
Scali MPI ConnectTM Users Guide

Software release 4.4

Acknowledgement

The development of Scali MPI Connect has benefited greatly from the work of people not
connected to Scali. We wish especially to thank the developers of MPICH for their work which
served as a reference when implementing the first version of Scali MPI Connect.
The list of persons contributing to algorithmic Scali MPI Connect improvements is impossible
to compile here. We apologize to those who remain unnamed and mention only those who
certainly are responsible for a step forward.

Scali is thankful to Rolf Rabenseifner for the improved reduce algorithm used in Scali MPI
Connect.

Copyright © 1999-2005 Scali AS. All rights reserved
7 September 2005 17:54

SCALI “BRONZE” SOFTWARE CERTIFICATE

(hereinafter referred to as the “CERTIFICATE”)

issued by

Scali AS, Olaf Helsets Vei 6, 0619 Oslo, Norway

(hereinafter referred to as “SCALI”)

DEFINITIONS

- “SCALI SOFTWARE” shall mean all contents of the software disc(s) or download(s) for
the number of nodes the LICENSEE has purchased a license for (as specified in purchase
order/invoice/order confirmation or similar) including modified versions, upgrades,
updates, DOCUMENTATION, additions, and copies of software. The term SCALI
SOFTWARE includes Software in its entirety, including RELEASES, REVISIONS and BUG
FIXES, but not DISTRIBUTED SOFTWARE.

- “DISTRIBUTED SOFTWARE” shall mean any third-party software products, licensed
directly to SCALI or to the LICENSEE by third party and identified as such.

- “DOCUMENTATION” shall mean manuals, maintenance libraries, explanatory materials
and other publications delivered with the SCALI SOFTWARE or in connection with SCALI
BRONZE SOFTWARE MAINTENANCE AND SUPPORT SERVICES . The term
“DOCUMENTATION” (can be paper or on-line documentation) does not include
specification of Hardware, SCALI SOFTWARE or DISTRIBUTED SOFTWARE.

- A “RELEASE” is defined as a completely new program with new functionality and new
features over its predecessors identified as such by SCALI according to the ordinary SCALI
identification procedures.

- A “REVISION” is defined as changes to a program with the aim to improve functionality
and to remove deficiencies, identified as such by SCALI according to the ordinary SCALI
identification procedures.

- A “BUG FIX” is defined as an immediate repair of dysfunctional software, identified as
such by SCALI according to the ordinary SCALI identification procedures.

- “INSTALLATION ADDRESS” shall mean the physical location of the computer hardware
and the location at which SCALI will have installed the SCALI SOFTWARE.

- “INTELLECTUAL PROPERTY RIGHTS” includes, but is not limited to all rights to
inventions, patents, designs, trademarks, trade names, copyright, copyrighted material,
programming, source code, object code, trade secrets and know how.

- “SCALI REPRESENTATIVE” shall mean any party authorized by SCALI to import,
export, sell, resell or in any other way represent SCALI or SCALI’s products.

- “SHIPPING DATE” shall mean the date the SCALI SOFTWARE was sent from SCALI or
SCALI REPRESENTATIVE to the Licensee.

- “INSTALLATION DATE” shall mean the date the SCALI SOFTWARE is installed at the
LICENSEE’s premises.

- “COMMENCEMENT DAY” shall mean the day the SCALI SOFTWARE is made available to
LICENSEE by SCALI for installation for permanent use on LICENSEE’s computer system
(permanent license granted by SCALI.

- “LICENSEE” shall mean the formal entity ordering and purchasing the license to use the
SCALI SOFTWARE.
Scali MPI Connect Release 4.4 - Users Guide i

- “CANCELLATION PERIOD” shall mean the period between SHIPPING DATE AND
INSTALLATION DATE, or if installation is not carried out, the period of 30 days after
SHIPPING DATE, counted from the first NORWEGIAN WORKING DAYS after SHIPPING
DATE.

- “US WORKING DAYS” shall mean Monday to Friday, except USA Public Holidays.

- “US BUSINESS HOURS” shall mean 9.00 AM to 5.00 PM Eastern Standard Time.

- “NORWEGIAN WORKING DAYS” shall mean Monday to Friday, except Norwegian Public
Holidays.

- “NORWEGIAN BUSINESS HOURS” shall mean 9.00 AM to 5.00 PM Central European
Time.

- “SCALI BRONZE SOFTWARE MAINTENANCE AND SUPPORT SERVICES” shall mean
the Maintenance and Support Services as set out in this CERTIFICATE

I ATTENTION

USE OF THE “SCALI SOFTWARE” IS SUBJECT TO THE POSSESSION OF THIS SCALI
BRONZE SOFTWARE CERTIFICATE AND THE ACCEPTANCE OF THE TERMS AND
CONDITIONS SET OUT HEREIN. THE FOLLOWING TERMS AND CONDITIONS APPLIES
TO ALL SCALI SOFTWARE. BY USING THE SCALI SOFTWARE THE LICENSEE
EXPRESSLY CONFIRMS THE LICENSEE’s ACCEPTANCE OF TERMS AND CONDITIONS
SET OUT BELOW.

THE SCALI SOFTWARE MAY BE RETURNED TO THE SCALI’S REPRESENTATIVE
WITHIN THE END OF CANCELLATION PERIOD IF THE LICENSEE DOES NOT ACCEPT
THE TERMS AND CONDITIONS SET OUT IN THIS CERTIFICATE.

THE TERMS AND CONDITIONS IN THIS CERTIFICATE ARE DEEMED ACCEPTED
UNLESS THE LICENSEE RETURNS THE SCALI SOFTWARE TO SCALI’S
REPRESENTATIVE BEFORE THE END OF CANCELLATION PERIOD DEFINED ABOVE.

DISTRIBUTED SOFTWARE IS SPECIFIED ON THE URL ADDRESS http://
www.scali.com/distributedsw . THE USE OF THE DISTRIBUTED SOFTWARE IS NOT
GOVERNED UNDER THE SCOPE OF THIS CERTIFICATE, BUT SUBJECT TO
ACCEPTANCE OF THE TERMS AND CONDITIONS SET OUT IN THE SEPARATE LICENSE
AGREEMENTS APPLICABLE TO THE RESPECTIVE DISTRIBUTED SOFTWARE IN
QUESTION. SUCH LICENSEE AGREEMENTS ARE MADE AVAILABLE AT THE URL
ADDRESS http://www.scali.com/distributedsw .

II SOFTWARE LICENSE TERMS

Commencement

This CERTIFICATE is effective from the end of CANCELLATION PERIOD as defined above,
unless the SCALI SOFTWARE has been returned to SCALI REPRESENTATIVE or SCALI before
the end of CANCELLATION PERIOD.

Grant of License

Scali grants by this CERTIFICATE to LICENSEE a perpetual, non-exclusive, limited license to
use the SCALI SOFTWARE during the term of this CERTIFICATE.

This grant of license shall not constitute any restriction for SCALI to grant a license to any
other third party.

Maintenance

SCALI may, from time to time, produce new REVISIONS and BUG FIXES of the RELEASE of the
SCALI SOFTWARE with corrections of errors and defects and expanded or enhanced
functionality. For 1 year after COMMENCEMENT DAY, SCALI will provide the LICENSEE with
such REVISIONS and BUG FIXES for the purchased SCALI SOFTWARE at the URL address
Scali MPI Connect Release 4.4 - Users Guide ii

http://www.scali.com/distributedsw
http://www.scali.com/distributedsw
http://www.scali.com/distributedsw

www.scali.com/download free of charge. The Licensee may request such new REVISIONS and
BUG FIXES of the RELEASE, and supplementary material thereof, made available on CD-ROM
or paper upon payment of a media and handling fee in accordance with SCALI’s pending price
list at the time such order is placed.

The above maintenance services may, in certain cases, be excluded from the order placed by
non-commercial customers, as defined by SCALI. In such case, the below provisions regarding
maintenance does not apply for such non-commercial customers.

Support

For 1 year after COMMENCEMENT DAY, the LICENSEE may request technical assistance in
accordance with the terms and conditions current from time to time for the SCALI BRONZE
SOFTWARE MAINTENANCE AND SUPPORT SERVICES as set out below. Upon additional
payment in accordance with the current price list from time to time, and acceptance of the
specific terms and conditions related thereto, the LICENSEE may request prolonged or
upgraded support services in accordance with the support policies made available from time
to time by SCALI.

The above support services may, in certain cases, be excluded from the order placed by non-
commercial customers, as defined by SCALI. In such case, the below provisions regarding
support does not apply for such non-commercial customers.

Restrictions in the use of the SCALI SOFTWARE

LICENSEE may not modify or tamper the content of any of the files of the software or the
online documentation or other deliverables made available by SCALI or SCALI
REPRESENTATIVE, without the prior written authorization by SCALI.

The SCALI SOFTWARE contains proprietary algorithms and methods. LICENSEE may not
attempt to;

- reverse engineer, decompile, disassemble or modify; or
- make any attempt to discover the source code of the SCALI SOFTWARE or create

derivative works form such; or
- use a previous version or copy of the SCALI SOFTWARE after an updated version has

been made available as a replacement of the prior version. Upon updating the SCALI
SOFTWARE, all copies of prior versions shall be destroyed.

- translate, copy, duplicate or reproduce for any other purpose than for backup for
archival purposes.

LICENSEE may only make copies or adaptations of the SCALI SOFTWARE for archival purposes
or when copying or adaptation is an essential step in the authorized use of the SCALI
SOFTWARE. LICENSEE must reproduce all copyright notices in the original SCALI SOFTWARE
on all copies or adaptations. LICENSEE may not copy the SCALI SOFTWARE onto any public
network.

License Manager

The SCALI SOFTWARE is operated under the control of a license manager, which is controlling
the access and licensed usage of the SCALI SOFTWARE. LICENSEE may not attempt to
modify or tamper with any function of this license manager.

Sub-license and distribution

LICENSEE may not sub-license, rent or lease the SCALI SOFTWARE partly or in whole, or use
the SCALI SOFTWARE in the manner neither of a service bureau nor as an Application Service
Provider unless specifically agreed to in writing by SCALI.

LICENSEE is permitted to print and distribute paper copies of the unmodified online
documentation freely. In this case LICENSEE may not charge a fee for any such distribution.

Export Requirements

LICENSEE may not export or re-export the SCALI SOFTWARE or any copy or adaptation in
violation of any applicable laws or regulations.
Scali MPI Connect Release 4.4 - Users Guide iii

http://www.Scali.com/download

III SCALI SERVICES TERMS

SCALI BRONZE SOFTWARE MAINTENANCE AND SUPPORT SERVICES

Unless otherwise specified in the purchase order placed by the LICENSEE, SCALI shall provide
SCALI BRONZE SOFTWARE MAINTENANCE AND SUPPORT SERVICES in accordance with its
maintenance and support policy as referred to in this Clause and the Clause “SCALI’s
Obligations” hereunder, which includes error corrections, RELEASES, REVISIONS and BUG
FIXES to the RELEASE of the SCALI SOFTWARE.

For customers in the Americas, SCALI shall provide technical assistance via E-mail on US
WORKING DAYS from, 9.00 AM to 5.00 PM Eastern Standard Time.

For customers in the Americas, SCALI shall respond to the LICENSEE via e-mail and start
technical assistance and error corrections within eight (8) US BUSINESS HOURS after the
error or defect has been reported to SCALI via SCALI’S standard problem report procedures
as defined from time to time on the url-address www.scali.com/support.

For customers outside the Americas, SCALI shall provide technical assistance via E-mail on
NORWEGIAN WORKING DAYS from, 9.00 AM to 5.00 PM Central European Time.

For customers outside the Americas, SCALI shall respond to the LICENSEE via e-mail and start
technical assistance and error corrections within eight (8) NORWEGIAN BUSINESS HOURS
after the error or defect has been reported to SCALI via SCALI’S standard problem report
procedures as defined from time to time on the url-address www.scali.com/support.

SCALI’s Obligations

In the event that the LICENSEE detects any significant error or defect in the SCALI
SOFTWARE, SCALI, in accordance with the standard warranty of the Scali Software License
granted to the LICENSEE, undertakes to repair, replace or provide an adequate work-around
of the SCALI SOFTWARE installed at the INSTALLATION ADDRESS within the response times
listed in the Clause “SCALI BRONZE SOFTWARE MAINTENANCE AND SUPPORT SERVICES”
above.

SCALI may provide a fix or update to the SCALI SOFTWARE in the normal course of business
according to SCALI’s scheduled or unscheduled new REVISIONS of the SCALI SOFTWARE.
SCALI will provide, at the LICENSEE’s request, a temporary fix for non-material errors or
defects until the issuance of such NEW REVISION.

The services covered by this CERTIFICATE will be provided only for operation of the SCALI
SOFTWARE. SCALI will provide services for the SCALI SOFTWARE only on the release level
current at the time of service and the immediately preceding release level. SCALI may, within
its sole discretion, provide support on previous release levels, for which the LICENSEE may be
required to pay SCALI time and materials for the services rendered.

Should it become impossible to maintain the LICENSEE’s RELEASE of the SCALI SOFTWARE
during the currency of this CERTIFICATE, then SCALI may in its sole discretion, upon giving
the LICENSEE 3 (three) months written notice to the effect, upgrade the SCALI SOFTWARE at
the INSTALLATION ADDRESS to any later release of the SCALI SOFTWARE such that it can
once again be maintained.

LICENSEE’s Obligations

The LICENSEE shall notify SCALI in writing via the SCALI Standard Problem Report Procedure
as defined from time to time on the url-address www.scali.com/support , following the
discovery of any error or defect in the SCALI SOFTWARE or otherwise if support services by
SCALI are requested.

The LICENSEE shall provide to SCALI a comprehensive listing of output and all such other data
that SCALI may request in order to reproduce operating conditions similar to those present
when the error or defect occurred or was discovered. In the event that it is determined that
the problem was due to LICENSEE error in the use of the SCALI SOFTWARE, or otherwise not
Scali MPI Connect Release 4.4 - Users Guide iv

http://www.scali.com
http://www.scali.com
http://www.scali.com/support

related to, referring to or caused by SCALI SOFTWARE, then the LICENSEE shall pay SCALI’s
standard commercial time rates for all off-site and eventually any on-site services provided
plus actual travel and per diem expenses relating to such services.

IV GENERAL TERMS

Fees for SCALI Software License and SCALI SOFTWARE MAINTENANCE AND
SUPPORT SERVICES

Fees for the SCALI SOFTWARE, License and SCALI SOFTWARE MAINTENANCE AND SUPPORT
SERVICES to be paid by the LICENSEE to SCALI under this CERTIFICATE are determined
based on the current Scali Product Price List from time to time

Any requests for services or problems reported to SCALI, which in the opinion of SCALI are
clearly defined as professional services not included in the payment made under the scope of
this CERTIFICATE, including but not limited to;

- on-Site support;

- “tuning” and machine optimization;

- problems related to Hardware and Software not delivered by SCALI;

- backup Processing;

- installation of any software, including newer releases;

- consultancy and Training;

- DISTRIBUTED SOFTWARE;

shall be at SCALI’s then prevailing prices, policies (several support levels, hereunder fees
referring thereto, may be offered by SCALI), terms and conditions for such services. SCALI
will, however, advise the LICENSEE of any such requests and obtain an official company order
from the LICENSEE before executing the said request.

Any out of pocket expenses directly relating to the services rendered, and not included in the
payment made under the scope of this CERTIFICATE, such as;

- travel and accommodation;

- per diem allowances as per Norwegian travel regulations;

- Internet connection fees; and

- cost of Internet access

shall be paid in addition to the total purchase price for this CERTIFICATE, and payable by the
LICENSEE within their normal accepted terms with SCALI upon presentation of an invoice,
which shall be at the value incurred and without any form of mark-up. The LICENSEE
undertakes to arrange and cover all accommodation requirements that arise out of, or in
conjunction with, this CERTIFICATE.

Title to INTELLECTUAL PROPERTY RIGHTS

SCALI, or any part identified as such by SCALI, is the sole proprietor and holds all powers,
hereunder but not limited to exploit, use, make any changes and amendments of all
INTELLECTUAL PROPERTY RIGHTS, related to the SCALI SOFTWARE, or its parts, and any new
version, hereunder but not limited to REVISION, BUG FIX or NEW RELEASES of the SCALI
SOFTWARE or its parts, as well as to all other INTELLECTUAL PROPERTY RIGHTS resulting
from the co-operation within the frame of this CERTIFICATE.

The LICENSEE hereby declares to respect title to INTELLECTUAL PROPERTY RIGHTS as set out
above also after the expiration, termination or transfer of this CERTIFICATE, independent of
the cause for such expiration, termination or transfer.

Transfer

SCALI may transfer this CERTIFICATE to any third party. The LICENSEE may transfer this
CERTIFICATE to a third party, upon the Transferee’s written acceptance in advance of being
Scali MPI Connect Release 4.4 - Users Guide v

fully obliged by the terms and conditions set out in this CERTIFICATE and SCALI’S prior
written approval of the transfer. SCALI’s approval shall anyway be deemed granted unless
contrary notice is sent from SCALI within 7 NORWEGIAN WORKING DAYS from receipt of
notification of the transfer in question from the LICENSEE.

