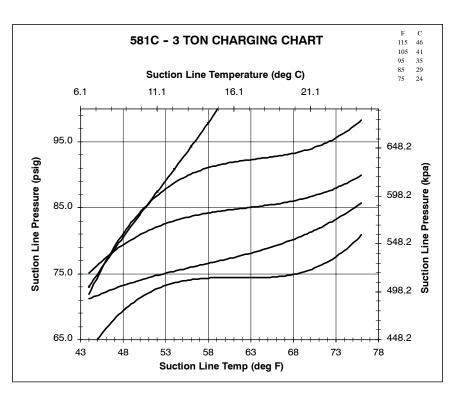


Fig. 60 - Cooling Charging Chart, Standard 581C 036

C06149



Fig. 61 - Cooling Charging Chart, Standard 581C 048

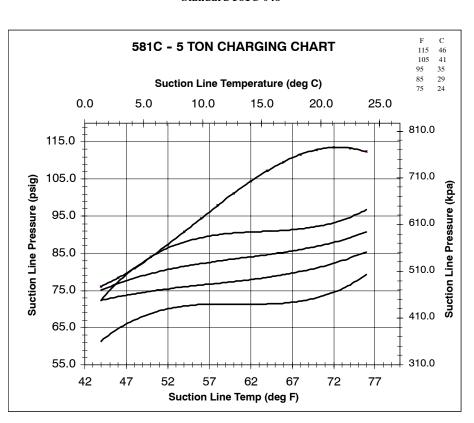


Fig. 62 - Cooling Charging Chart, Standard 581C 060

C06150

Step 11 —Combustion-Air Blower

Clean periodically to ensure proper airflow and heating efficiency. Inspect blower wheel every fall and periodically during heating season. For the first heating season, inspect blower wheel bimonthly to determine proper cleaning frequency.

To inspect blower wheel, remove draft hood and screen. Shine a flashlight into opening to inspect wheel. If cleaning is required, remove motor and wheel as follows:

- 1. Slide burner access panel out.
- Remove the 5 screws that attach induced-draft motor assembly to the vestibule cover.
- Slide the motor and blower wheel assembly out of the blower housing. The blower wheel can be cleaned at this point. If additional cleaning is required, continue with Steps 4 and 5.
- 4. To remove blower from the motor shaft, remove 2 setscrews.
- 5. To remove motor, remove the 4 screws that hold the motor to mounting plate. Remove the motor cooling fan by removing one setscrew. Then remove nuts that hold motor to mounting plate.
- 6. To reinstall, reverse the procedure outlined above.

Step 12 —Limit Switch

Remove blower access panel (Fig. 8). Limit switch is located on the fan deck.

Step 13 —Burner Ignition

Unit is equipped with a direct spark ignition 100% lockout system. Integrated Gas Unit Controller (IGC) is located in the control box (Fig. 13). A single LED on the IGC provides a visual display of operational or sequential problems when the power supply is uninterrupted. The LED can be observed through the viewport. When a break in power occurs, the IGC will be reset (resulting in a loss of fault history) and the evaporator fan on/off times delay will be reset. During servicing, refer to the label on the control box cover or Table 39 for an explanation of LED error code descriptions.

If lockout occurs, unit may be reset by interrupting power supply to unit for at least 5 seconds.

Table 38—LED Error Code Description*

LED INDICATION	ERROR CODE DESCRIPTION		
ON	Normal Operation		
OFF	Hardware Failure		
1 Flash†	Evaporator Fan On/Off Delay Modified		
2 Flashes	Limit Switch Fault		
3 Flashes	Flame Sense Fault		
4 Flashes	4 Consecutive Limit Switch Faults		
5 Flashes	Ignition Lockout Fault		
6 Flashes	Induced-Draft Motor Fault		
7 Flashes	Rollout Switch Fault		
8 Flashes	Internal Control Fault		
9 Flashes	Software Lockout		

LEGEND

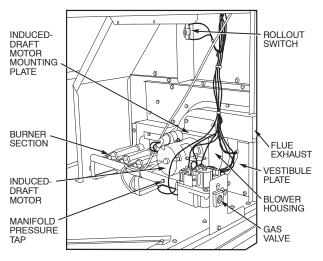
LED — Light-Emitting Diode

IMPORTANT: Refer to Troubleshooting Tables for additional information.