Upon transfer, LICENSEE must deliver the SCALI SOFTWARE, including any copies and related
documentation, to the Transferee.

Compliance with Licenses

LICENSEE shall upon request from SCALI or its authorized representatives, within 30 days
following the receipt of such request, fully document and certify that the use of the SCALI
SOFTWARE is in accordance with this CERTIFICATE. If the LICENSEE fails to fully document
that this CERTIFICATE is suitable and sufficient for the LICENSEE’s use of the SCALI
SOFTWARE, SCALI will use any legal measure to protect its ownership and rights in its SCALI
SOFTWARE and to seek monetary damages from LICENSEE.

Warranty of Title and Substantial Performance

SCALI hereby represents and warrants that SCALI is the owner of the SCALI SOFTWARE.

SCALI hereby warrants that the SCALI SOFTWARE will perform substantially in accordance to
the DOCUMENTATION for the ninety (90) day period following the LICENSEE’s receipt of the
SCALI SOFTWARE (“Limited Warranty”). To make a warranty claim, the LICENSEE must return
the products to the location the SCALI SOFTWARE was purchased (“Back-to-Base”) within
such ninety- (90) day period. Any supplements or updates to the SCALI SOFTWARE, including
without limitation, any service packs or hot fixes provided to the LICENSEE after the
expiration of the ninety (90) day Limited Warranty period are not covered by any warranty or
condition, express, implied or statutory.

If an implied warranty or condition is created by the LICENSEE’s state/jurisdiction and federal
or state/provincial law prohibits disclaimer of it, the LICENSEE also has an implied warranty or
condition, but only as to defects discovered during the period of this Limited Warranty (ninety
days). As to any defects discovered after the ninety (90) day period, there is no warranty or
condition of any kind.

Disclaimer of Warranty

Except for the limited warranty under the Clause “Warranty of Title and Substantial
Performance” above, and to the maximum extent permitted by applicable law,
SCALI and SCALI REPRESENTATIVES provide SCALI SOFTWARE and SCALI
SOFTWARE MAINTENANCE AND SUPPORT SERVICES, if any, as is and with all faults,
and hereby disclaim all other warranties and conditions, either express, implied or
statutory, including, but not limited to, any (if any) implied warranties, duties or
conditions of merchantability, of fitness for a particular purpose, of accuracy or
completeness or responses, of results, of workmanlike effort, of lack of viruses and
of lack of negligence, all with regard to the software or other deliverables by SCALI.
Also, there is no warranty or condition of title, quiet enjoyment, quiet possession,
correspondence to description or non-infringement with regard to the SCALI
SOFTWARE or the provision of or failure to provide SCALI SOFTWARE MAINTENANCE
AND SUPPORT SERVICES, SCALI does not warrant any title, performance,
compatibility, co-operability or other functionality of the DISTRIBUTED SOFTWARE
or other deliverables by SCALI.

Without limiting the generality of the foregoing, SCALI specifically disclaims any
implied warranty, condition, or representation that the SCALI SOFTWARE;

- shall correspond with a particular description;

- are of merchantable quality;

- are fit for a particular purpose; or

- are durable for a reasonable period of time.
Scali MPI Connect Release 4.4 - Users Guide vi

Nothing in this CERTIFICATE shall be construed as;

- a warranty or representation by SCALI as to that anything made, used, sold or
otherwise disposed of under the license granted in the CERTIFICATE is or will be
free from infringement of patents, copyrights, TRADEMARKS, industrial design
or other INTELLECTUAL PROPERTY RIGHTS ; or

- an obligation by SCALI to bring or prosecute or defend actions or suits against
third parties for infringement of patents, copyrights, trade-marks, industrial
designs or other INTELLECTUAL PROPERTY or contractual rights.

Licensee’s Exclusive Remedy

In the event of any breach or threatened breach of this CERTIFICATE, hereunder the foregoing
representation and warranty, the LICENSEE’s sole remedy shall be to require SCALI and its
SCALI REPRESENTATIVE's to either;

- procure, at SCALI’s expense the right to use the SCALI SOFTWARE; or

- replace the SCALI SOFTWARE or any part thereof that is in breach and replace it with
software of comparable functionality that does not cause any breach; or

- refund to the LICENSEE the full amount of the total purchase price paid by the LICENSEE
for this CERTIFICATE upon the return of the SCALI SOFTWARE and all copies thereof to
SCALI, deducted with the amount equivalent to the license and other services rendered
until the matter causing the remedy in question occurred.

THE LICENSEE will receive the remedy elected by SCALI without charge, except that The
LICENSEE is responsible for any expenses the LICENSEE may incur (e.g. cost of shipping the
SCALI SOFTWARE to SCALI). Any commitment or obligation of SCALI to remedy LICENSEE in
accordance with this CERTIFICATE is void if failure of the SCALI SOFTWARE or other breach of
the CERTIFICATE has resulted from accident, abuse, misapplication, abnormal use or a virus.
Any replacement SCALI SOFTWARE will be warranted for the remainder of the original
warranty period or thirty (30) days, whichever is longer. Neither these remedies nor any
product maintenance and support services offered by SCALI are available without proof of
purchase directly from SCALI or through a SCALI REPRESENTATIVE. To exercise the
LICENSEE’s remedy, contact: SCALI as set out in ULR address WWW.scali.com or the SCALI
REPRESENTATIVE serving the LICENSEE’s district.

Limitation on Remedies and Liabilities

The LICENSEE’s exclusive and maximum remedy for any breach of the CERTIFICATE is as set
forth above. Except for any refund elected by SCALI, the LICENSEE is not entitled to any
damages, including but not limited to consequential damages, if the SCALI SOFTWARE does
not meet the DOCUMENTATION or SCALI otherwise does not meet the CERTIFICATE, and, to
the maximum extent allowed by applicable law, even if any remedy fails of its essential
purpose.

To the maximum event permitted by applicable law, in no event shall SCALI or SCALI
REPRESENTATIVES be liable for any special, incidental, indirect or consequential damages
whatsoever (including, but not limited to, damages for loss of profits or confidential or other
information, for business interruption, for personal injury, for loss of privacy, for failure to
meet any duty including of good faith or of reasonable care, for negligence, and for any other
pecuniary or other loss whatsoever) arising out of or in any way related to the use of or
inability to use the SCALI SOFTWARE, the provision of or failure to provide maintenance and
support services, or otherwise under or in connection with any provision of this CERTIFICATE,
even in the event of the fault, tort (including negligence), strict liability, breach of contract or
breach of warranty of SCALI or a SCALI REPRESENTATIVE, and even if SCALI or a SCALI
REPRESENTATIVE has been advised of the possibility of such damages.
Scali MPI Connect Release 4.4 - Users Guide vii

http://WWW.scali.com

No action, whether in contract or tort (including negligence), or otherwise arising out of or in
connection this CERTIFICATE may be brought more than six months after the cause of action
has occurred.

Termination.

SCALI has the right to terminate this CERTIFICATE with immediate effect if the LICENSEE
breaches or is in default of any obligation hereunder which default is incapable of cure or
which, being capable of cure, has not been cured within fifteen (15) days after receipt of
notice of such default (or such additional cure period as the non-defaulting party may
authorize).

SCALI may terminate this CERTIFICATE with immediate effect by written notice to the
LICENSEE and may regard the LICENSEE as in default of this CERTIFICATE, if the LICENSEE
substantially breaches the CERTIFICATE, becomes insolvent, makes a general assignment for
the benefit of its creditors, files a voluntary petition of bankruptcy, suffers or permits the
appointment of a receiver for its business or assets, or becomes subject to any proceeding
under the bankruptcy or insolvency law, whether domestic or foreign, or has wound up or
liquidated, voluntarily or otherwise. In the event that any of the above events occur, the
LICENSEE shall immediately notify SCALI of its occurrence.

In the event that either party is unable to perform any of its obligations under this
CERTIFICATE or to enjoy any of its benefits because of (or if loss of the Services is caused by)
natural disaster, action or decreed or governmental bodies or communication line failure not
the fault of the affected party (normally and hereinafter referred to as a “FORCE MAJEURE
EVENT”) the party who has been so affected shall immediately give notice to the other party
and shall do everything possible to resume performance. Upon receipt of such notice, all
obligations under this CERTIFICATE shall be immediately suspended. If the period of non-
performance exceeds twenty-one (21) days from the receipt of notice of the FORCE MAJEURE
EVENT, the party whose performance has not been so affected may, by giving written notice,
terminate this CERTIFICATE with immediate effect.

In the event that this CERTIFICATE is terminated for any reason the LICENSEE shall destroy
all data, materials, and other properties of SCALI then in its possession, provided as a
consequence of this CERTIFICATE, hereunder but not limited to SCALI SOFTWARE, copies of
the software, adaptations and merged portions in any form.

Proprietary Information

The LICENSEE acknowledges that all information concerning SCALI that is not generally
known to the public is “CONFIDENTIAL AND PROPRIETARY INFORMATION”. THE LICENSEE
agrees that it will not permit the duplication, use or disclosure of any such CONFIDENTIAL
AND PROPRIETARY INFORMATION to any person (other than its own employees who must
have such information for the performance of their obligations under this CERTIFICATE),
unless authorized in writing by SCALI.

These confidentiality obligations survive the expiration, termination or transfer of this
Certificate, independent of the cause for such expiration, termination or transfer.

Miscellaneous

The Headings and Clauses of this CERTIFICATE are intended for convenience only and shall in
no way affect their interpretation. Words importing natural persons shall include bodies
corporate and other legal personae and vice versa. Any particular gender shall mean the other
gender, and vice-versa. The singular shall include the plural and vice-versa.

All remedies available to either party for the breach of this CERTIFICATE are cumulative and
may be exercised concurrently or separately, and the exercise of any one remedy shall not be
deemed an election of such remedy to the exclusion of other remedies.

Any invalidity, in whole or in part, of any of the provisions of this CERTIFICATE shall not affect
the validity of any other of its provisions.

Any notice or other communication hereunder shall be in writing.
Scali MPI Connect Release 4.4 - Users Guide viii

No term or provision hereof shall be deemed waived and no breach excused unless such
waiver or consent shall be in writing and signed by the party claimed to have waived or
consented.

Governing Law

This CERTIFICATE shall be governed by and construed in accordance with the laws of Norway,
with Oslo City Court (Oslo tingrett) as proper legal venue.
Scali MPI Connect Release 4.4 - Users Guide ix

Scali MPI Connect Release 4.4 - Users Guide x

Table of contents
Chapter 1 Introduction .. 5
1.1 Scali MPI Connect product context ..5
1.2 Support...6

1.2.1 Scali mailing lists...6
1.2.2 SMC FAQ..6
1.2.3 SMC release documents..6
1.2.4 Problem reports...6
1.2.5 Platforms supported...6
1.2.6 Licensing ..7
1.2.7 Feedback..7

1.3 How to read this guide ..7
1.4 Acronyms and abbreviations ...7
1.5 Terms and conventions..9
1.6 Typographic conventions ...9

Chapter 2 Description of Scali MPI Connect 11
2.1 Scali MPI Connect components ... 11
2.2 SMC network devices .. 12

2.2.1 Network devices .. 13
2.2.2 Shared Memory Device... 13
2.2.3 Ethernet Devices ... 13
2.2.4 Myrinet .. 15
2.2.5 Infiniband... 15
2.2.6 SCI.. 16

2.3 Communication protocols on DAT-devices .. 16
2.3.1 Channel buffer .. 16
2.3.2 Inlining protocol .. 17
2.3.3 Eagerbuffering protocol .. 17
2.3.4 Transporter protocol .. 17
2.3.5 Zerocopy protocol.. 18

2.4 Support for other interconnects .. 18
2.5 MPI-2 Features... 18

Chapter 3 Using Scali MPI Connect .. 21
3.1 Setting up a Scali MPI Connect environment... 21

3.1.1 Scali MPI Connect environment variables .. 21
3.2 Compiling and linking .. 21

3.2.1 Running ... 21
3.2.2 Compiler support ... 22
3.2.3 Linker flags... 22
3.2.4 Notes on Compiling and linking on AMD64 and EM64T 22
3.2.5 Notes on Compiling and linking on Power series ... 23
Scali MPI Connect Release 4.4 Users Guide 1

3.2.6 Notes on compiling with MPI-2 features .. 23
3.3 Running Scali MPI Connect programs... 23

3.3.1 Naming conventions... 23
3.3.2 mpimon - monitor program... 24
3.3.3 mpirun - wrapper script.. 27

3.4 Suspending and resuming jobs ... 28
3.5 Running with dynamic interconnect failover capabilities 28
3.6 Running with tcp error detection - TFDR .. 28
3.7 Debugging and profiling... 29

3.7.1 Debugging with a sequential debugger ... 29
3.7.2 Built-in-tools for debugging... 30
3.7.3 Assistance for external profiling ... 30
3.7.4 Debugging with Etnus Totalview .. 30

3.8 Controlling communication resources .. 31
3.8.1 Communication resources on DAT-devices .. 31

3.9 Good programming practice with SMC ... 32
3.9.1 Matching MPI_Recv() with MPI_Probe() .. 32
3.9.2 Using MPI_Isend(), MPI_Irecv()... 32
3.9.3 Using MPI_Bsend() .. 32
3.9.4 Avoid starving MPI-processes - fairness .. 32
3.9.5 Unsafe MPI programs ... 33
3.9.6 Name space pollution ... 33

3.10 Error and warning messages .. 33
3.10.1 User interface errors and warnings ... 33
3.10.2 Fatal errors ... 33

3.11 Mpimon options .. 34
3.11.1 Giving numeric values to mpimon .. 35

Chapter 4 Profiling with Scali MPI Connect 37
4.1 Example .. 37
4.2 Tracing.. 38

4.2.1 Using Scali MPI Connect built-in trace... 38
4.2.2 Features... 40

4.3 Timing .. 41
4.3.1 Using Scali MPI Connect built-in timing... 41

4.4 Using the scanalyze .. 43
4.4.1 Analysing all2all .. 43

4.5 Using SMC's built-in CPU-usage functionality .. 45

Chapter 5 Tuning SMC to your application 47
5.1 Tuning communication resources .. 47

5.1.1 Automatic buffer management .. 47
5.2 How to optimize MPI performance... 48

5.2.1 Performance analysis ... 48
5.2.2 Using processor-power to poll ... 48
5.2.3 Reorder network traffic to avoid conflicts .. 48

5.3 Benchmarking .. 48
Scali MPI Connect Release 4.4 Users Guide 2

5.3.1 How to get expected performance.. 48
5.3.2 Memory consumption increase after warm-up.. 49

5.4 Collective operations ... 49
5.4.1 Finding the best algorithm .. 50

Appendix A Example MPI code... 51
A-1 Programs in the ScaMPItst package... 51
A-2 Image contrast enhancement ... 51

Appendix B Troubleshooting ... 54
B-1 When things do not work - troubleshooting .. 54

Appendix C Install Scali MPI Connect... 56
C-1 Per node installation of Scali MPI Connect .. 56
C-2 Install Scali MPI Connect for TCP/IP .. 57
C-3 Install Scali MPI Connect for Direct Ethernet... 57
C-4 Install Scali MPI Connect for Myrinet ... 57
C-5 Install Scali MPI Connect for Infiniband.. 58
C-6 Install Scali MPI Connect for SCI... 58
C-7 Install and configure SCI management software ... 58
C-8 License options .. 58
C-9 Scali kernel drivers ... 59
C-10 Uninstalling SMC... 59
C-11 Troubleshooting Network providers ... 59

Appendix D Bracket expansion and grouping................................. 62
D-1 Bracket expansion .. 62
D-2 Grouping... 62

Appendix E Related documentation.. 64
Scali MPI Connect Release 4.4 Users Guide 3

Scali MPI Connect Release 4.4 Users Guide 4

Chapter 1 Introduction

This manual describes Scali MPI Connect (SMC) in detail. SMC is sold as a separate stand-alone
product, with an SMC distribution, and integrated with Scali Manage in the SSP distribution.
Some integration issues and features of the MPI are also discussed in the Scali Manage Users
Guide, the user's manual for Scali Manage.

This manual is written for users who have a basic programming knowledge of C or Fortran, as
well as an understanding of MPI.

1.1 Scali MPI Connect product context

Figure 1-1: A cluster system

Figure 1-1: shows a simplified view of the underlying architecture of clusters using Scali MPI
Connect: A number of compute nodes are connected together in a Ethernet network through
which a front-end interfaces the cluster with the corporate network. A high performance
interconnect can be attached to service communication requirements of key applications.
The front-end imports services like file systems from the corporate network to allow users to
run applications and access their data.
Scali MPI Connect implements the MPI standard for a number of popular high performance
interconnects, like Gigiabit Ethenet, Infiniband, Myrinet and SCI.
While the high performance interconnect is optional, the networking infrastructure is
mandatory. Without it the nodes in the cluster will have no way of sharing resources. TCP/IP
functionality implemented by the Ethernet network enables the front-end to issue commands
to the nodes, provide them with data and application images, and collect results from the
processing the nodes perform.

The Scali Software Platform provides the necessary software components to combine a number
of commodity computers running Linux into a single computer entity, henceforth called a
cluster.