Step 14 — Main Burners

At the beginning of each heating season, inspect for deterioration or blockage due to corrosion or other causes. Observe the main burner flames and adjust, if necessary.

CAUTION


FURNACE DAMAGE HAZARD

Failure to follow this caution may result in reduced furnace life.

When servicing gas train, do not hit or plug orifice spuds.

Removal and Replacement of Gas Train (See Fig. 63 and 64)

- 1. Shut off manual gas valve.
- 2. Shut off power to unit, tag disconnect.
- 3. Remove compressor access panel.
- 4. Slide out burner compartment side panel.
- 5. Disconnect gas piping at unit gas valve.
- 6. Remove wires connected to gas valve. Mark each wire.
- 7. Remove induced-draft motor, igniter, and sensor wires at the Integrated Gas Unit Controller (IGC).
- 8. Remove the 2 screws that attach the burner rack to the vestibule plate.
- 9. Remove the gas valve bracket.
- 10. Slide the burner tray out of the unit (Fig. 64).
- 11. To reinstall, reverse the procedure outlined above.
- 12. Reinstall burners on rack.

C06152

Fig. 63 - Burner Section Details

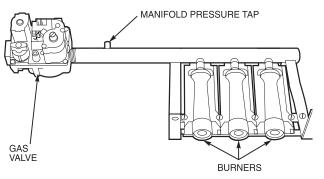
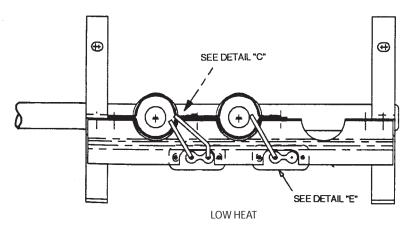



Fig. 64 - Burner Tray Details

^{*}A 3-second pause exists between LED error code flashes. If more than one error code exists, all applicable codes will be displayed in numerical sequence.

[†]Indicates a code that is not an error. The unit will continue to operate when this code is displayed.

C06154

72,000 BTUH INPUT AND 60,000 BTUH INPUT

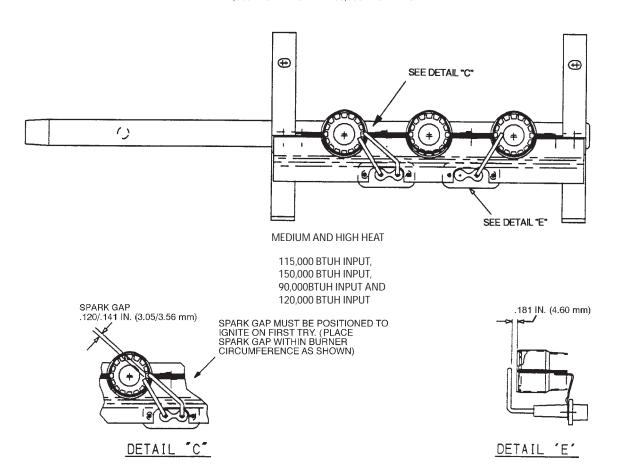


Fig. 65 - Spark Gap Adjustment

Cleaning and Adjustment

- 1. Remove burner rack from unit as described above.
- 2. Inspect burners and, if dirty, remove burners from rack.
- 3. Using a soft brush, clean burners and cross-over port as required.
- 4. Adjust spark gap. (See Fig. 65.)

5. Reinstall burner rack as described above.

Step 15 — Replacement Parts

A complete list of replacement parts may be obtained from any Bryant distributor upon request. Refer to Fig. 66 for a typical unit wiring schematic.

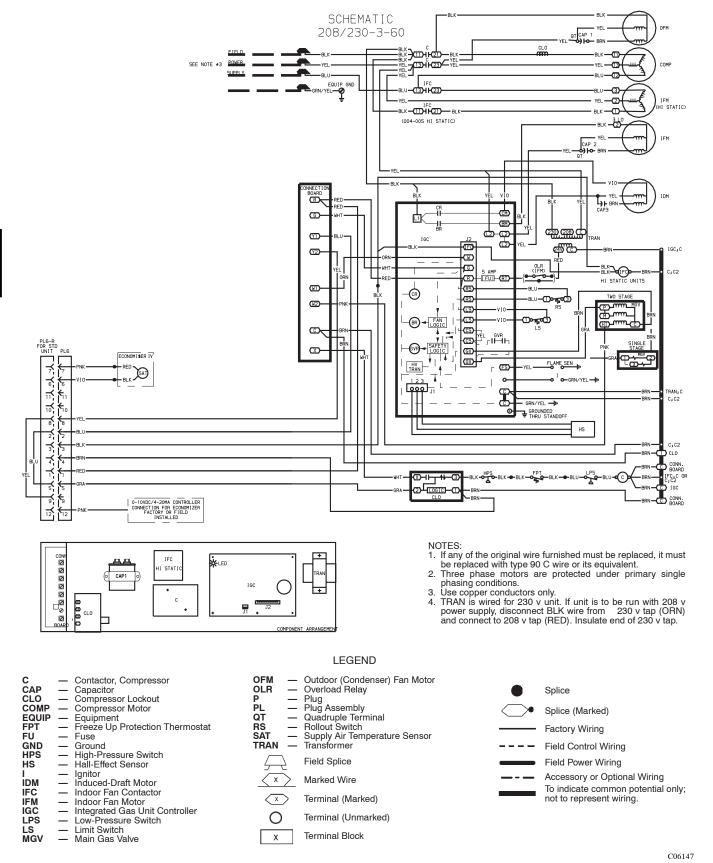


Fig. 66 - Typical Wiring Schematic and Component Arrangement (208/230-3-60 Shown)

TROUBLESHOOTING

Unit Troubleshooting

Refer to Tables 39-43 for unit troubleshooting details.

Economi\$er IV Troubleshooting

See Table 44 for EconoMi\$er IV logic.

A functional view of the EconoMi\$er IV is shown in Fig. 60. Typical settings, sensor ranges, and jumper positions are also shown. An EconoMi\$er IV simulator program is available from your Bryant distributor to help with EconoMi\$er IV training and troubleshooting.

Economi\$er IV Preparation

This procedure is used to prepare the EconoMi\$er IV for troubleshooting. No troubleshooting or testing is done by performing the following procedure.

NOTE: This procedure requires a 9-v battery, 1.2 kilo-ohm resistor, and a 5.6 kilo-ohm resistor which are not supplied with the EconoMi\$er IV.

IMPORTANT: Be sure to record the positions of all potentiometers before starting troubleshooting.

- 1. Disconnect power at TR and TR1. All LEDs should be off. Exhaust fan contacts should be open.
- 2. Disconnect device at P and P1.
- 3. Jumper P to P1.
- 4. Disconnect wires at T and T1. Place 5.6 kilo-ohm resistor across T and T1.
- 5. Jumper TR to 1.
- 6. Jumper TR to N.
- 7. If connected, remove sensor from terminals S_O and +. Connect 1.2 kilo-ohm 4074EJM checkout resistor across terminals S_O and +.
- 8. Put 620-ohm resistor across terminals S_R and +.
- 9. Set minimum position, DCV set point, and exhaust potentiometers fully CCW (counterclockwise).
- Set DCV maximum position potentiometer fully CW (clockwise).
- 11. Set enthalpy potentiometer to D.
- 12. Apply power (24 vac) to terminals TR and TR1.

Differential Enthalpy

To check differential enthalpy:

- Make sure EconoMi\$er IV preparation procedure has been performed.
- 2. Place 620-ohm resistor across So and +.
- 3. Place 1.2 kilo-ohm resistor across S_R and +. The Free Cool LED should be lit.
- 4. Remove 620-ohm resistor across $S_{\rm O}$ and +. The Free Cool LED should turn off.
- 5. Return EconoMi\$er IV settings and wiring to normal after completing troubleshooting.

Single Enthalpy

To check single enthalpy:

- Make sure EconoMi\$er IV preparation procedure has been performed.
- 2. Set the enthalpy potentiometer to A (fully CCW). The Free Cool LED should be lit.
- 3. Set the enthalpy potentiometer to D (fully CW). The Free Cool LED should turn off.
- Return EconoMi\$er IV settings and wiring to normal after completing troubleshooting.