Scali is targeting its software at users involved in High Performance Computing, also known as
supercomputing, which typically includes CPU-intensive parallel applications. Scali aims to
produce software tools which assist its users in maximizing the power and ease of use of the
computing hardware purchased.

Scali MPI Connect Release 4.4 Users Guide 5

Section: 1.2 Support
CPU-intensive parallel applications are programmed using a programming library called MPI
(Message Passing Interface), the state-of-the-art library for high performance computing. Note
that the MPI library is NOT described within this manual; MPI is defined by a standards
committee, and the API, along with guides for its use is available free of charge on the Internet.
A link to the MPI Standard and other MPI resources can be found in chapter 7, "Related
documentation", and on Scali's web site, http://www.scali.com.

Scali MPI Connect (SMC) consists of Scali's implementation of the MPI programming library and
the necessary support programs to launch and run MPI applications. This manual often uses
the term ScaMPI to refer to the specifics of the MPI itself, and not the support applications.
Please note that in earlier releases of Scali Software Platform (SSP), the term ScaMPI was often
used to refer to the parts of SSP which are now called SMC.

SSP is the complete cluster management solution, and includes a GUI, full remote
management, power control, remote console and monitoring functionality, as well as a full
OS+Scali Manage install/reinstall utility. While we strive to make SSP as simple and painless
to use as possible, SMC as a stand-alone product is the bare minimum for MPI usage, and
requires that the user installs another management solution. Please note that SMC continues
to be included in SSP; at no time should they be installed together, and SSP and SMC
distributions should never be mixed within a single cluster.

1.2 Support

1.2.1 Scali mailing lists
Scali provides two mailing lists for support and information distribution. For instructions on how
to subscribe to a mailing list (i.e., scali-announce or scali-user), please see the Mailing Lists
section of http://www.scali.com/.

1.2.2 SMC FAQ
An updated list of Frequently Asked Questions is posted on http://www.scali.com. In
addition, for users who have installed SMC, the version of the FAQ that was current when SMC
was installed is available as a text file in /opt/scali/doc/ScaMPI/FAQ.

1.2.3 SMC release documents
When SMC has been installed, a number of smaller documents such as the FAQ, RELEASE
NOTES, README, SUPPORT, LICENSE_TERMS, INSTALL are available as text files in the /opt/
scali/doc/ScaMPI directory.

1.2.4 Problem reports
Problem reports should, whenever possible, include both a description of the problem, the
software version(s), the computer architecture, a code example, and a record of the sequence
of events causing the problem. In particular, any information that you can include about what
triggered the error will be helpful. The report should be sent by e-mail to support@scali.com.

1.2.5 Platforms supported
SMC is available for a number of platforms. For up-to-date information, please see the SMC
section of http://www.scali.com/. For additional information, please contact Scali at
sales@scali.com.
Scali MPI Connect Release 4.4 Users Guide 6

Section: 1.3 How to read this guide
1.2.6 Licensing
SMC is licensed using Scali license manager system. In order to run SMC a valid demo or a
permanent license must be obtained. Customers with valid software maintenance contracts
with Scali may request this directly from license@scali.com. All other requests, including
DEMO licenses, should be directed to sales@scali.com.

1.2.7 Feedback
Scali appreciates any suggestions users may have for improving both this Scali MPI Connect
User’s Guide and the software described herein. Please send your comments by e-mail to
support@scali.com.

Users of parallel tools software using SMC on a Scali System are also encouraged to provide
feedback to the National HPCC Software Exchange (NHSE) - Parallel Tools Library [10]. The
Parallel Tools Library provides information about parallel system software and tools, and also
provides for communication between software authors and users.

1.3 How to read this guide
This guide is written for skilled computer users and professionals. It is assumed that the reader
is familiar with the basic concepts and terminology of computer hardware and software since
none of these will be explained in any detail. Depending on your user profile, some chapters
are more relevant than others.

1.4 Acronyms and abbreviations

Abbreviation Meaning

AMD64 The 64 bit Instruction set arcitecture (ISA) that is the 64 bit extention to the Intel
x86 ISA. Also known as x86-64. The Opteron and Athlon64 from AMD are the
first implementations of this ISA.

DAPL Direct Access Provider Library DAT Instantiation for a given interconnect

DAT Direct Access Transport - Transport-independent, platform-independent Applica-
tion Programming Interfaces that exploit RDMA

DET Direct Ethernet Transport - Scali's DAT implementation for Ethernet-like devices,
including channel aggregation

EM64T The Intel implementation of the 64 bit extention to the x86 ISA. Also See
AMD64.

GM A software interface provided by Myricom for their Myrinet interconnect
hardware.

HCA Hardware Channel Adapter. Term used by Infiniband vendors referencing to the
hardware adapter.

HPC High Performance Computer

IA32 Instruction set Architecture 32 Intel x86 architecture

Table 1-1: Acronyms and abbreviations
Scali MPI Connect Release 4.4 Users Guide 7

Section: 1.4 Acronyms and abbreviations
IA64 Instruction set Architecture 64 Intel 64-bit architecture, Itanium, EPIC

Infiniband A high speed interconnect standard available from a number of vendors

MPI Message Passing Interface - De-facto standard for message passing

Myrinet™ An interconnect developed by Myricom. Myrinet is the product name for the
hardware. (See GM).

NIC Network Interface Card

OEM Original Equipment Manufacturer

Power A generic term that cover the PowerPC and POWER processor families. These
processors are both 32 and 64 bit capable. The common case is to have a 64 bit
OS that support both 32 and 64 bit executables. See also PPC64

PowerPC The IBM/Motorola PowerPC processor family. See PPC64

POWER The IBM POWER processor family. Scali support the 4 and 5 versions. See
PPC64

PPC64 Abbreviation for PowerPC 64, which is the common 64 bit instruction set archi-
tecture(ISA) name used in Linux for the PowerPC and POWER processor fami-
lies. These processors have a common core ISA that allow one single Linux
version to be made for all three processor families.

RDMA Remote DMA Read or Write Data in a remote memory at a given address

ScaMPI Scali's MPI - First generation MPI Connect product, replaced by SMC

SCI Scalable Coherent Interface

SMC Scali MPI Connect - Scali's second generation MPI

SMI Scali Manage Install - OS installation part of Scali Manage

SSP Scali Software Platform is the name of the bundling of all Scali software pack-
ages.

SSP 3.x.y First generation SSP - WulfKit, Universe, Universe XE, ClusterEdge

SSP 4.x.y Second generation SSP - Scali Manage + SMC (option)

VAR Value Added Reseller

x86-64 see AMD64 and EM64T

Abbreviation Meaning

Table 1-1: Acronyms and abbreviations
Scali MPI Connect Release 4.4 Users Guide 8

Section: 1.5 Terms and conventions
1.5 Terms and conventions
Unless explicitly specified otherwise, gcc (gnu c-compiler) and bash (gnu Bourne-Again-SHell)
are used in all examples.

1.6 Typographic conventions

Term Description.

Node A single computer in an interconnected system consisting of more than one com-
puter

Cluster A cluster is a set of interconnected nodes with the aim to act as one single unit

torus greek word for ring, used in Scali documents in the context of 2- and 3-dimen-
sional interconnect topologies

Scali system A cluster consisting of Scali components

Front end A computer outside the cluster nodes dedicated to run configuration, monitoring
and licensing software

MPI process Instance of application program with unique rank within MPI_COMM_WORLD

UNIX Refers to all UNIX and lookalike OSes supported by the SSP, i.e. Solaris and
Linux.

Windows Refers to Microsoft Windows 98/Me/NT/2000/XP

Table 1-2: Basic terms

Term Description.

Bold Program names, options and default values

Italics User input

mono spaced Computer related: Shell commands, examples, environment variables,
file locations (directories) and contents

GUI style font Refers to Menu, Button, check box or other items of a GUI

Command prompt in shell with super user privileges

% Command prompt in shell with normal user privileges

Table 1-3: Typographic conventions
Scali MPI Connect Release 4.4 Users Guide 9

Section: 1.6 Typographic conventions
Scali MPI Connect Release 4.4 Users Guide 10

Chapter 2 Description of Scali MPI Connect

This chapter gives the details of the operations of Scali MPI Connect (SMC). SMC consists of
libraries to be linked and loaded with user application program(s), and a set of executables
which control the start-up and execution of the user application program(s). The relationship
between these components and their interfaces are described in this chapter. It is necessary
to understand this chapter in order to control the execution of parallel processes and be able
to tune Scali MPI Connect for optimal application performance.

2.1 Scali MPI Connect components
Scali MPI Connect consists of a number of programs, daemons, libraries, include and
configuration files that together implements the MPI functionality needed by applications.
Starting applications rely on the following daemons and launchers:

• mpimon is a monitor program which is the user’s interface for running the application
program.

• mpisubmon is a submonitor program which controls the execution of application
programs. One submonitor program is started on each node per run.

• mpiboot is a bootstrap program used when running in manual-/debug-mode.
• mpid is a daemon program running on all nodes that are able to run SMC. mpid is used

for starting the mpisubmon programs (to avoid using Unix facilities like the remote shell
rsh). mpid is started automatically when a node boots, and must run at all times

Figure 2-1: The way from application startup to execution
Scali MPI Connect Release 4.4 Users Guide 11

Section: 2.2 SMC network devices
Figure 2-1: illustrates how applications started with mpimon have their communication system
established by a system of daemons on the nodes. This process uses TCP/IP communication
over the networking Ethernet, whereas optional high performance interconnects are used for
communication between processes.

Parameter control is performed by mpimon to check as many of the specified options and
parameters as possible. The user program names are checked for validity, and the nodes are
contacted (using sockets) to ensure they are responding and that mpid is running.
Via mpid mpimon establishes contact with the nodes and transfers basic information to enable
mpid to start the submonitor mpisubmon on each node. Each submonitor establishes a
connection to mpimon for exchange of control information between each mpisubmon and
mpimon to enable mpisubmon to start the specified userprograms (MPI-processes).
As mpisubmon starts all the MPI-processes to be executed they MPI_Init(). Once inside here
the user processes wait for all the mpisubmons inovolved to coordinate via mpimon. Once all
processes are ready mpimon will return a “start running” message to the processes. They will
then return from MPI_Init() and start executing the user code.

Stopping MPI application programs is requested by the user processes as they enter the
MPI_Finalize() call. The local mpisubmon will signal mpimon and wait for mpimon to return a
“all stopped message”. This comes when all processes are waiting in MPI_Finalize(). As the user
processes return from the MPI_Finalize() they release their resources and terminates. Then the
local mpisubmon terminates and eventuall mpimon terinates.

2.2 SMC network devices

Figure 2-2: Scali MPI Connect relies on DAT to interface to a number of interconnects

Beginning with SSP 4.0.0 and SMC 4.0.0 the Scali MPI offers generic support for interconnects.
This does not yet mean that every interconnect is supported out of the box, since SMC still
requires a driver for each interconnect. But from SMC's point of view, a driver is just a
Scali MPI Connect Release 4.4 Users Guide 12

Section: 2.2 SMC network devices
library, which in turn may (e.g. Myrinet or SCI) or may not require a kernel driver (e.g. TCP/IP).
These provider libraries provide a network device to SMC.

2.2.1 Network devices
There are two basic types of network devices in SMC, native and DAT. The native devices are
built-in and are neither replaceble nor upgradable without replacing the Scali MPI Connect
package. There are currently five built in devices, SMP, TCP, IB, GM and SCI; the Release Notes
included with the Scali MPI Connect package should have more details on this issue.

To find out what network device is used between two processes, set the environment variable
SCAMPI_NETWORKS_VERBOSE=2. With value 2 the MPI library will print out during startup a
table over every process and what device it's using to every other process.

2.2.1.1 Direct Access Transport (DAT)
The other type of devices use the DAT uDAPL API in order to have an open API for generic third
party vendors. uDAPL is an abbrevation for User DAT Provider library. This is a shared library
that SMC loads at runtime through the static DAT registry. These libraries are normally listed
in /etc/dat.conf. For clusters using ‘exotic’ interconnects whose vendor provides a uDAPL
shared object, these can be added to this file (if this isn’t done automatically by the vendor).
The device name is given by the uDAPL, and the interconnect vendor must provide it.
Please note that Scali has a certification program, and may not provide support for unknown
third party vendors.

The DAT header files and registry library conforming to the uDAPL v1.1 specification, is
provided by the dat-registry package.

For more information on DAT, please refer to http://www.datcollaborative.org.

2.2.2 Shared Memory Device
The SMP device is a shared memory device that is used exclusively for intra-node
communication and use SYS V IPC shared memory. Mulit CPU nodes are frequent in clusters,
and SMP provide optimal communication between the CPUs. In cases where only one processor
per node is used, SMP is not used.

2.2.3 Ethernet Devices
An Ethernet for networking is a basic requirement fpr a cluster. For some uses this also has
enough performance for carrying application communication. To serve this Scali MPI Connect
has a TCP device. In addition there are Direct Ethernet Transport (DET) devices which
implement a protocol devised by Scali for aggregating multiple TCP-type interconnects.

2.2.3.1 TCP
The TCP device is really a generic device that works over any TCP/IP network, even WANs. This
network device requires only that the node names given to mpimon map correctly to the nodes
IP address. TCP/IP connectivity is required for SMC operation, and for this reason the TCP
device is always perational.

Note: Users should always append the TCP device at the end of a devicelist as the device of
last resort. This way communication will fall back to the management ethernet that anyway has
to be present for the cluster to work.
Scali MPI Connect Release 4.4 Users Guide 13

Section: 2.2 SMC network devices
2.2.3.2 DET
Scali has developed a device called Direct Ethernet Transport (DET) to improve Ethernet
performance. This device that bypasses the TCP/IP stack and uses raw Ethernet frames for
sending messages. These devices are bondable over multiple Ethernets.

The /opt/scali/sbin/detctl command provides a means of creating and deleting DET
devices. /opt/scali/bin/detstat can be used to obtain statistics on the devices.

2.2.3.3 Using detctl
detctl has the following syntax :

detctl -a [-q] [-c] <hca index> <device1> <device2> ...
 -d [-q] <hca index>
 -l [-q]

Examples:
• Adding new DET devices temporarily with the detctl utility:

root# detctl -a 0 eth0 # creates a det0 device using eth0 as transport device.
root# detctl -a 1 eth1 eth2 # creates a det1 device using eth1 and eth2 as
aggregated transport devices.

• Removing DET devices with detctl:
root# detctl -d 0 # removes DET device 0 (det0) from the current configuration.
root# detctl -d 1 # removes DET device 1 (det1) from the current configuration.

• Listing active DET devices
root# detctl -l # lists all DET devices currently configured.

Please note that aggregating devices usually requires a special switch configuration.
Both devices have the same Ethernet address (MAC), and so there must either be one VLAN
for the eth1's and another for the eth2’s, or all the eth1's must be on one Ethernet switch, and
all the eth2's on another switch.

Using detctl to add and remove devices is not permanent, as the contents of the /opt/scali/
kernel/scadet.conf configuration file takes presedence. The contents of this file has the
following format:

hca <hca index> <ethernet devices>

Permanent changes must be done by editing opt/scali/kernel/scadet.conf , e.g., to add
permanently the example above add the following lines:

hca 0 eth0
hca 1 eth1 eth2

2.2.3.4 Using detstat
To gather transmission statistics (packets transmitted, received and lost) for a DET device use
detstat. It can also be used to reset the statistics for DET devices.
detstat has the following syntax :

detstat [-r] [-a] <hca name>
Examples:
• root# detstat det0 #listing statistics for the det0 device, if it exists.
• root# detstat -a #listsing statistics for all existing DET devices.
Scali MPI Connect Release 4.4 Users Guide 14

Section: 2.2 SMC network devices
• root# detstat -r det0 # reset statistics for the det0 device.
• root# detstat -r -a # resets statistics for all DET devices.

2.2.4 Myrinet

2.2.4.1 GM
This is a RDMA capable device that uses the Myricom GM driver and library. A GM release above
2.0 is required. This device is straight forward and requires no configuration other than the
presence of the libgm.so library in the library path (see /etc/ld.so.conf).

Note:
Myricom GM software is not provided by Scali. If you have purchased a Myrinet interconnect
you have the right to use the GM source, and a source tar ball is available from Myricom. It is
necessary to obtain the GM source since it must be compiled per kernel version. Scali provides
tools for generating binary RPMs to ease installing and management. These tools are provided
in the scagmbuilder package; see the Release Notes/Readme file for detailed instructions.

If you used Scali Manage to install your compute nodes, and supplied it with the GM source tar
ball, the installation is already complete.

2.2.5 Infiniband

2.2.5.1 IB
Infiniband is a relatively new interconnect that has been available since 2002, and became
affordable in 2003. On PCI-X based systems you can expect latencies around 5υS and
bandwidth up to 700-800Mb/s (please note that performance results may vary based on
processors, memory sub system, and the PCI bridge in the chipsets).

There are various Infiniband vendors that provide slightly different hardware and software
environments. Scali have established relationships with the following vendors: Mellanox,
Silverstorm, Cisco, and Voltaire.
See release notes on the exact versions of software stack that is supported. Scali provide a
utility known as ScaIBbuilder that does an automated install of some of these stacks. (See
IBbuilders release notes).