DCV (Demand Controlled Ventilation) and Power Exhaust

To check DCV and Power Exhaust:

- Make sure EconoMi\$er IV preparation procedure has been performed.
- Ensure terminals AQ and AQ1 are open. The LED for both DCV and Exhaust should be off. The actuator should be fully closed.
- 3. Connect a 9-v battery to AQ (positive node) and AQ1 (negative node). The LED for both DCV and Exhaust should turn on. The actuator should drive to between 90 and 95% open.
- 4. Turn the Exhaust potentiometer CW until the Exhaust LED turns off. The LED should turn off when the potentiometer is approximately 90%. The actuator should remain in position.
- Turn the DCV set point potentiometer CW until the DCV LED turns off. The DCV LED should turn off when the potentiometer is approximately 9v. The actuator should drive fully closed.
- Turn the DCV and Exhaust potentiometers CCW until the Exhaust LED turns on. The exhaust contacts will close 30 to 120 seconds after the Exhaust LED turns on.
- Return EconoMi\$er IV settings and wiring to normal after completing troubleshooting.

DCV Minimum and Maximum Position

To check the DCV minimum and maximum position:

- Make sure EconoMi\$er IV preparation procedure has been performed.
- Connect a 9-v battery to AQ (positive node) and AQ1 (negative node). The DCV LED should turn on. The actuator should drive to between 90 and 95% open.
- Turn the DCV Maximum Position potentiometer to midpoint. The actuator should drive to between 20 and 80% open.
- Turn the DCV Maximum Position potentiometer to fully CCW. The actuator should drive fully closed.
- 5. Turn the Minimum Position potentiometer to midpoint. The actuator should drive to between 20 and 80% open.
- 6. Turn the Minimum Position Potentiometer fully CW. The actuator should drive fully open.
- 7. Remove the jumper from TR and N. The actuator should drive fully closed.
- 8. Return EconoMi\$er IV settings and wiring to normal after completing troubleshooting.

Supply-Air Input

To check supply-air input:

- 1. Make sure EconoMi\$er IV preparation procedure has been performed.
- Set the Enthalpy potentiometer to A. The Free Cool LED turns on. The actuator should drive to between 20 and 80% open.
- 3. Remove the 5.6 kilo-ohm resistor and jumper T to T1. The actuator should drive fully open.
- 4. Remove the jumper across T and T1. The actuator should drive fully closed.
- Return EconoMi\$er IV settings and wiring to normal after completing troubleshooting.

Economi\$er IV Troubleshooting Completion

This procedure is used to return the EconoMi\$er IV to operation. No troubleshooting or testing is done by performing the following procedure.

- 1. Disconnect power at TR and TR1.
- 2. Set enthalpy potentiometer to previous setting.
- 3. Set DCV maximum position potentiometer to previous setting.
- 4. Set minimum position, DCV set point, and exhaust potentiometers to previous settings.

- 5. Remove 620-ohm resistor from terminals S_R and +.
- 6. Remove 1.2 kilo-ohm checkout resistor from terminals S_O and +. If used, reconnect sensor from terminals So and +.
- 7. Remove jumper from TR to N.
- 8. Remove jumper from TR to 1.
- 9. Remove 5.6 kilo-ohm resistor from T and T1. Reconnect wires at T and T1.
- 10. Remove jumper from P to P1. Reconnect device at P and
- 11. Apply power (24 vac) to terminals TR and TR1.