The different vendors’ InfiniBand switches vary in feature sets, but the most important
difference is whether they have a built in subnet manager or not. An InfiniBand network must
have a subnet manager (SM) and if the switches don't come with a builtin SM, one has to be
started on a node attached to the IB network. The SMs of choice for software SMs are OpenSM
or minism. If you have SM-less switches your vendor will provide one as part of their software
bundle.

SMC uses either the uDAPL (User DAT Provider Library) supplied by the IB vendor, or the low
level VAPI/IBA layer. DAT is an established standard and is guaranteed to work with SMC.
However better performance is usually achieved with the VAPI/IBT interfaces. However, VAPI
is an API that is in flux and SMC is not guaranteed to work with all (current nor future) versions
of VAPI.
Scali MPI Connect Release 4.4 Users Guide 15

Section: 2.3 Communication protocols on DAT-devices
2.2.6 SCI
This is a built-in device that uses the Scali SCI driver and library (ScaSCI). This driver is for the
Dolphin SCI network cards. Please see the ScaSCI Release Notes for specific requirements. This
device is straight forward and requires no configuration itself, but for multi-dimensional toruses
(2D and 3D) the Scali SCI Management system (ScaConf) needs to be running somewhere in
your system. Refer to Appendix C for installation and configuration of the Scali SCI
Management software.

2.3 Communication protocols on DAT-devices
In SMC, the communication protocol used to transfer data between a sender and a receiver
depends on the size of the message to transmit, as illustrated in Figure 2-3:.

Figure 2-3: Thresholds for different communication protocol

The default thresholds that control whether a message belongs to the inlining, eagerbuffering
or transporter protocols can be controlled from the application launch program (mpimon)
described in chapter 3.

Figure 2-4: illustrates the node resources associated with communication and mechanisms
implemented in Scali MPI Connect for handling messages of different sizes. The three
communication protocols from Figure 2-3: rely on buffers located in the main memory of the
nodes. This memory is allocated as shared, i.e., it is not private to a particular process in the
node. Each process has one set of receiving buffers for of the processes it communicates with.
As the figure shows all communication relies on the sending process depositing messages
directly into the communication buffers of the receiver. For Inline and Eagerbuffering the
management of the buffer resources does not require participation from the receiving process,
because of their designs as ring buffers.

2.3.1 Channel buffer
The Channel ringbuffer is divided into equally sized entries. The size varies differs for different
architectures and networks; see “Scali MPI Connect Release Notes” for details. An entry in the
ringbuffer, which is used to hold the information forming the message envelope, is reserved
each time a message is being sent, and is used by the inline protocol, the eagerbuffering
protocol, and the transporter protocol. In addition, one ore more entries are used by the inline
protocol for application data being transmitted.

Transporter protocol:
message size > eager_size

Eagerbuffering protocol:
channel_inline_threshold < message size <= eager_size

Inlining protocol
0 <= message size <= channel_inline_threshold

Increasing
message size
Scali MPI Connect Release 4.4 Users Guide 16

Section: 2.3 Communication protocols on DAT-devices
Figure 2-4: Resources and communication concepts in Scali MPI Connect

2.3.2 Inlining protocol
With the in-lining protocol the application’s data is included in the message header. The in-
lining protocol utilizes one or more channel ringbuffer entries.

2.3.3 Eagerbuffering protocol
The eagerbuffering protocol is used when medium-sized messages are to be transferred.
The protocol uses a scheme where the buffer resources which are allocated by the sender are
released by the receiver, without any explicit communication between the two communicating
partners.

The eagerbuffering protocol uses one channel ringbuffer entry for the message header, and one
eagerbuffer for the application data being sent.

2.3.4 Transporter protocol
The transporter protocol is used when large messages are to be transferred. The transporter
protocol utilizes one channel ringbuffer entry for the message header, and transporter buffers
for the application data being sent. The protocol takes care of fragmentation and reassembly
of large messages, such as those whose size is larger than the size of the transporter
ringbuffer-entry (transporter_size).
Scali MPI Connect Release 4.4 Users Guide 17

Section: 2.4 Support for other interconnects
2.3.5 Zerocopy protocol
The zerocopy protocol is special case of the transporter protocol t. It includes the same steps
as a transporter except that data is written directly into the receivers buffer instead of being
buffered in the transporter-ringbuffer.

The zerocopy protocol is selected if the underlying hardware can support it. To disable it, set
the zerocopy_count or the zerocopy_size parameters to 0

2.4 Support for other interconnects
A uDAPL 1.1 module must be developed to interface other interconnects to Scali MPI Connect.
The listing below identifies the particular functions that must be implemented in order for SMC
to be able to use a uDAPL-implementation:

dat_cr_accept
dat_cr_query
dat_cr_reject
dat_ep_connect
dat_ep_create
dat_ep_disconnect
dat_ep_free
dat_ep_post_rdma_write
dat_evd_create
dat_evd_dequeue
dat_evd_free
dat_evd_wait
dat_ia_close
dat_ia_open
dat_ia_query
dat_lmr_create
dat_lmr_free
dat_psp_create
dat_psp_free
dat_pz_create
dat_pz_free
dat_set_consumer_context

2.5 MPI-2 Features

At the time being SMC does not implement the full MPI-2 functionality. At the same time some
users are asking for parts of the MPI-2 functionality, in particular the MPI-I/O functions. To fill
the users needs Scali are now using the Open Source ROMIO software to offer this functionality.
Scali MPI Connect Release 4.4 Users Guide 18

Section: 2.5 MPI-2 Features
ROMIO is a high-performance, portable implementation of MPI-IO, the I/O chapter in MPI-2
and has become a de-facto standard for MPI-I/O (in terms of interface and semantics). ROMIO
is a library parallel to the MPI library for the application, but depend on an MPI to set up the
environment and do communication. See chapter 3.2.6 for more information on how to compile
and link applications with MPI-IO needs.
Scali MPI Connect Release 4.4 Users Guide 19

Section: 2.5 MPI-2 Features
Scali MPI Connect Release 4.4 Users Guide 20

Chapter 3 Using Scali MPI Connect

This chapter describes how to setup, compile, link and run a program using Scali MPI Connect,
and briefly discusses some useful tools for debugging and profiling.

Please note that the "Scali MPI Connect Release Notes" are also available as a file in the
/opt/scali/doc/ScaMPI directory.

3.1 Setting up a Scali MPI Connect environment

3.1.1 Scali MPI Connect environment variables
The use of Scali MPI Connect requires that some environment variables be defined. These are
usually set in the standard startup scripts (e.g..bashrc when using bash), but can also be
defined manually.

MPI_HOME Installation directory. For a standard installation, the variable should be set
as:export MPI_HOME=/opt/scali

LD_LIBRARY_PATH Path to dynamic link libraries. Must be set to include the path to the
directory where these libraries can be found:
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:$MPI_HOME/lib

PATH Path variable. Must be updated to include the path to the directory where
the MPI binaries can be found:
export PATH=${PATH}:$MPI_HOME/bin

Normally, the Scali MPI Connect library’s header files mpi.h and mpif.h reside in the
$MPI_HOME/include directory.

3.2 Compiling and linking
MPI is an "Application Programming Interface" (API) and not an "Application Binary Interface"
(ABI). This means that in general applications should be recompiled and linked when used with
Scali MPI Connect. Since the MPICH-implementation is widely used Scali has made SMC ABI-
compatible, depending on the versions of MPICH and SMC used. Please check the "Scali MPI
Connect Release Notes" for details. For applications that are dynamically linked with MPICH it
should only be necessary to change the library-path (LD_LIBRARY_PATH). For applications with
the necessary object files, only a relinking is needed.

3.2.1 Running
Start the hello-world program on the three nodes called nodeA, nodeB and nodeC.
% mpimon hello-world -- nodeA 1 nodeB 1 nodeC 1

The hello-world program should produce the following output:

Hello-world, I'm rank 0; Size is 3
Hello-world, I'm rank 1; Size is 3
Hello-world, I'm rank 2; Size is 3
Scali MPI Connect Release 4.4 Users Guide 21

Section: 3.2 Compiling and linking
3.2.2 Compiler support
Scali MPI Connect is a C library built using the GNU compiler. Applications can however be
compiled with most compilers, as long as they are linked with the GNU runtime library.
The details of the process of linking with the Scali MPI Connect libraries vary depending on
which compiler is used. Check the "Scali MPI Connect Release Notes" for information on
supported compilers and how linking is done.

When compiling the following string must be included as compiler flags (bash syntax):
“-I$MPI_HOME/include”

The pattern for compiling is:

user% gcc -c -I$MPI_HOME/include hello-world.c
user% g77 -c -I$MPI_HOME/include hello-world.f

3.2.3 Linker flags
The following string outlines the setup for the necessary linker flags (bash syntax):

“-L/opt/scali/lib -lmpi”

The following versions of MPI libraries are available:
• libmpi - Standard library containing the C API.
• libfmpi - Library containing the Fortran API wrappers.

The pattern for linking is:
user% gcc hello-world.o -L$MPI_HOME/lib -lmpi -o hello-world
user% g77 hello-world.o -L$MPI_HOME/lib -lfmpi -lmpi -o hello-world

3.2.4 Notes on Compiling and linking on AMD64 and EM64T
AMDs AMD64 and Intels EM64T (also known as x86-64) are instruction set architectures (ISA)
that add 64 bit extensions to Intel x86 (ia32) ISA.

These processors are capable of running 32 bit programs at full speed while running a 64 bit
OS. For this reason Scali supports running both 32 bit and 64 bit MPI programs while running
64 bit OS.

Having both 32 bit and 64 bit libraries installed at the same time require some tweaks to the
compiler and linker flags.

All compilers for x86_64 generate 64 bit code by default, but have flags for 32 bit code
generation. For gcc/g77 these are -m32 and -m64 for making 32 and 64 bit code respectively.
For Portland Group Compilers these are -tp k8-32 and -tp k8-64. For other compilers please
check the compiler documentation.

It is not possible to link 32 and 64 bit object code into one executable, (no cross dynamic linking
either) so there must be double set of libraries. It is common convention on x86_64 systems
that all 32 bit libraries are placed in lib directories (for compatibility with x86 OS’es) and all
64 bit libraries in lib64. This means that when linking a 64 bit application with Scali MPI, you
must use the -L$MPI_HOME/lib64 argument instead of the normal -L$MPI_HOME/lib.
Scali MPI Connect Release 4.4 Users Guide 22

Section: 3.3 Running Scali MPI Connect programs
3.2.5 Notes on Compiling and linking on Power series
The Power series processors (PowerPC, POWER4 and POWER5) are both 32 and 64 bit capable.
There are only 64 bit versions of Linux provided by SUSE and RedHat, and only a 64 bit OS is
supported by Scali. However the Power families are capable of running 32 bit programs at full
speed while running a 64 bit OS. For this reason Scali supports running both 32 bit and 64 bit
MPI programs.

Note that gcc default compiles 32 bit on Power, use the the gcc/g77 flags -m32 and -m64 to
explicitly select code generation.

The PowerPC and POWER4/5 have a common core instruction set but different extensions, be
sure to read the specifics in the documentation on the compilers code generations flags for
optimal performance.

It is not possible to link 32 and 64 bit object code into one executable, (no cross dynamic linking
either) so there must be double set of libraries. It is common convention on ppc64 systems
that all 32 bit libraries are placed in lib directories and all 64 bit libraries in lib64. This means
that when linking a 64 bit application with Scali MPI, you must use the -L$MPI_HOME/lib64
argument instead of the normal -L$MPI_HOME/lib.

3.2.6 Notes on compiling with MPI-2 features
To compile and link with the Scali MPI-IO features you need to do the following depending on
whether it is a C or a Fortran program:

For C programs mpio.h must be included in your program and you must link with the libmpio
shared library in addition to the Scali MPI 1.2 C shared library (libmpi):

<CC> <program>.o -I/opt/scali/inlude -L/opt/scali/lib -lmpio -lmpi -o <program>

For Fortran programs you will need to include mpiof.h in your program and link with the
libmpio shared library in addition to the Scali MPI 1.2 C and Fortran shared libraries:

<F77> <program>.o -I/opt/scali/include -L/opt/scali/lib -lmpio -lmpif -lmpi -o
<program>

3.3 Running Scali MPI Connect programs
Note that executables issuing SMC calls cannot be started directly from a shell prompt. SMC
programs can either be started using the MPI monitor program mpimon, the wrapper script
mpirun, or from the Scali Manage GUI [See Scali Manage User Guide for details].

3.3.1 Naming conventions
When an application program is started, Scali MPI Connect is modifying the program name
argv[0] to help in identifying the instances. The following convention is used for the
executable, reported on the command line using the Unix utility ps:

<userprogram>-<rank number>(mpi:<pid>@<nodename>)

where:
<userprogram> is the name of the application program.
<rank number> is the application’s MPI-process rank number.
Scali MPI Connect Release 4.4 Users Guide 23

Section: 3.3 Running Scali MPI Connect programs
<pid> is the Unix process identifier of the monitor program mpimon.
<nodename> is the name of the node where mpimon is running.

Note: SMC requires a homogenous file system image, i.e. a file system providing the same
path and program names on all nodes of the cluster on which SMC is installed.

3.3.2 mpimon - monitor program
The control and start-up of an Scali MPI Connect application are monitored by mpimon. A
complete listing of mpimon options can be found in “Mpimon options” on page 34.

3.3.2.1 Basic usage
Normally mpimon is invoked as:

mpimon <userprogram> <program options> -- <node name> [<count>][<nodename>
[<count>]]...

where
<userprogram> is name of application
<program options> are options to the application
-- is the separator ending the application options
<nodename>[<count>] is name of node and the number of MPI-processes to run on

that node.
The option can occur several times in the list. Mpi-processes will
be given ranks sequentially according to the list of node-number
pairs.
The <count> is optional and defaults to 1

Examples:
Starting the program “/opt/scali/examples/bin/hello” on a node called “hugin”:
mpimon /opt/scali/examples/bin/hello -- hugin

Starting the same program with two processes on the same node:
mpimon /opt/scali/examples/bin/hello -- hugin 2

Starting the same program on two different nodes, “hugin” and “munin”:
mpimon /opt/scali/examples/bin/hello -- hugin munin

Starting the same program on two different nodes with 4 processes on each:
mpimon /opt/scali/examples/bin/hello -- hugin 4 munin 4

Bracket expansion and grouping (if configured) can also be used :
mpimon /opt/scali/examples/bin/hello -- node[1-16] 2 node[17-32] 1

for more information regarding bracket expansion and grouping, refer to Appendix D.

3.3.2.2 Identity of parallel processes
The identification of nodes and the number of processes to run on each particular node
translates directly into the rank of the MPI processes. For example, specifying n1 2 n2 2 will
place process 0 and 1 on node n1 and process 2 and 3 on node n2. On the other hand,
specifying n1 1 n2 1 n1 1 n2 1 will place process 0 and 2 on node n1 while process 1 and 3
are placed on node n2.
Scali MPI Connect Release 4.4 Users Guide 24

Section: 3.3 Running Scali MPI Connect programs
This control over placement of processes can be very valuable when application performance
depends on all the nodes having the same amount of work to do.

3.3.2.3 Controlling options to mpimon
The program mpimon has a multitude of options which can be used for optimising SMC
performance. Normally it should not be necessary to use any of these options. However, unsafe
MPI programs might need buffer adjustments to solve deadlocks. Running multiple applications
in one run may also be facilitated with some of the "advanced options".

Mpimon also has an advanced tracing option to enable pinpointing of communication
bottlenecks.

The complete syntax for the program is as follows:
mpimon [<mpimon option>]... <program & node-spec> [-- <program & node-
spec>]...

where
<mpimon options> are options to mpimon (see "See Mpimon options" and the SMC

Release Notes for a complete list of options),
<program & node-spec>is an application and node specification consisting of

<program spec> -- <node spec> [<node spec>]...,
<program spec> is an application and application-options specification

(<userprogram>[<programoptions>])
-- is the separator that signals end of user program options.
<node spec> specifies which node and how many instances (<nodename>

[<count>]).
If <count> is omitted, one MPI-process is started on each node
specified.

Examples:
Starting the program “/opt/scali/examples/bin/hello” on a node called “hugin” and the program
“/opt/scali/examples/bandwidth” with 2 processes on “munin”:
mpimon /opt/scali/examples/bin/hello -- hugin --

/opt/scali/examples/bin/bandwidth -- munin 2

Changing one of the mpimon-parameters:
mpimon -channel_entry_count 32 /opt/scali/examples/bin/hello -- hugin 2

3.3.2.4 Standard input
The -stdin option specifies which MPI-process rank should receive the input. You can in fact
send stdin to all the MPI-processes with the all argument, but this requires that all MPI-
processes read the exact same amount of input. The most common way of doing it is to send
all data on stdin to rank 0:
mpimon -stdin 0 myprogram -- node1 node2... < input_file

Note that default for -stdin is none.

3.3.2.5 Standard output
Scali MPI Connect Release 4.4 Users Guide 25

Section: 3.3 Running Scali MPI Connect programs
By default the processes’ output to stdout all appear in the stdout of mpimon, where they are
merged in some random order. It is however possible to keep the outputs apart by directing
them to files that have unique names for each process. This is accomplished by giving mpimon
the option -separate_output <seletion>, e.g., -separate_output all to have each process
deposit its stdout in a file. The files are named according to the folowing template:
ScaMPIoutput_<host>_<pid>_<rank>, where <host> and <pid> identify the particular
invokation of mpimon on the host, and <rank> identifies the process.