Table 39—LED Error Code Service Analysis

SYMPTOM	CAUSE	REMEDY
Hardware Failure. (LED OFF)	Loss of power to control module (IGC).	Check 5 amp fuse on IGC, power to unit, 24-v circuit breaker, and transformer. Units without a 24-v circuit breaker have an internal overload in the 24-v transformer. If the overload trips, allow 10 minutes for automatic reset.
Fan ON/OFF Delay Modified (LED/FLASH)	High limit switch opens during heat exchanger warm-up period before fan-on delay expires.	Ensure unit is fired on rate and temperature rise is correct.
	Limit switch opens within three minutes after blower-off delay timing in Heating mode.	Ensure units' external static pressure is within application guidelines.
Limit Switch Fault. (LED 2 Flashes)	High temperature limit switch is open.	Check the operation of the indoor (evaporator) fan motor. Ensure that the supply-air temperature rise is in accordance with the range on the unit nameplate.
Flame Sense Fault. (LED 3 Flashes)	The IGC sensed flame that should not be present.	Reset unit. If problem persists, replace control board.
4 Consecutive Limit Switch Faults. (LED 4 Flashes)	Inadequate airflow to unit.	Check operation of indoor (evaporator) fan motor and that supply-air temperature rise agrees with range on unit nameplate information.
Ignition Lockout. (LED 5 Flashes)	Unit unsuccessfully attempted ignition for 15 minutes.	Check ignitor and flame sensor electrode spacing, gaps, etc. Ensure that flame sense and ignition wires are properly terminated. Verify that unit is obtaining proper amount of gas.
Induced-Draft Motor Fault. (LED 6 Flashes)	IGC does not sense that induced-draft motor is operating.	Check for proper voltage. If motor is operating, check the speed sensor plug/IGC Terminal J2 connection. Proper connection: PIN 1— White, PIN 2 — Red, PIN 3 — Black.
Rollout Switch Fault. (LED 7 Flashes)	Rollout switch has opened.	Rollout switch will automatically reset, but IGC will continue to lock out unit. Check gas valve operation. Ensure that induced-draft blower wheel is properly secured to motor shaft. Reset unit at unit disconnect.
Internal Control Fault. (LED 8 Flashes)	Microprocessor has sensed an error in the software or hardware.	If error code is not cleared by resetting unit power, replace the IGC.
Temporary Software Lockout (LED 9 Flashes)	Electrical interference is impeding the IGC software.	Reset 24-v to control board or turn thermostat off and then on. Fault will automatically reset itself in one hour.

CAUTION

COMPONENT DAMAGE HAZARD

Failure to follow this caution may result in component damage.

If the IGC must be replaced, be sure to ground yourself to dissipate any electrical charge that may be present before handling new control board. The IGC is sensitive to static electricity and may be damaged if the necessary precautions are not taken.

LEGEND

IGC – Integrated Gas Unit Controller LED – Light–Emitting Diode

IMPORTANT: Refer to heating troubleshooting for additional heating section troubleshooting information.

Table 40— Heating Service Analysis

PROBLEM	CAUSE	REMEDY			
Burners Will Not	Misaligned spark electrodes.	Check flame ignition and sensor electrode positioning. Adjust as needed.			
Ignite.	No gas at main burners.	Check gas line for air purge as necessary. After purging gas line of air, allow gas to dissipate for at least 5 minutes before attempting to relight unit.			
		Check gas valve.			
	Water in gas line.	Drain water and install drip leg to trap water.			
	No power to furnace.	Check power supply, fuses, wiring, and circuit breaker.			
	No 24 v power supply to control circuit.	Check transformer. Transformers with internal overcurrent protection require a cool-down period before resetting. Check 24-v circuit breaker; reset if necessary.			
	Miswired or loose connections.	Check all wiring and wirenut connections.			
	Burned-out heat anticipator in thermostat.	Replace thermostat.			
	Broken thermostat wires.	Run continuity check. Replace wires, if necessary.			
Inadequate Heating.	Dirty air filter.	Clean or replace filter as necessary.			
	Gas input to unit too low.	Check gas pressure at manifold. Clock gas meter for input. If too low, increase manifold pressure or replace with correct orifices.			
	Unit undersized for application.	Replace with proper unit or add additional unit.			
	Restricted airflow.	Clean filter, replace filter, or remove any restrictions.			
	Blower speed too low.	Use high speed tap, increase fan speed, or install optional blower, as suitable for individual units, Adjust pulley.			
	Limit switch cycles main burners.	Check rotation of blower, thermostat heat anticipator settings, and temperature rise of unit. Adjust as needed.			
	Too much outdoor air.	Adjust minimum position.			
		Check economizer operation.			
Poor Flame Characteristics.	Incomplete combustion (lack of combustion air) results in:	Check all screws around flue outlets and burner compartment. Tighten as necessary.			
	Aldehyde odors, CO (carbon monoxide),	Cracked heat exchanger.			
	sooting flame, or floating flame.	Overfired unit — reduce input, change orifices, or adjust gas line or manifold pressure.			
		Check vent for restriction. Clean as necessary.			
		Check orifice to burner alignment.			
Burners Will Not Turn Off.	Unit is locked into Heating mode for a one minute minimum.	Wait until mandatory one-minute time period has elapsed or reset power to unit.			