3.3.2.6 How to provide options to mpimon
There are three different ways to provide options to mpimon. The most common way is to
specify options on the command line invoking mpimon. Another way is to define environment
variables, and the third way is to define options in configuration file(s).

• Command line options: Options for mpimon must be placed after mpimon, but before
the program name

• Environment-variable options: Setting an mpimon-option with environment variables
requires that variables are defined as SCAMPI_<uppercase-option> where SCAMPI_ is a
fixed prefix followed by the option converted to uppercase. For example
SCAMPI_CHANNEL_SIZE=64Kmeans setting -channel_size to 64K

• Configuration-files options: mpimon reads up to three different configuration files
when starting. First the systemwide configuration (/opt/scali/etc/ScaMPI.conf) is
read. If the user has a file on his/her home-directory, that file(~/ScaMPI.conf) is then
read. Finally if there is a configuration file in the current directory, that file(./
ScaMPI.conf) is then read. The files should contain one option per line, given as for
command line options.

The options described either on the command line, as environment variables or in configuration
files are prioritized the following way (ranked from lowest to highest):

1. System-wide configuration-file(/opt/scali/etc/ScaMPI.conf)
2. Configuration-file on home-directory(~/ScaMPI.conf)
3. Configuration-file on current directory(./ScaMPI.conf)
4. Environment-variables
5. Command line-options

3.3.2.7 Network options
Scali MPI Connect is designed to handle several networks in one run. There are two types of
networks, built-in standard-devices and DAT-devices. The devices are selected by giving the
option “-networks <net-list>” to mpimon. <net-list> is a comma-separated list of device
names. Scali MPI Connect uses the list when setting up connections to other MPI-processes. It
starts off with the first device in the list and sets up all possible connections with that device.
If this fails the next on list is tried and so on until all connections are live or all adapters in <net-
list>have beentried. A list of possible devices can be obtained with the scanet command.

For systems installed with the Scali Manage installer, a list of preferred devices is provided in
ScaMPI.conf. An explicit list of devices may be set either in a private ScaMPI.conf, through
the SCAMPI_NETWORKS environment variable, or by the -networks parameter to mpimon. The
values should be provided in a comma-separated list of device names.

Example: mpimon -networks smp,gm0,tcp ...
Scali MPI Connect Release 4.4 Users Guide 26

Section: 3.3 Running Scali MPI Connect programs
For each MPI process SMC will try to establish contact with each other MPI process, in the order
listed. This enables mixed interconnect systems, and provides a means for working around
failed hardware.

In a system interconnect where the primary interconnect is Myrinet, if one node has a faulty
card, using the device list in the example, all communication to and from the faulty node will
happen over TCP/IP while the remaining nodes will use Myrinet. This offers the unique ability
to continue running applications over the full set of nodes even when there are interconnect
faults.

3.3.3 mpirun - wrapper script
mpirun is a wrapper script for mpimon, providing legacy MPICH style startup for SMC
applications. Instead of the mpimon syntax, where a list of pairs of node name and number
of MPI-processes is used as startup specification, mpirun uses only the total number of MPI-
processes.

Using scaconftool, mpirun attempts to generate a list of operational nodes. Note that only
operational nodes are selected. If no operational node is available, an error message is printed
and mpirun terminates. If scaconftool is not available, mpirun attempts to use the file /opt/
scali/etc/ScaConf.nodeidmap for selecting the list of operational notes. In the generated
list of nodes, mpirun evenly divides the MPI-processes among the nodes.

3.3.3.1 mpirun usage
mpirun <mpirunoptions> <mpimonoptions> <userprogram> [<programoptions>]

where
<mpirunoptions> mpirun options
<mpimonoptions> options passed on to mpimon
<userprogram> name of application program to run.

and
<programoptions> program options passed on to the application program.

The following mpirunoptions exist:
-cpu <time> Limit runtime to <time> minutes.
-np <count> Total number of MPI-processes to be started, default 2.
-npn <count> Maximum number of MPI-processes pr. node, default np <count>/

nodes.
-pbs Submit job to PBS queue system
-pbsparams <“params”>Specify PBS scasub parameters
-p4pg <pgfile> Use mpich compatible pgfile for program, MPI-process and node

specification. pgfile entry: <nodename> <#procs> <progname>
The program name given at command line is additionally started
with one MPI-process at first node

-v Verbose.
-gdb Debug all MPI-processes using the GNU debugger gdb.
-maxtime <time> Limit runtime to <time> minutes.
-machinefile <filename>Take the list of possible nodes from <filename>
-noconftool Do not use scaconftool for generating nodelist.
-noarchfile Ignore the /opt/scali/etc/ScaConf.nodearchmap file (which

describes each node).
-H <frontend> Specify nodename of front-end running the scaconf server.
-mstdin <proc> Distribute stdin to MPI-process(es).
Scali MPI Connect Release 4.4 Users Guide 27

Section: 3.4 Suspending and resuming jobs
<proc>: all (default), none, or MPI-process number(s).
-part <part> Use nodes from partition <part>
-q Keep quiet, no mpimon printout.
-t test mode, no MPI program is started
<params> Parameters not recognized are passed on to mpimon.

3.4 Suspending and resuming jobs
From time to time it is convenient to be able to suspend regular jobs running on a cluster in
order to allow a critical, maybe real-time job to be use the cluster. When using Scali MPI
Connect to run parallel applications suspending jobs to yield the cluster to other jobs can be
achieved by sending a SIGUSR1 or SIGTSTP signal to the mpimon representing the job.

Assuming that the process identifier for this mpimon is <PID>, the user interface for this is:
user% kill -USR1 <PID>
or
user% kill -TSTP <PID>

Similarly the suspended job can be resumed by sending it a SIGUSR2 or SIGCONT signal, i.e.,
user% kill -USR2 <PID>
or
user% kill -CONT <PID>

3.5 Running with dynamic interconnect failover capabilities
If a runtime failure on a high speed interconnect occurs, ScaMPI has the ability to do an
interconnect failover and continue running on a secondary network device. This high availability
feature is part of the Scali MPI Connect/HA product, which requires a separately priced license.
Once this license is installed, you may enable the failover functionality by setting the
environment variable SCAMPI_FAILOVER_MODE to 1, or by using the mpimon command line
argument -failover_mode.

Currently the Scali MPI Infiniband (ib0), Myrinet (gm0) and all DAT-based drivers are
supported. SCI is not supported. Note also that the combination of failover and tfdr is not
supported in this version of Scali MPI Connect.

Some failures will not result in a explicit error value propagating to Scali MPI. Scali MPI handles
this by treating a lack of progress within a specified time as a failure. You may alter this time
by setting the environment variable SCAMPI_FAILOVER_TIMEOUT to the desired number of
seconds.

Failures will be logged using the standard syslog mechanism.

3.6 Running with tcp error detection - TFDR
Errors may occur when transferring data from the network card to memory. When offloading
the tcp stack in hardware, this may result in actual data errors. Using the wrapper script
tfdrmpimon (Transmission Failure Detection and Retransmit), Scali MPI will handle such
errors by adding an extra checksum and retransmit the data if an error should occur. This high
availability feature is part of the Scali MPI Connect/HA product which requires a separate
license.
Scali MPI Connect Release 4.4 Users Guide 28

Section: 3.7 Debugging and profiling
As this feature is limited to tcp communication only, it will not have any effect when using
native RDMA drivers such as Infiniband or Myrinet. Note that the combination of tfdr and
failover mode is not supported in this version of Scali MPI Connect.

Data errors will be logged using the standard syslog mechanism.

3.7 Debugging and profiling
The complexity of debugging programs can grow dramatically when going from serial to parallel
programs. So to assist in debugging MPI programs Scali MPI Connect has a nnumber of
features built-in, like starting processes directly in a debugger and tracing proceses’ traffic
patterns.

3.7.1 Debugging with a sequential debugger
SMC applications can be debugged using a sequential debugger. By default, the GNU debugger
gdb is invoked by mpimon. If another debugger is to be used, specify the debugger using the
mpimon option -debugger <debugger>.

To set debug-mode for one or more MPI-processes, specify the MPI-process(es) to debug using
the mpimon option -debug <select>. In addition, note that the mpimon option -display
<display> should be used to set the display for the xterm terminal emulator. An xterm
terminal emulator, and one debugger, is started for each of the MPI-processes being debugged.

For example, to debug an application using the default gdb debugger do:

user% mpimon -debug all <application +parameters> -- <node specification>

Initially, for both MPI-process 0 and MPI-process 1, an xterm window is opened. Next, in the
upper left hand corner of each xterm window, a message containing the application program’s
run parameter(s) is displayed. Typically, the first line reads Run parameters: run
<programoptions>. The information following the colon, i.e. run <programoptions>, is
needed by both the debugger and the SMC application being debugged. Finally, one debugger
is started for each session. In each debugger's xterm window, first input the appropriate
debugging action before the MPI-process is started. Then, when ready to run the MPI-process,
paste <programoptions> into the debugger to start running.

Figure 3-1: /opt/scali/bin/mpirun -debug all ./kollektive-8 ./ultrasound_fetus-256x256-8.pgm
Scali MPI Connect Release 4.4 Users Guide 29

Section: 3.7 Debugging and profiling
3.7.2 Built-in-tools for debugging
Built-in tools for debugging in Scali MPI Connect covers discovery of the MPI calls used through
tracing and timing, and an attachment point to processes that fault with segmentation
violation. The tracing and timing is covered in Chapter 4.

3.7.2.1 Using built-in segment protect violation handler
When running applications that terminate with a SIGSEGV-signal it is often useful to be able
to freeze the situation instead of exiting, the default behavior. The built-in SIGSEGV-handler
can be made to do this by defining the environment-variable
SCAMPI_INSTALL_SIGSEGV_HANDLER.

Legal options are:
6. The handler dumps all registers and starts looping. Attaching with a debugger will then

make it possible to examine the situation which resulted in the segment protect violation.

7. The handler dumps all registers but all processes will exit afterwards.

All other values will disable the installation of the handler.

To attach to process <pid> on a machine with the GNU debugger (gdb) do;

user% gdb /proc/<pid>/exe <pid>

In general, this will allow gdb to inspect the stack trace and identify the functions active when
the sigsegv occurred, and disssasemble the functions. If the application is compiled with
debug info (-g) and the source code is available, then source level debugging can be carried
out.

3.7.3 Assistance for external profiling
Profiling parallel applications is complicated by having multiple processes at the same time. But
Scali MPI Connect comes to assistance; through the SCAMPI_PROFILE_APPLICATION
environment variable together with the -separate_output option (SCAMPI_SEPARATE_OUTPUT)
the output from the application runs is directed at one file per process for easier use.

The environment variables SCAMPI_PROFILE_APPLICATION_START and
SCAMPI_PROFILE_APPLICATION_END are also available for steering the range of memory
addresses applicable to profiling.

3.7.4 Debugging with Etnus Totalview
SMC applications can be debugged using the Etnus Totalview, see http://www.etnus.com
for more information about this product.

To start the Etnus Totalview debugger with a Scali MPI application, use the tvmpimon wrapper
script. This wrapper script accepts the regular options that mpimon accepts, and sets up the
environment for Totalview. The totalview binary must be in the search path when launching
tvmpimon. If the mpirun script is the preferred way of starting jobs, it accepts the “standard”
-tv option, however the same rules applies with regards to the search path.
Scali MPI Connect Release 4.4 Users Guide 30

Section: 3.8 Controlling communication resources
3.8 Controlling communication resources
Even though it is normally not necessary to set buffer parameters when running applications,
it can be done, e.g., for performance reasons. Scali MPI Connect automatically adjusts
communication resources based on the number of processes in each node and based on
pool_size and chunk_size.

The built-in devices SMP and TCP/IP use a simplified protocol based on serial transfers. This
can be visualized as data being written into one end of a pipe and read from the other end.
Messages arriving out-of-order are buffered by the reader. The names of these standard
devices are SMP for intra-node-communication and TCP for node-to-node-communication.

The size of the buffer inside the pipe can be adjusted by setting the following environment
variables:

• SCAFUN_TCP_TXBUFSZ - Sets the size of the transmit buffer.
• SCAFUN_TCP_RXBUFSZ - Sets the size of the receive buffer.
• SCAFUN_SMP_BUFSZ - Sets the size of the buffer for intranode-communication.

The ringbuffers are divided into equally sized entries. The size varies differs for different
architectures and networks; see “Scali MPI Connect Release Notes” for details. An entry in the
ringbuffer, which is used to hold the information forming the message envelope, is reserved
each time a message is being sent, and is used by the inline protocol, the eagerbuffering
protocol, and the transporter protocol. In addition, one ore more entries are used by the inline
protocol for application data being transmitted.

mpimon has the following interface for the eagerbuffer and channel thresholds:

• Channel threshold definitions
-channel_inline_threshold <size> to set threshold for inlining

• Eager threshold definitions
-eager_threshold <size> to set threshold for eager buffering

3.8.1 Communication resources on DAT-devices
All resources (buffers) used by SMC reside in shared memory in the nodes. This way multiple
processes (typically when a node has multiple CPUs) can share the communication resources.

SMC operates on a buffer pool. The pool is divided into equally sized parts called chunks. SMC
uses one chunk per connection to other processes. The mpimon option “pool_ size” limits the
total size of the pool and the “chunk_size” limits the block of memory that can be allocated for
a single connection.

To set the pool size and the chunk size, specify:

-pool_size <size> to set the buffer pool size
-chunk_size <size> to set the chunk size
Scali MPI Connect Release 4.4 Users Guide 31

Section: 3.9 Good programming practice with SMC
3.9 Good programming practice with SMC

3.9.1 Matching MPI_Recv() with MPI_Probe()
During development and testing of SMC, Scali has come across several application programs
with the following code sequence:

while (...) {
MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, comm, sts);
if (sts->MPI_TAG == SOME_VALUE) {

MPI_Recv(buf, cnt, dtype, MPI_ANY_SOURCE, MPI_ANY_TAG, comm, sts);
doStuff();

}
doOtherStuff();

}

For MPI implementations that have one, and only one, receive-queue for all senders, the
program’s code sequence works as desired. However, the code will not work as expected with
SMC. SMC uses one receive-queue per sender (inside each MPI-process). Thus, a message
from one sender can bypass the message from another sender. In the time-gap between the
completion of MPI_Probe() and before MPI_Recv() matches a message, another new message
from a different MPI-process could arrive, i.e. it is not certain that the message found by
MPI_Probe() is identical to one that MPI_Recv() matches.

To make the program work as expected, the code sequence should be corrected to:

while (...) {
MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, comm, sts);
if (sts->MPI_TAG == SOME_VALUE) {

MPI_Recv(buf, cnt, dtype, sts->MPI_SOURCE, sts->MPI_TAG, comm, sts);
doStuff();

}
doOtherStuff();

}

3.9.2 Using MPI_Isend(), MPI_Irecv()
If communication and calculations do not overlap, using immediate calls, e.g., MPI_Isend()
and MPI_Irecv(), is usually performance ineffective.

3.9.3 Using MPI_Bsend()
Using buffered send, e.g., MPI_Bsend(), usually degrade performance significantly in
comparison with their unbuffered relatives.

3.9.4 Avoid starving MPI-processes - fairness
MPI programs may, if not special care is taken, be unfair and may starve MPI-processes, e.g.,
by using MPI_Waitany(), as illustrated for a client-server application in examples 3.15 and
3.16 in the MPI 1.1 standard [1]. Fairness can also be enforced, e.g. through the use of several
tags or separate communicators.
Scali MPI Connect Release 4.4 Users Guide 32

Section: 3.10 Error and warning messages
3.9.5 Unsafe MPI programs
Because of different buffering behavior, some programs may run with MPICH, but not with
SMC. Unsafe MPI programs may require resources that are not always guaranteed by SMC, and
deadlock might occur (since SMC uses spin locks, these may appear to be live locks). If you
want to know more about how to write portable MPI programs, see for example MPI: The
complete reference: vol. 1, the MPI core [2].

A typical example that will not work with SMC (for long messages):

while (...) {
MPI_Send(buf, cnt, dtype, partner, tag, comm);
MPI_Recv(buf, cnt, dtype, MPI_ANY_SOURCE, MPI_ANY_TAG, comm, sts);
doStuff();

}

Thsi code tries to se the same buffer for both sending and receiving. Such logic can be found,
e.g., where processes from a ring where they communicate with their neigbours. Unfortunately
writing the code this way leads to deadlock, and to make it work the MPI_Send() must be
replaced with MPI_Isend() and MPI_Wait(), or the whole construction should be replaced with
MPI_Sendrecv() or MPI_Sendrecv_replace().

3.9.6 Name space pollution
The SMC library is written in C and all of its C names are prefixed with scampi_. Depending
on the compiler used, the user may run into problems if he/she has C code using the same
scampi_ prefix. In addition, there are a few global variables that may cause problems. All of
these functions and variables are listed in the include files mpi.h and mpif.h. Normally, these
files are installed in /opt/scali/include.