Table 41—Perfect Humidity™ Adaptive Dehumidification System Subcooling Mode Service Analysis

PROBLEM	CAUSE	REMEDY		
Subcooling Mode (Liquid Reheat) Will Not Energize.	No power to control transformer from evaporator-fan motor.	Check power source and evaporator-fan relay. Ensure all wire connections are tight.		
	No power from control transformer to liquid line solenoid valve.	Fuse open; check fuse. Ensure continuity of wiring. Low-pressure switch open. Cycle unit off and allow low-pressure switch to reset. Replace switch if it will not close. Transformer bad; check transformer.		
	Liquid line solenoid valve will not operate.	Solenoid coil defective; replace. Solenoid valve stuck open; replace.		
	Liquid line solenoid valve will not open.	Valve is stuck closed; replace valve.		
Low System Capacity.	Low refrigerant charge or frosted evaporator coil.	Check charge amount. Charge per Fig. 55–58. Evaporator coil frosted; check and replace low-pressure switch if necessary.		
Loss of Compressor Superheat Conditions with Subcooling/Reheat Dehumidification Coil Energized.	Thermostatic expansion valve (TXV).	Check TXV bulb mounting, and secure tightly to suction line. Replace TXV if stuck open or closed.		

 $\textbf{Table 42--Perfect Humidity}^{\text{\tiny{TM}}} \ \textbf{Adaptive Dehumidification System Hot Gas Reheat Mode Service Analysis}$

PROBLEM	CAUSE	REMEDY		
Reheat Mode Will Not Energize.	No power to control transformer from evaporator-fan motor.	Check power source and evaporator-fan relay. Ensure all wire connections are tight.		
	No power from control transformer to hot gas line solenoid valve	Fuse open; check fuse. Ensure continuity of wiring. Low-pressure switch open. Cycle unit off and allow low-pressure switch to reset. Replace switch if it will not close. Transformer bad; check transformer.		
	Hot gas line solenoid valve will not operate.	Solenoid coil defective; replace. Solenoid valve stuck closed; replace.		
	Low refrigerant charge or frosted evaporator coil.	Check charge amount. Charge per Fig. 55 – 58. Evaporator coil frosted; check and replace low-pressure switch if necessary.		
Loss of Compressor Superheat Conditions with Subcooling/Reheat Dehumidification Coil Energized.	Thermostatic expansion valve (TXV).	Check TXV bulb mounting, and secure tightly to suction line. Replace TXV if stuck open or closed.		
Excessive Superheat.	Liquid line solenoid valve will not operate.	Valve is stuck, replace valve.		
	Hot gas line solenoid valve will not close.	Valve is stuck; replace valve.		