Given that SMC has not fixed its OS routines to specific libraries, it is good programming
practice to avoid using OS functions or standard C-lib functions as application function names.
Naming routines or global variables as send, recv, open, close, yield, internal_error,
failure, service or other OS reserved names may result in an unpredictable and undesirable
behavior.

3.10 Error and warning messages

3.10.1 User interface errors and warnings
User interface errors usually result from problems where the setup of the environment causes
difficulties for mpimon when starting an MPI program. mpimon will not start before the
environment is properly defined. These problems are usually easy to fix, by giving mpimon
the correct location of the necessary executable. The error message provides a straight forward
indication of what to do. Thus, only particularly troublesome user interface errors will be listed
here.

Using the -verbose option enables mpimon to print more detailed warnings.

3.10.2 Fatal errors
When a fatal error occurs, SMC prints an error message before calling MPI_Abort() to shut
down all MPI-processes.
Scali MPI Connect Release 4.4 Users Guide 33

Section: 3.11 Mpimon options
3.11 Mpimon options
The full list of optiona accepted by mpimon is listed below. To obtain the actual values used for
a particular run include the -verbose option when starting the application.

-automatic <selection> Set automatic-mode for process(es)
-backoff_enable <selection> Set backoff-mode for process(es)
-channel_entry_count <count> Set number of entries per channel
-channel_entry_size <size> Set entry_size (in bytes) per channel
-channel_inline_threshold <size> Set threshold for inlining (in bytes)

per inter-channel
-channel_size <size> Set buffer size (in bytes) per inter-channel
-chunk_size <size> Set chunk-size for inter-communication
-debug <selection> Set debug-mode for process(es)
-debugger <debugger> Set debugger to start in debug-mode
-disable-timeout Disable process timeout
-display <display> Set display to use in debug-/manual-mode
-dryrun <mode>
-eager_count <count> Set number of buffers for eager protocol
-eager_factor <factor> Set factor for subdivision of eagerbuffers
-eager_size <size> Set buffer size (in bytes) for eager protocol
-eager_threshold <size> Set threshold (in bytes) for eager protocol
-environment <value>
-exact_match
-execpath <execpath> Set path to internal executables
-help Display available options
-home <directory> Set installation-directory
-inherit_limits Inherit user definable limits to processes
-init_comm_world
-manual <selection> Set manual-mode for process(es)
-- Separator, marks end of user program options
-networks <networklist> Define prioriy order when seaching network
-pool_size <size> Set buffer-pool-size for communication
-pr_trace <selection>
-separate_output <selection> Enable separate output for process(es)

Filename: ScaMPIoutput_host_pid_rank
-sm_debug <selection>
-sm_manual <selection>
-sm_trace <selection>
-statistics Enable statistics
-stdin <selection> Distribute standard in to process(es)
-timeout <timeout> Set timeout (elapsed time in seconds) for run
-timing <timing-spec> Enable builtin-timing trace
-transporter_count <count> Set number of buffers for transporter-protocol
-transporter_size <size> Set buffer size (in bytes) for transporter-

protocol
-trace <trace-spec> Enable builtin trace
-verbose Display values for user-options
-Version Display version of monitor
-working_directory <directory> Set working directory
-xterm <xterm> Set xterm to use in debug-/manual-mode
-zerocopy_count <count> Set number of buffers for zerpcopy-protocol
-zerocopy_size <size> Set buffer size (in bytes) for zerocopy-protocol
Scali MPI Connect Release 4.4 Users Guide 34

Section: 3.11 Mpimon options
3.11.1 Giving numeric values to mpimon
Numeric values can be given as mpimon options in the following way:
[<prefix>]<numeric value>[<postfix>]

where

<prefix> selects numeric base when interpreting the value
“0x” indicates hex-number (base = 16)
“0” indicates octal-number (base = 8)
if <prefix> is omitted, decimal-number (base = 10) is assumed

and
<postfix> selects a multiplication factor

“K”: means a multiplication with 1024
“M”: means a multiplication with 1024 * 1024

Examples:
Input: Value as interpreted by mpimon (in decimal):
123 123
0x10 16
0200 128
1K 1024
2M 2 097 152
Scali MPI Connect Release 4.4 Users Guide 35

Section: 3.11 Mpimon options
Scali MPI Connect Release 4.4 Users Guide 36

Chapter 4 Profiling with Scali MPI Connect

The Scali MPI communication library has a number of built-in timing and trace facilities. These
features are built into the run time version of the library, so no extra recompiling or linking of
libraries is needed. All MPI calls can be timed and/or traced. A number of different environment
variables control this functionality. In addition an implied barrier call can be automatically
inserted before all collective MPI calls. All of this can give detailed insights into application
performance.

The trace and timing facilities are initiated by environment variables that either can be set and
exported or set at the command line just before running mpimon.

There are different tools available that can be useful to detect and analyze the cause of
performance bottlenecks:
• Built-in proprietary trace and profiling tools provided with SMC
• Commercial tools that collect information during run and postprocesses and presents

results afterwards such as Vampir from Pallas GmbH. See http://www.pallas.de for
more information.

The main difference between these tools is that the SMC built-in tools can be used with an
existing binary while the other tools require reloading with extra libraries.

The powerful run time facilities Scali MPI Connect trace and Scali MPI Connect timing can be
used to monitor and keep track of MPI calls and their characteristics. The various trace and
timing options can yield many different views of an application's usage of MPI. Common to most
of these logs are the massive amount of data which can sometimes be overwhelming,
especially when run with many processes and using both trace and timing concurrently.

The second part shows the timing of these different MPI calls. The timing is a sum of the timing
for all MPI calls for all MPI processes and since there are many MPI processes the timing can
look unrealistically high. However, it reflects the total time spent in all MPI calls. For situations
in which benchmarking focuses primarily on timing rather than tracing MPI calls, the timing
functionality is more appropriate. The trace functionality introduces some overhead and the
total wall clock run time of the application goes up. The timing functionality is relatively light
and can be used to time the application for performance benchmarking.

4.1 Example
To illustrate the potential of tracing and timing with Scali MPI Connect consider the code
fragment below (full source reproduced in A-2).

int main(int argc, char** argv)
{
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 /* read image from file */

 /* broadcast to all nodes */
 MPI_Bcast(&my_count, 1, MPI_INT, 0, MPI_COMM_WORLD);
 /* scatter the image */
 MPI_Scatter(pixels, my_count, MPI_UNSIGNED_CHAR, recvbuf,
 my_count, MPI_UNSIGNED_CHAR, 0, MPI_COMM_WORLD);
 /* sum the squares of the pixels in the sub-image */
Scali MPI Connect Release 4.4 Users Guide 37

 /* find the global sum of the squares */
 MPI_Reduce(&my_sum, &sum, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
 /* let rank 0 compute the root mean square */

 /* rank 0 broadcasts the RMS to the other nodes */
 MPI_Bcast(&rms, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
 /* perform filtering operation (contrast enhancement) */

 /* gather back to rank 0 */
 MPI_Gather(recvbuf, my_count, MPI_UNSIGNED_CHAR, pixels,
 my_count, MPI_UNSIGNED_CHAR, 0, MPI_COMM_WORLD);
 /* write image to file */

 MPI_Finalize();
}
This code uses collective operations (broadcast, scatter, reduce and gather) to employ multiple
processes to perform operations on a image. For example, the figure below (Figure 4-1:) shows
the result of processing an ultrasonic image of a fetus.

Figure 4-1: A ultrasound image before and after contrast enhancement

4.2 Tracing
Tracing enables features in Scali MPI Connect’s implementataion of MPI that report detail about
the MPI calls. By capturing the printout of the tracing information the user can monitor the
development of the application run, perform analysis of the application run, figure out how the
application uses the communication mechanisms, and discover details that can be used to
improve performance.

4.2.1 Using Scali MPI Connect built-in trace
To use built-in trace-facility you need to set the mpimon-option -trace “<options>”
specifying what options you want to apply. The following options can be specified: (<...-list>
is a semicolon-separated list of Posix-regular-expressions.)

-b Trace beginning and end of each MPI_call
-s <seconds> Start trace after <seconds> seconds
-S <seconds> End trace after <seconds> seconds
-c <calls> Start trace after <calls>MPI_calls
-C <calls> End trace after <calls>MPI_calls
-m <mode> Special modes for trace

<mode> = “sync”: Synchronize with MPI_Barrier before starting
the collective call

-p <selection> Enable for process(es): 'n,m,o..' = (list) or 'n-m' = (range) or 'all'

original processed image
Scali MPI Connect Release 4.4 Users Guide 38

-t <call-list> Enable for MPI_calls in <call-list>.
MPI_call = 'MPI_call' | 'call'

-x <call-list> Disable for MPI_calls in <call-list>.
MPI_call = 'MPI_call' | 'call'

-f <format-list> Define format: 'timing', 'arguments', 'rate'
-v Verbose
-h Print this list of options

By default only one line is written per MPI-call.

Calls may be specified with or without the "MPI_"-prefix, and in upper- or lower-case. The
default format of the output has the following parts:
<absRank>: <MPIcall><commName>_<rank><call-dependant-parameters> where

<absRank> is the rank within MPI_COMM_WORLD
<MPIcall> is the name of the MPI-call
<commName> is the name of the communicator
<rank> is the rank within the communicator used

This format can be extended by using the "-f"-option. Adding "-f arguments" will provide
some additional information concerning message length. If "-f timing" is given some timing
information between the <absRank>and <MPIcall>-fields is provided.

The extra field has the following format:
+<relSecs> S <eTime>
where

<relSecs> is the elapsed time in seconds since returning to the application
from MPI_Init

<eTime> is the elapsed execution time for the current call

"-f rate" will add some rate-related information. The rate is calculated by dividing the number
of bytes transferred by the elapsed time to execute the call. All parameters to -f can be
abbreviated and can occur in any mix.

Normally no error messages are provided concerning the options which have been selected.
But if -verbose is added as a command-line option to mpimon, errors will be printed.
Trace provides information about which MPI routines were called and possibly information
about parameters and timing.

Example using the test application:

%SCAMPI_TRACE="-p all" mpimon ./kollektive-8 ./uf256-8.pgm -- r1 r2

Prints a trace of all MPI calls for this run that is relatively simple:

 0: MPI_Init
 0: MPI_Comm_rank Rank: 0
 0: MPI_Comm_size Size: 2
Scali MPI Connect Release 4.4 Users Guide 39

 0: MPI_Bcast root: 0 Id: 0
my_count = 32768
 0: MPI_Scatter Id: 1
 1: MPI_Init
 1: MPI_Comm_rank Rank: 1
 1: MPI_Comm_size Size: 2
 1: MPI_Bcast root: 0 Id: 0
my_count = 32768
 1: MPI_Scatter Id: 1
 1: MPI_Reduce Sum root: 0 Id: 2
 1: MPI_Bcast root: 0 Id: 3
 0: MPI_Reduce Sum root: 0 Id: 2
 0: MPI_Bcast root: 0 Id: 3
 1: MPI_Gather Id: 4
 1: MPI_Keyval_free
 0: MPI_Gather Id: 4
 0: MPI_Keyval_free

If more information is needed the arguments to SCAMPI_TRACE can be enhanced to request
more information. The option “-f arg;timing” requests a list of the arguments given to each MPI
call, including message size (useful information when evaluating interconnect performance).

Example:

%SCAMPI_TRACE="-f arg;timing" mpimon ./kollektive-8 ./uf256-8.pgm -- n1 2

 0: +-0.951585 s 951.6ms MPI_Init
 0: +0.000104 s 3.2us MPI_Comm_rank Rank: 0
 0: +0.000130 s 1.7us MPI_Comm_size Size: 2
 0: +0.038491 s 66.3us MPI_Bcast root: 0 sz: 1 x 4 = 4 Id: 0
my_count = 32768
 0: +0.038634 s 390.0us MPI_Scatter Id: 1
 1: +-1.011783 s 1.0s MPI_Init
 1: +0.000100 s 3.8us MPI_Comm_rank Rank: 1
 1: +0.000129 s 1.7us MPI_Comm_size Size: 2
 1: +0.000157 s 69.6us MPI_Bcast root: 0 sz: 1 x 4 = 4 Id: 0
my_count = 32768
 1: +0.000300 s 118.7us MPI_Scatter Id: 1
 0: +0.039267 s 38.8ms MPI_Reduce Sum root: 0 sz: 1 x 4 = 4 Id: 2
 0: +0.078089 s 18.8us MPI_Bcast root: 0 sz: 1 x 8 = 8 Id: 3
 1: +0.000641 s 56.2us MPI_Reduce Sum root: 0 sz: 1 x 4 = 4 Id: 2
 1: +0.000726 s 113.6us MPI_Bcast root: 0 sz: 1 x 8 = 8 Id: 3
 1: +0.002547 s 99.0us MPI_Gather Id: 4
 0: +0.079834 s 579.5us MPI_Gather Id: 4
 1: +0.002758 s 26.4us MPI_Keyval_free
 0: +0.113244 s 1.4us MPI_Keyval_free

There are a number of parameters for selecting only a subset, either by limiting the number of
calls and intervals as described above under ‘Timing’ , or selecting or excluding just some MPI
calls.

4.2.2 Features
The "-b" option is useful when trying to pinpoint which MPI-call has been started but not
completed (i.e. are deadlocked). The "-s/-S/-c/-C" -options also offer useful support for an
application that runs well for a longer period and then stop, or for examining some part of the
execution of the application.
Scali MPI Connect Release 4.4 Users Guide 40

From time to time it may be desirable or feasible to trace only one or a few of the processes.
Specifying the "-p" options offers the ability to pick the processes to be traced.

All MPI-calls are enabled for tracing by default. To view only a few calls, specify a "-t <call-
list>" option; to exclude some calls, add a "-x <call-list>" option. The "-t" will disable all
tracing and then enable those calls that match the <call-list>. The matching is done using
"regular-posix-expression"-syntax. "-x" will lead to the opposite; first enable all tracing and
then disable those call matching <call-list>.

Examples:
"-t MPI_Irecv" : Trace only immediate recv (MPI_Irecv)
"-t isend;irecv;wait" :Trace only MPI_Isend, MPI_Irecv and MPI_Wait
"-t MPI_[b,r,s]*send" : Trace only send-calls (MPI_Send, MPI_Bsend, MPI_Rsend, MPI_Ssend)
"-t i[a-z]*" : Trace only calls beginning with MPI_I

4.3 Timing
Timing will give you information about which MPI routines were called and how long the MPI
calls took. This information is printed at intervals set by the user with the “-s n” option, where
n if the number of seconds.

4.3.1 Using Scali MPI Connect built-in timing
To use the built-in timing functionality in SMC, the mpimon-option -timing "<options>" must
be set, specifying which options are to be applied.

The following options can be specified:
(<...-list> is a semicolon-separated list of Posix-regular-expressions.)

-s <seconds> print for intervals of <seconds>seconds
-c <calls> print for intervals of <calls>MPI_calls
-m <mode> special mode for timing

<mode> = ”sync”: Synchronize with MPI_Barrier before starting
collective call

-p <selection> enable for process(es) 'n,m,o..' = (list) or 'n-m' = (range) or 'all'
-f <call-list> Print after MPI_calls in <call-list>: MPI_call = 'MPI_call' | 'call'
-v verbose
-h print this list of options

Printing of timing-information can be either at a fixed time-interval, if "-s <seconds>" is
specified, or for a fixed number-of-calls-interval, if "-c <calls>" ia used. It is also possible to
obtain output after specific MPI-calls by using "-f <call-list>"; see above for details on how to
write <call-list>.

The output has two parts: a timing-part and a buffer-statistics-part.

The first part has the following layout:
All lines start with <rank>: where <rank>: is rank within MPI_COMM_WORLD. This part is
included to facilitate separation of output (grep).
Example:
user% SCAMPI_TIMING=”-s 1” mpimon ./kollektive-8 ./uf256-8.pgm -- r1 r2
where '<seconds>' is the number of seconds per printout from Scali MPI Connect produces:

 1: 13.26.10 -------------Delta---------- ---------Total----------
 1: Init+0.002659 s #calls time tim/cal #calls time tim/cal
 1: MPI_Bcast 2 169.0us 84.5us 2 169.0us 84.5us
Scali MPI Connect Release 4.4 Users Guide 41

 1: MPI_Comm_rank 1 3.1us 3.1us 1 3.1us 3.1us
 1: MPI_Comm_size 1 1.5us 1.5us 1 1.5us 1.5us
 1: MPI_Gather 1 109.9us 109.9us 1 109.9us 109.9us
 1: MPI_Init 1 1.0s 1.0s 1 1.0s 1.0s
 1: MPI_Keyval_free 1 1.2us 1.2us 1 1.2us 1.2us
 1: MPI_Reduce 1 51.5us 51.5us 1 51.5us 51.5us
 1: MPI_Scatter 1 138.7us 138.7us 1 138.7us 138.7us
 1: Sum 9 1.0s 112.8ms 9 1.0s 112.8ms
 1: Overhead 0 0.0ns 9 27.2us 3.0us
 1: ===
 0: 13.26.40 -------------Delta---------- ---------Total----------
 0: Init+0.111598 s #calls time tim/cal #calls time tim/cal
 0: MPI_Bcast 2 79.6us 39.8us 2 79.6us 39.8us
 0: MPI_Comm_rank 1 3.3us 3.3us 1 3.3us 3.3us
 0: MPI_Comm_size 1 1.4us 1.4us 1 1.4us 1.4us
 0: MPI_Gather 1 648.8us 648.8us 1 648.8us 648.8us
 0: MPI_Init 1 965.9ms 965.9ms 1 965.9ms 965.9ms
 0: MPI_Keyval_free 1 1.1us 1.1us 1 1.1us 1.1us
 0: MPI_Reduce 1 37.6ms 37.6ms 1 37.6ms 37.6ms
 0: MPI_Scatter 1 258.1us 258.1us 1 258.1us 258.1us
 0: Sum 9 1.0s 111.6ms 9 1.0s 111.6ms
 0: Overhead 0 0.0ns 9 35.6us 4.0us
 0: ===

The <seconds> field can be set to a large number in order to collect only final statistics.

We see that the output gives statistics about which MPI calls are used and their frequency and
timing. Both delta numbers since last printout and the total accumulated statistics. By setting
the interval timing (in -s <seconds>) to a large number, only the cumulative statistics at the
end are printed. The timings are presented for each process, and with many processes this can
yield a huge amount of output. There are many options for modifying SCAMPI_TIMING to
reduce this output. The selection parameter can time only those MPI processes to be
monitored. There are also other ways to minimize the output, by screening away selected MPI
calls either before or after a certain number of calls or between an interval of calls. Some
examples are:

The rest of the format has the following fields:
<MPIcall><Dcalls><Dtime><Dfreq> <Tcalls><Ttime><Tfreq>
where

<MPIcall> is the name of the MPI-call
<Dcalls> is the number of calls to <MPIcall> since the last printout
<Dtime> is the sum of the execution-time for calls to <MPIcall> since the

last printout
<Dfreq> is the average time-per-call for calls to <MPIcall> since the last

printout
<Tcalls> is the number of calls to <MPIcall>
<Ttime> is the sum of the execution-time for calls to <MPIcall>
<Tfreq> is the average time-per-call for calls to <MPIcall>

After all detail-lines (one per MPI-call which has been called since last printout), there will be
a line with the sum of all calls followed by a line giving the overhead introduced when obtaining
the timing measurements.

The second part containing the buffer-statistics has two types of lines, one for receives and one
for sends.
Scali MPI Connect Release 4.4 Users Guide 42

Section: 4.4 Using the scanalyze

"Receive lines" has the following fields:
<Comm><rank> recv from <from>(<worldFrom>):<commonFields>
where

<Comm> is the communicator being used
<rank> is the rank within <Comm>
<from> is the rank within <Comm>
<worldFrom> is the rank within MPI_COMM_WORLD

"Send-lines" has the following fields:
<Comm><rank> send to <to>(<worldTo>):<commonFields>
where

<Comm> is the communicator being used
<rank> is the rank within <Comm>
<to> is the rank within <Comm>
<worldTo> is the rank within MPI_COMM_WORLD

The <commonFields> are as follows:
!<count>!<avrLen>!<zroLen>!<inline>!<eager>!<transporter>!
where

<count> is the number of sends/receives
<avrLen> is the average length of messages in bytes
<zroLen> is the number of messages sent/received using the zero-bytes

mechanism
<inline> is the number of messages sent/received using the inline

mechanism
<eager> is the number of messages sent/received using the eagerbuffer

mechanism
<transporter> is the number of messages sent/received using the transporter

mechanism

More details on the different mechanisms can be found in “Description of Scali MPI Connect”
on page 11.

4.4 Using the scanalyze
Tracing and timing the image processing example above produced little data, and interpreting
the data posed little problem. However, most applications run for longer time, with
correspondingly larger logs as a result; output from tracing and timing with Scali MPI Connect
easily amounts to megabytes of data.

In order to extract information from the huge amount of data, Scali has developed a simple
analysis tool called scanalyze. This analysis tool accept output from SMC applications run with
certain predefined trace and timing variables set.

4.4.1 Analysing all2all
The all2all program in /opt/scali/examples/bin is a simple communication benchmark, but
tracing and timing it produces massive log files. For example running

user% SCAMPI_TRACE=”-f arg;timing” mpimon ./all2all -- r1 r2

on a particular system produced a 2354159 byte log file, while running
Scali MPI Connect Release 4.4 Users Guide 43

Section: 4.4 Using the scanalyze
user% SCAMPI_TIMING=”-s 10” mpimon ./all2all -- r1 r2

produced a 158642 byte file

Digesting the massive information in these files is a challenge, but scanalyze produces the
following summaries for tracing:

 Count Total < 128 < 1k < 8k < 256k < 1M
--------------- -------- -------- -------- -------- -------- -------- --------
 MPI_Alltoall 24795 5127 3078 4104 10260 2226 0
 MPI_Barrier 52 0 0 0 0 0 0
 MPI_Comm_rank 2 0 0 0 0 0 0
 MPI_Comm_size 2 0 0 0 0 0 0
 MPI_Init 2 0 0 0 0 0 0
MPI_Keyval_free 2 0 0 0 0 0 0
 MPI_Wtime 102 0 0 0 0 0 0

 Timing Total < 128 < 1k < 8k < 256k < 1M
--------------- -------- ------- -------- -------- -------- -------- --------
 MPI_Alltoall 21.20 0.21 0.15 0.41 9.35 11.08 0.00
 MPI_Barrier 0.01 0.00 0.00 0.00 0.00 0.00 0.00
 MPI_Comm_rank 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 MPI_Comm_size 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 MPI_Init 2.00 0.00 0.00 0.00 0.00 0.00 0.00
MPI_Keyval_free 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 MPI_Wtime 0.00 0.00 0.00 0.00 0.00 0.00 0.00

and for timing;

===
 #calls time tim/cal #calls time tim/cal
0: MPI_Alltoall 0 0.0ns 12399 10.6s 855.1us
0: MPI_Barrier 0 0.0ns 26 1.2ms 45.8us
0: MPI_Comm_rank 0 0.0ns 1 3.2us 3.2us
0: MPI_Comm_size 0 0.0ns 1 1.4us 1.4us
0: MPI_Init 0 0.0ns 1 1.0s 1.0s
0: MPI_Keyval_free 1 27.9us 27.9us 1 27.9us 27.9us
0: MPI_Wtime 1 1.1us 1.1us 52 33.9us 652.7ns
0: Sum 2 29.0us 14.5us 12481 11.7s 933.5us
0: Overhead 0 0.0ns 12481 12.6ms 1.0us
===
 #calls time tim/cal #calls time tim/cal
1: MPI_Alltoall 0 0.0ns 12399 10.6s 854.9us
1: MPI_Barrier 0 0.0ns 26 2.9ms 109.6us
1: MPI_Comm_rank 0 0.0ns 1 3.5us 3.5us
1: MPI_Comm_size 0 0.0ns 1 1.5us 1.5us
1: MPI_Init 0 0.0ns 1 1.0s 1.0s
1: MPI_Keyval_free 1 10.8us 10.8us 1 10.8us 10.8us
1: MPI_Wtime 1 1.5us 1.5us 50 36.5us 730.2ns
1: Sum 2 12.3us 6.1us 12479 11.6s 931.1us
1: Overhead 0 0.0ns 12479 12.7ms 1.0us
Scali MPI Connect Release 4.4 Users Guide 44

Section: 4.5 Using SMC's built-in CPU-usage functionality
4.5 Using SMC's built-in CPU-usage functionality
Scali MPI Connect has the capability to report wall clock time, and user and system CPU time
on all processes with a built-in CPU timing facility. To use SMC's built-in CPU-usage-timing it is
necessary first to set the environment variable SCAMPI_CPU_USAGE.

The information displayed is collected with the system-call "times"; see man-pages for more
information.

The output has two different blocks. The first block contains CPU-usage by the sub monitors on
the different nodes. One line is printed for each sub monitor followed by a sum-line and an
average-line. The second block consists of one line per process followed by a sum-line and an
average-line.

For example, to get the CPU usage when running the image enhancement program do:
user% SCAMPI_CPU_USAGE=1 mpirun -np 4 ./kollektive-8 ./uf256-8.pgm

This produces the following report:
 ---------- Own ----------- ------ Own+Children ------
Submonitor timing stat. in secs Elapsed User System Sum User System Sum
Submonitor-1@r9 2.970 0.000 0.000 0.000 0.090 0.030 0.120
Submonitor-2@r8 3.250 -0.000 0.000 -0.000 0.060 0.040 0.100
Submonitor-3@r7 3.180 -0.000 -0.000 -0.000 0.050 0.030 0.080
Submonitor-4@r6 3.190 0.010 0.000 0.010 0.090 0.020 0.110
Total for submonitors 12.590 0.010 -0.000 0.010 0.290 0.120 0.410
Average per submonitor 3.147 0.003 -0.000 0.003 0.073 0.030 0.103

 ---------- Own -----------
Process timing stat. in secs Elapsed User System Sum
kollektive-8-0@r9 0.080 0.070 0.030 0.100
kollektive-8-1@r8 0.050 0.020 0.040 0.060
kollektive-8-2@r7 0.050 0.020 0.030 0.050
kollektive-8-3@r6 0.010 0.020 0.020 0.040
Sum for processes 0.190 0.130 0.120 0.250
Average per process 0.048 0.033 0.030 0.062

Elapsed is walltime used by user-process/submonitor
User is cpu-time used in user-process/submonitor
System is cpu-time used in system-calls
Sum is total cpu-time used by user-process/submonitor
Scali MPI Connect Release 4.4 Users Guide 45

Section: 4.5 Using SMC's built-in CPU-usage functionality
Scali MPI Connect Release 4.4 Users Guide 46

Chapter 5 Tuning SMC to your application

Scali MPI Connect allows the user to exercise control over the communication mechanisms
through adjustment of the thresholds that steer which mechanism to use for a particular
message. This is one technique that can be used to improve performance of parallel
applications on a cluster.

Forcing size parameters to mpimon is usually not necessary. This is only a means of
optimising SMC to a particular application, based on knowledge of communication patterns. For
unsafe MPI programs it may be necessary to adjust buffering to allow the program to complete.

5.1 Tuning communication resources
The communication resources allocated by Scali MPI Connect are shared among the MPI
processes in the node.

• Communication buffer adaption: If the communication behaviour of the application is
known, explicitly providing buffersize settings to mpimon, to match the requirement of
the application, will in most cases improve performance.

Example: Application sending only 900 bytes messages.
Set channel_inline_threshold 964 (64 added for alignment) and increase the channel-
size significantly (32-128 k).

Setting eager_size 1k and eager_count high (16 or more).
If all messages can be buffered, the transporter-{size, count} can be set to low values to
reduce shared memory consumption.

• How do I control shared memory usage?
Adjusting SMC buffer sizes

• How do I calculate shared memory usage?
The buffer space required by a communication channel is approximately:

chunk-size = (2 * channel-entry-size * channel-entry-count)
 + (transporter-size * transporter-count)
 + (eager-size * eager-count)
 +4096 (give-or-take-a-few-bytes)
Total-usage = chunk-size * no-of-processes

5.1.1 Automatic buffer management
The pool-size is a limit for the total amount of shared memory. The automatic buffer size
computations is based on full connectivity, i.e. all communicating with all others. Given a total
pool of memory dedicated to communication, each communication channel will be restricted to
use a partition of only(P = number of processes):
chunk = inter_pool_size / P

The automatic approach is to downsize all buffers associated with a communication channel
until it fits in its part of the pool. The automatic chunk size is calculated to wrap a complete
communication channel.
Scali MPI Connect Release 4.4 Users Guide 47

Section: 5.2 How to optimize MPI performance
5.2 How to optimize MPI performance
There is no universal recipe for getting good performance out of a message passing program.
Here are some do’s and don’t’s for SMC.

5.2.1 Performance analysis
Learn about the performance behaviour of your particular MPI applications on a Scali System
by using a performance analysis tool.

5.2.2 Using processor-power to poll
To maximize performance, ScaMPI is using poll when waiting for communication to terminate,
instead of using interrupts. Polling means that the CPU is performing busy-wait (looping) when
waiting for data over the interconnect. All exotic interconnects require polling.

Some applications create treads which may end up having more active threads than you have
CPUs. This will have huge impact on MPI performance. In threaded application with irregular
communication patterns you probably have other threads that could make use of the
processor. To increase performance in this case, Scali has provided a “backoff” feature in
ScaMPI. The backoff feature will still poll when waiting for data, but will start to enter sleep
states on intervals when no data is coming. The algorithm is as follows: ScaMPI polls for a short
time (idle time), then stops for a periode, and polls again.

The sleep periode starts a parameter controlled minimum and is doubled every time until it
reaches the maximum value. The following environment variables set the parameters:

SCAMPI_BACKOFF_ENABLE (turns the mechanism on)
SCAMPI_BACKOFF_IDLE=n (defines idle-period as n ms [Default = 20 ms])
SCAMPI_BACKOFF_MIN=n (defines minimum backoff-time in ms [Default = 10 ms])
SCAMPI_BACKOFF_MAX=n (defines maximum backoff-time in ms [Default = 100 ms])

5.2.3 Reorder network traffic to avoid conflicts
Many-to-one communication may introduce bottlenecks. Zero-byte messages are low-cost. In
a many-to-one communication, performance may improve if the receiver sends ready-to-
receive tokens (in the shape of a zero-byte message) to the MPI-process wanting to send data.

5.3 Benchmarking
Benchmarking is that part of performance evaluation that deals with the measurement and
analysis of computer performance using various kinds of test programs. Benchmark figures
should always be handled with special care when making comparisons with similar results.

5.3.1 How to get expected performance
• Caching the application program on the nodes.

For benchmarks with short execution time, total execution time may be reduced when
running the process repetitively. For large configurations, copying the application to the
local file system on each node will reduce startup latency and improve disk I/O
bandwidth.

• The first iteration is (very) slow.
This may happen because the MPI-processes in an application are not started
simultaneously. Inserting an MPI_Barrier() before the timing loop will eliminate this.
Scali MPI Connect Release 4.4 Users Guide 48

Section: 5.4 Collective operations
5.3.2 Memory consumption increase after warm-up
Remember that group operations (MPI_Comm_{create, dup, split}) may involve creating
new communication buffers. If this is a problem, decreasing chunck_size may help.

5.4 Collective operations
A collective communication is a communication operation in which a group of processes works
together to distribute or gather together a set of one or more values. Scali MPI Connect uses
a number of different approaches to implement collective operations. Through environment
variables the user can control which algorithm the application uses.

Consider the Integer Sort (IS) benchmark in NPB (NAS Parallel Benchmarks). When running on
ten processes on 5 nodes over Gigabit Ethernet (mpimon -net smp,tcp bin/is.A.16.scampi
-- r1 2 r2 2 r3 2 r4 2 r5 2) the resulting performance is:

Mop/s total = 34.05
Mop/s/process = 2.13

Extracting the MPI profile of the run can be done as follows:
user% export SCAMPI_TRACE="-f arg;timing"
user% mpimon bin/is.A.16.scampi -- $ALL2 > trace.out

And running the output through scanalyze yields the following:

MPI Call <128 128-1k 1-8k 8-32k 32-256k 256k-1M >1M
MPI_Send 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MPI_Irecv 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MPI_Wait 0.69 0.00 0.00 0.00 0.00 0.00 0.00
MPI_Alltoall 0.14 0.00 0.00 0.00 0.00 0.00 0.00
MPI_Alltoallv 11.20 0.00 0.00 0.00 0.00 0.00 0.00
MPI_Reduce 1.04 0.00 0.00 0.00 0.00 0.00 0.00
MPI_Allreduce 0.00 0.00 15.63 0.00 0.00 0.00 0.00
MPI_Comm_size 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MPI_Comm_rank 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MPI_Keyval_free 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The MPI_Alltoallv uses a high fraction of the total execution time. The communication time is
the sum of all used algorithms and the total timing may depend on more than one type of
communication. If one type or a few operations dominate the time consumption, they are
promising candidates for tuning/optimization.

Note: Please note that the run time selectable algorithms and their values may vary on
different Scali MPI Connect release versions. For information on which algorithms that are
selectable at run time and their valid values, set the environment variable
SCAMPI_ALGORITHM and run an example application:

SCAMPI_ALGORITHM=1 mpimon /opt/scali/examples/bin/hello -- localhost

This will produce a listing of the different implementations of particular collective MPI calls.
For each collective operation a listing consisting of a number and a short description of the
algoritmn is produced, e.g., for MPI_Alltoallv() the following:

SCAMPI_ALLTOALLV_ALGORITHM alternatives
 0 pair0
 1 pair1
 2 pair2
 3 pair3
Scali MPI Connect Release 4.4 Users Guide 49

Section: 5.4 Collective operations
 4 pair4
 5 pipe0
 6 pipe1
 7 safe
def 8 smp

By looping through these alternatives the performance of IS varies:
algorithm 0: Mop/s total = 95.60
algorithm 1: Mop/s total = 78.37
algorithm 2: Mop/s total = 34.44
algorithm 3: Mop/s total = 61.77
algorithm 4: Mop/s total = 41.00
algorithm 5: Mop/s total = 49.14
algorithm 6: Mop/s total = 85.17
algorithm 7: Mop/s total = 60.22
algorithm 8: Mop/s total = 48.61

For this particular combination of Alltoallv-algorithm and application (IS) the performance
varies significantly, with algorithm 0 close to doubling the performance over the default.