Table 43—Cooling Service Analysis

PROBLEM	CAUSE	REMEDY		
Compressor and Condenser Fan	Power failure.	Call power company.		
Will Not Start.	Fuse blown or circuit breaker tripped.	Replace fuse or reset circuit breaker.		
	Defective thermostat, contactor, transformer, or control relay.	Replace component.		
	Insufficient line voltage.	Determine cause and correct.		
	Incorrect or faulty wiring.	Check wiring diagram and rewire correctly.		
	Thermostat setting too high.	Lower thermostat setting below room temperature.		
Compressor Will Not Start But Condenser Fan Runs.	Faulty wiring or loose connections in compressor circuit.	Check wiring and repair or replace.		
	Compressor motor burned out, seized, or internal overload open.	Determine cause. Replace compressor.		
	Defective run/start capacitor, overload, start relay.	Determine cause and replace.		
	One leg of 3-phase power dead.	Replace fuse or reset circuit breaker. Determine cause.		
Compressor Cycles (Other Than Normally Satisfying Thermostat).	Refrigerant overcharge or undercharge.	Recover refrigerant, evacuate system, and recharge to nameplate.		
	Defective compressor.	Replace and determine cause.		
	Insufficient line voltage.	Determine cause and correct.		
	Blocked condenser.	Determine cause and correct.		
	Defective run/start capacitor, overload, or start relay.	Determine cause and replace.		
	Defective thermostat.	Replace thermostat.		
	Faulty condenser-fan motor or capacitor.	Replace.		
	Restriction in refrigerant system.	Locate restriction and remove.		
Compressor Operates Continuously.	Dirty air filter.	Replace filter.		
	Unit undersized for load.	Decrease load or increase unit size.		
	Thermostat set too low.	Reset thermostat.		
	Low refrigerant charge.	Locate leak, repair, and recharge.		
	Leaking valves in compressor.	Replace compressor.		
	Air in system.	Recover refrigerant, evacuate system, and recharge.		
	Condenser coil dirty or restricted.	Clean coil or remove restriction.		
Excessive Head Pressure.	Dirty air filter.	Replace filter.		
	Dirty condenser coil.	Clean coil.		
	Refrigerant overcharged.	Recover excess refrigerant.		
	Air in system.	Recover refrigerant, evacuate system, and recharge.		
	Condenser air restricted or air short-cycling.	Determine cause and correct.		
Head Pressure Too Low.	Low refrigerant charge.	Check for leaks, repair, and recharge.		
	Compressor valves leaking.	Replace compressor.		
	Restriction in liquid tube.	Remove restriction.		
Excessive Suction Pressure.	High heat load.	Check for source and eliminate.		
	Compressor valves leaking.	Replace compressor.		
	Refrigerant overcharged.	Recover excess refrigerant.		
Suction Pressure Too Low.	Dirty air filter.	Replace filter.		
	Low refrigerant charge.	Check for leaks, repair, and recharge.		
	Metering device or low side restricted.	Remove source of restriction.		
	Insufficient evaporator airflow.	Increase air quantity. Check filter and replace if necessary.		
	Temperature too low in conditioned area.	Reset thermostat.		
	Outdoor ambient below 25 F.	Install low-ambient kit.		
Evaporator Fan Will Not Shut Off.	Time off delay not finished.	Wait for 30-second off delay.		

Table 44—EconoMi\$er IV Input/Output Logic

i	INPUTS					OUTPUTS			
Demand Control	Enthalpy*		,		Comp	pressor	N Terminal†		
2011141141 00114101	Outdoon	Datum	Y1	Y2	Stage	Stage	Occupied	Unoccupied	
Ventilation (DCV)	Outdoor	Return	'	'	1	2	Damp	per	
Below set	High	Low	On	On	On	On	Minimum position	Closed	
(DCV LED Off)	(Free Cooling LED Off)		On	Off	On	Off	1		
1			Off	Off	Off	Off	1		
1	Low	High	On	On	On	Off	Modulating** (between min.	Modulating** (between	
Í	(Free Cooling LED On)	_	On	Off	Off	Off	position and full-open)	closed and full-open)	
1			Off	Off	Off	Off	Minimum position	Closed	
Above set	High	Low	On	On	On	On	Modulating†† (between min.	Modulating†† (between	
(DCV LED On)	(Free Cooling LED Off)		On	Off	On	Off	position and DCV maximum)	closed and DCV	
Í			Off	Off	Off	Off	1	maximum)	
Í	Low	High	On	On	On	Off	Modulating***	Modulating†††	
Í	(Free Cooling LED On)] -	On	Off	Off	Off	1		
1			Off	Off	Off	Off	1		

^{*}For single enthalpy control, the module compares outdoor enthalpy to the ABCD set point.

^{†††}Modulation is based on the greater of DCV and supply-air sensor signals, between closed and either maximum position (DCV) or fully open (supply-air signal).

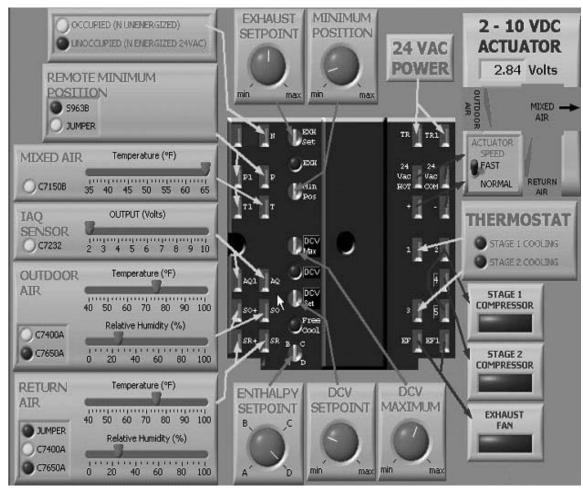


Fig. 67 - EconoMi\$er IV Functional View

[†]Power at N terminal determines Occupied/Unoccupied setting: 24 vac (Occupied), no power (Unoccupied).

^{**}Modulation is based on the supply-air sensor signal.

^{††}Modulation is based on the DCV signal.

^{***}Modulation is based on the greater of DCV and supply-air sensor signals, between minimum position and either maximum position (DCV) or fully open (supply-air signal).

START-UP CHECKLIST (Remove and Store in Job File)

I. PRELIMINARY INFORMATION								
MODEL NO.:								
DATE:	TECHNICIAN:							
II. PRE-START-UP (insert checkmark in box as each item is completed)								
☐ VERIFY THAT JOBSITE VOLTAGE AGREES WITH VOI	VERIFY THAT JOBSITE VOLTAGE AGREES WITH VOLTAGE LISTED ON RATING PLATE							
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	VERIFY THAT ALL PACKAGING MATERIALS HAVE BEEN REMOVED FROM UNIT							
☐ REMOVE ALL SHIPPING HOLDDOWN BOLTS AND BE	REMOVE ALL SHIPPING HOLDDOWN BOLTS AND BRACKETS PER INSTALLATION INSTRUCTIONS							
☐ VERIFY THAT CONDENSATE CONNECTION IS INSTAI	VERIFY THAT CONDENSATE CONNECTION IS INSTALLED PER INSTALLATION INSTRUCTIONS							
☐ CHECK ALL ELECTRICAL CONNECTIONS AND TERM	CHECK ALL ELECTRICAL CONNECTIONS AND TERMINALS FOR TIGHTNESS							
☐ CHECK GAS PIPING FOR LEAKS	CHECK GAS PIPING FOR LEAKS							
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	LEAN AND IN PLACE							
☐ VERIFY THAT UNIT INSTALLATION IS LEVEL								
☐ CHECK FAN WHEELS AND PROPELLER FOR LOCATION TIGHTNESS	ON IN HOUSING/ORIFICE AND SETSCREW							
 CHECK TO ENSURE THAT ELECTRICAL WIRING IS NOR SHARP METAL EDGES 	IOT IN CONTACT WITH REFRIGERANT LINES							
☐ CHECK PULLEY ALIGNMENT AND BELT TENSION PE	ER INSTALLATION INSTRUCTIONS							
III. START-UP								
ELECTRICAL								
SUPPLY VOLTAGE L1-L2 L2-L3	L3-L1 _							
COMPRESSOR AMPS L1 L2 L2								
INDOOR-FAN AMPS L1 L2 L2	L3 _							
TEMPERATURES								
OUTDOOR-AIR TEMPERATURE _ DB								
RETURN-AIR TEMPERATURE _ DB _	WB							
COOLING SUPPLY AIR _ DB _								
HEATING SUPPLY AIR _ DB								
PRESSURES (Cooling Mode)								
GAS INLET PRESSURE _ IN.WG								
GAS MANIFOLD PRESSURE IN.WG (HIGH FIRE)								
REFRIGERANT SUCTION _ PSIG								
REFRIGERANT DISCHARGE _ PSIG								
☐ VERIFY THAT 3-PHASE FAN MOTOR AND BLOWER ARE ROTATING IN CORRECT DIRECTION. IF THEY ARE NOT ROTATING IN CORRECT DIRECTION, LOCKING COLLAR MUST BE RE-TIGHTENED AFTER CORRECTING DIRECTION OF ROTATION								
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	CATING IN THE CORRECT DIRECTION							
☐ VERIFY REFRIGERANT CHARGE USING CHARGING C	HARTS							