5.4.1 Finding the best algorithm
Consider the image processing example from Chapter 4 which containes four collective
operations. All of these can be tuned with respect to algorithm according to the following
pattern:

user% for a in <range>; do
\>; SCAMPI_<MPI-function>_ALGORITHM=$a \
\>;mpimon <application> -- <nodes> ><application>.out.$a; \
\>; done

For example, trying out the alternative algorithms for MPI_Reduce with two processes can be
done as follows (assuming Bourne Again Shell [bash]:
user% for a in 0 1 2 3 4 5 6 7 8; do
\>; SCAMPI_REDUCE_ALGORITHM=$a
\>; mpimon ./kollektive-8 ./uf256-8.pgm -- r1 r2;
\>; done

Given that the application then reports the timing of the relevant parts of the code a best choice
can be made. Note however that with multiple collective operations working in the same
program there may be interference between the algorithms. Also, the performance of the
implementations is interconnect dependent.
Scali MPI Connect Release 4.4 Users Guide 50

Appendix A Example MPI code

A-1 Programs in the ScaMPItst package
The ScaMPItst package is installed together with installation of Scali MPI Connect. The package
contains a number of programs in /opt/scali/examples with executable code in bin/ and
source code in src/. A description of the programs can be found in the README file, located
in the /opt/scali/doc/ScaMPItst directory. These programs can be used to experiement with
the features of Scali MPI Connect.

A-2 Image contrast enhancement
*
 * Adopted from "MPI Tutorial", by Puri Bangalore, Anthony Skjellum and
 * Shane Herbert, High Performance Computing Lab, Dept. of Computer Science
 * and NSF Engineering Research Center, Mississippi State University,
 * Feb 2000
*/

#include <mpi.h>
#include <stdio.h>
#include <math.h>
int main(int argc, char** argv)
{
 int width, height, rank, size, sum, my_sum;
 int numpixels, my_count, i, val;
 unsigned char pixels[65536], recvbuf[65536];
 unsigned int buffer;
 double rms;
 FILE *infile;
 FILE *outfile;
 char line[80];

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 if (rank == 0)
 {
 /* assume valid file name in argv[1] */
 infile = fopen(argv[1], "r");
 if (! infile)
 {
 printf("%s :: can't open file\n", argv[1]);
 MPI_Finalize();
 exit(-1);
 }
 /* valid file available */
 fscanf(infile, "%s", line);
 fscanf(infile, "%d", &height);
 fscanf(infile, "%d", &width);
 fscanf(infile, "%u", &buffer);
 numpixels = width * height;
Scali MPI Connect Release 4.4 Users Guide 51

 /* read the image */
 for (i = 0; i < numpixels; i ++)
 {

 fscanf(infile, "%u", &buffer);
 pixels[i] = (unsigned char)buffer;

 }
 fclose(infile);
 /* calculate number of pixels for each node */
 my_count = numpixels / size;
 }
 /* broadcast to all nodes */
 MPI_Bcast(&my_count, 1, MPI_INT, 0, MPI_COMM_WORLD);
 /* scatter the image */
 MPI_Scatter(pixels, my_count, MPI_UNSIGNED_CHAR, recvbuf,
 my_count, MPI_UNSIGNED_CHAR, 0, MPI_COMM_WORLD);
 /* sum the squares of the pixels in the sub-image */
 my_sum = 0;
 for (i = 0; i < my_count; i ++)
 my_sum += recvbuf[i] * recvbuf[i];
 /* find the global sum of the squares */
 MPI_Reduce(&my_sum, &sum, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
 /* let rank 0 compute the root mean square */
 if (rank == 0)
 {
 rms = sqrt((double)sum / (double)numpixels);
 }
 /* rank 0 broadcasts the RMS to the other nodes */
 MPI_Bcast(&rms, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
 /* perform filtering operation (contrast enhancement) */
 for (i = 0; i < my_count; i ++)
 {
 val = 2 * recvbuf[i] - rms;
 if (val < 0) recvbuf[i] = 0;
 else if (val > 255) recvbuf[i] = 255;
 else recvbuf[i] = val;
 }
 /* gather back to rank 0 */
 MPI_Gather(recvbuf, my_count, MPI_UNSIGNED_CHAR, pixels,
 my_count, MPI_UNSIGNED_CHAR, 0, MPI_COMM_WORLD);
 /* dump the image from rank 0 */
 if (rank == 0)
 {
 outfile = fopen("try.pgm", "w");
 if (! outfile)

 {
 printf("unable to open try.ppm\n");
 }

 else
 {
 fprintf(outfile, "%s\n", (unsigned char*)line);
 fprintf(outfile, "%d %d\n", height, width);
 fprintf(outfile, "255\n");
 /* numpixels = height * width; */
 for (i = 0; i < numpixels; i ++)
 {
 fprintf(outfile, "%d\n", (int)pixels[i]);
Scali MPI Connect Release 4.4 Users Guide 52

 }
 fflush(outfile);
 fclose (outfile);
 }

 }
 MPI_Finalize();
 return 0;
}

A-2.1 File format
The code contains the logic to read and write images in .pgm format. This “Portable Gray Map”
format uses ASCII characters for encoding pixel intensities, as illustrated by the example
below:
P2

8 8

255

160 160 160 137 137 160 170 160

160 160 160 137 160 160 160 108

160 160 160 137 160 137 160 160

160 160 137 160 150 137 160 106

160 160 137 160 140 137 160 160

160 137 160 160 120 137 137 137

160 137 160 90 160 137 160 160

160 160 160 160 160 160 160 130

original

P2

8 8

255

168 168 168 122 122 168 188 168

168 168 168 122 168 168 168 64

168 168 168 122 168 122 168 168

168 168 122 168 148 122 168 60

168 168 122 168 128 122 168 168

168 122 168 168 88 122 122 122

168 122 168 28 168 122 168 168

168 168 168 168 168 168 168 108

enhanced contrast
Scali MPI Connect Release 4.4 Users Guide 53

Appendix B Troubleshooting

This appendix offers initial suggestions for what to do when something goes wrong with
applications running together with SMC. When problems occur, first check the list of common
errors and their solutions; an updated list of SMC-related Frequently Asked Questions
(FAQ) is posted in the Support section of the Scali website (http://www.scali.com). If you
are unable to find a solution to the problem(s) there, please read this chapter before contacting
support@scali.com.

Problems and fixes reported to Scali will eventually be included in the appropriate sections of
this manual. Please send relevant remarks by e-mail to support@scali.com.

Many problems find their origin in not using the right application code, daemons that Scali MPI
Connect rely on are stopped, and incomplete specification of network drivers. Below some
typical problems and their solutions are described. Troubleshooting the DAT functionality is
described in C-11.

B-1 When things do not work - troubleshooting
This section is intended to serve as a starting point to help with software and hardware
debugging. The main focus is on locating and repairing faulty hardware and software setup,
but can also be helpful in getting started after installing a new system. For a description of the
Scali Manage GUI, see the Scali System Guide.

B-1.1 Why does not my program start to run?
mpimon: command not found.
Include /opt/scali/bin in the PATH environment variable.

mpimon can’t find mpisubmon.
Set MPI_HOME=/opt/scali or use the -execpath option.

The application has problems loading libraries (libsca*).
Update the LD_LIBRARY_PATH to include /opt/scali/lib.

Incompatible MPI versions.
mpid, mpimon, mpisubmon and the libraries all have version variables that are checked at
start-up. To insure that these are correct, try the following:
1. Set the environment variable MPI_HOME correctly
2. Restart mpid, because a new version of ScaMPI has been installed without restarting

mpid
3. Reinstall SMC, because a new version of SMC was not cleanly installed on all nodes.

Set working directory failed
SMC assumes that there is a homogenous file-structure. If you start mpimon from a
directory that is not available on all nodes you must set SCAMPI_WORKING_DIRECTORY to
point to a directory that is available on all nodes.

ScaMPI uses wrong interface for TCP-IP on frontend with more than one
interface
Set SCAMPI_NODENAME to hostname of correct interface.

MPI_Wtime gives strange values
SMC uses a hardware-supported high precision timer for MPI_Wtime. This timer can be
disabled by using SCAMPI_DISABLE_HPT=1
Scali MPI Connect Release 4.4 Users Guide 54

Section:
B-1.2 Why can I not start mpid?
mpid opens a socket and assigns a predefined mpid port number (see /etc/services for more
information), to the end point. If mpid is terminated abnormally, the mpid port number cannot
be re-used until a system defined timer has expired. To resolve:

Use netstat -a | grep mpid to observe when the socket is released. When the socket is
released, restart mpid again.

B-1.2.1 Bad clean up
A previous SMC run has not terminated properly.
Check for mpi-processes on the nodes using /opt/scali/bin/scaps.
Use /opt/scali/sbin/scidle
Use /opt/scali/bin/scash to check for leftover shared memory segments on all nodes
(ipcs for Solaris and Linux).

Note: core dumping takes time.

B-1.2.2 Space overflow
The application has required too much SCI or shared memory resources.
The mpimon pool-size specifications are too large, and must be reduced.

B-1.3 Why does my program terminate abnormally?

B-1.3.1 Core dump
The application core dumps.
Use a debugger to locate the point of violation. The application may need to be recompiled
to include symbolic debug information (-g for most compilers).
Define SCAMPI_INSTALL_SIGSEGV_HANDLER=1 and attach to the failing process with the
debugger.

B-1.4 General problems
Are you reasonably certain that your algorithms are MPI safe?
Check if every send has a matching receive.

The program just hangs
If the application has a large degree of asynchronicity, try to increase the channel-size.
Further information is available in “Communication buffer adaption: If the communication
behaviour of the application is known, explicitly providing buffersize settings to mpimon, to
match the requirement of the application, will in most cases improve performance.
Example: Application sending only 900 bytes messages. Set channel_inline_threshold 964
(64 added for alignment) and increase the channel-size significantly (32-128 k). Setting
eager_size 1k and eager_count high (16 or more). If all messages can be buffered, the
transporter-{size, count} can be set to low values to reduce shared memory consumption.”
on page 47.

The program terminates without an error message
Investigate the core file, or rerun the program in a debugger.
Scali MPI Connect Release 4.4 Users Guide 55

Appendix C Install Scali MPI Connect

Scali MPI Connect can be installed on clusters in one of two ways, either as part of installing
clusters from scratch with Scali Manage, or by installing it on each particular node in systems
that do not use Scali Manage. In the first case the default when building clusters is to include
Scali MPI Connect as well, whereas in the second case the cluster is probably managed with
some other suite of tools that do not integrate with Scali MPI Connect. In the following the steps
needed to manually install Scali MPI Connect are detailed.

C-1 Per node installation of Scali MPI Connect
Scali MPI Connect must be installed on every node in the cluster. When running smcinstall
you should give arguments to specify your interconnects.

The -h option gives you details on the installation command and shows you which options you
need to specify in order to install the software components you want :

root# ./smcinstall -h

This is the Scali MPI Connect (SMC) installation program. The script will install
and configure Scali MPI Connect at the current node.
Usage: smcinstall [-atemszulixVh?]

-a Automatically accept license terms.
-t Install Scali MPI Connect for TCP/IP.
-e <eth devs> Install Scali MPI Connect for Direct Ethernet.

Use comma separated list for channel aggregation, and
additional -e options for multiple providers.

-m <filename|path>Install Scali MPI Connect for Myrinet.
<filename> is gm-2.x source file package (.tar.gz).
<path> path to pre-installed GM-2 software.

-b <filename|path>Install Scali MPI Connect for Infiniband.
<filename> is Mellanox SDK-3.x or IBGD source
file package (.tar.gz)
Please make sure to use the correctdriver-kernel version!
Consult the Mellanox Release Notes if in doubt.
<path> path to pre-installed Mellanox compatible software
(ex. software from InfiniCon, TopSpin or Voltaire)

-s Install Scali MPI Connect for SCI.
-z Install and configure SCI management software.
-u <licensefile> Install/upgrade license file and software.
-n <hostname> Specify hostname of scali license server.
-l Create license request (only necessary on license server).
-i Ignore SSP check.
-x Ignore errors.
-V Print version.
-h/-? Show this help message.

Note: You must have root privileges to install SMC.

One or more of the product selection options (-t, -e, -m, -b and -s) must be specified to install
a working MPI environment. The -u option can be used to install the license manager software
on a license sever, and the -z option can be used to install the SCI management software.
Scali MPI Connect Release 4.4 Users Guide 56

Section:
C-2 Install Scali MPI Connect for TCP/IP
To install Scali MPI Connect for TCP/IP, please specify the -t option to smcinstall. No further
configuration is needed.

C-3 Install Scali MPI Connect for Direct Ethernet
To install Scali MPI Connect for Direct Ethernet, please specify the -e option to smcinstall. This
option has the following additional syntax :

-e <eth devs> : configures DET provider(s). Use comma separated list
for channel aggregation. Use multiple -e options for additional DET providers.

Example:
root# ./smcinstall -e eth0 -e eth1,eth2

The command in the example will create a DET device (det0) using Ethernet interface eth0 and
then a DET device (det1) using eth1 and eth2 aggregated. Please not that aggregated devices
usually require special switch configurations, for example separate switches for each interface
channel or in some cases two different VLANs one for each channel.

C-4 Install Scali MPI Connect for Myrinet
To install Scali MPI Connect for Myrinet, please specify the -m option to smcinstall. This option
has the following additional syntax :

-m <filename|path>Install Scali MPI Connect for Myrinet.
<filename> is gm-2.x source file package (.tar.gz)
<path> is path to an exisitng gm installaton.

Examples:
root# ./smcinstall -m /home/download/gm-2.0.8_Linux.tar.gz

uses the GM source package /home/download/gm-2.0.8_Linux.tar.gz.

root# ./smcinstall -m /usr/local/gm

uses the GM installation in /usr/local/gm

When this option is selected SMC will default to Myrinet as the default transport device.
If this is not desired, modify the networks line in the global /opt/scali/etc/ScaMPI.conf
configuration file. See chapter2.2 “SMC network devices” on page 12 for more information
regarding network selection.

When SMC has finished installing all the required packages and an existing installation isn’t
found, the Myrinet GM drivers will start to build. If the build process finishes successfully, it will
install a package containing the relevant GM libraries, driver and binaries. The location of the
libraries and binaries is /opt/gm, and the kernel driver is installed in the appropriate kernel
module directory.
Scali MPI Connect Release 4.4 Users Guide 57

Section:
C-5 Install Scali MPI Connect for Infiniband
When installing for InfiniBand you must obtain a software stack from your vendor. The different
vendors provide stacks that differs. If you got a binary release, install it before SMC and give
the path to the infiniband software to the -b option to smcinstall.

Example:
root# ./smcinstall -b /opt/Infinicon

It is no problem if you install the InfiniBand software after SMC, you only need to modify
/opt/scali/etc/ScaMPI.conf to have the line:

networks = smp,ib0,tcp

and ensure that the VAPI library (libvapi.so) is in a directory listed in /etc/ld.so.conf.

If you're using the Mellanox source distribution you can give the path to the tarball directly and
smcinstall will compile, make a rpm and install it for you.

Example:
root# ./smcinstall -b /tmp/mellanox_sdk.tar.gz

C-6 Install Scali MPI Connect for SCI
To install Scali MPI Connect for SCI, please specify the -s option to smcinstall. When this option
is selected, SMC will default to SCI as the default transport device .If this is not desired, modify
the networks line in the global /opt/scali/etc/ScaMPI.conf configuration file. See “SMC
network devices” on page 12 for more information regarding network selection.

C-7 Install and configure SCI management software
This option must be used separately, and is needed when you are installing Scali MPI Connect
for SCI. It must be installed on only one node in your system, and it doesn’t have to be one of
the nodes you’re installing the other MPI software on, i.e it can be an management only node,
the only requirement is that this node must be connected and on the same TCP/IP subnet as
the others.

When using this option you are asked for the names of the other nodes in your cluster, and
also the topology of your SCI network (ring, 2D torus or 3D torus).

C-8 License options
-u <licensefile> - Install/upgrade license file and software.

If not specified during install, only the license manager software is installed. Without a license
file (license.dat), the software expects a centralized license scheme and looks for a license
server (specified in /opt/scali/etc/scalm.conf)

If smcinstall is run as:

root# /opt/scali/sbin/smcinstall -u <licfile>

the specified license file is installed and the Scali license manager software (scalm) is installed.
Scali MPI Connect Release 4.4 Users Guide 58

Section:
-n <hostname> - Specify hostname of Scali license server

This option tells the software which host to contact to check out a license. This can also be
manually edited by modifying the scalm_net_server parameter in
/opt/scali/etc/scalm.conf.

-l - Creates a license request to be sent to license@scali.com. Host information from the
license server must be included in the license request.

Scali MPI Connect is licensed software. You need a license from Scali to be able to run an MPI
application using the mpirun or mpimon program launcher. Usually Scali will provide a time-
limited demo license to be used for installation and system test. Then a permanent license
request is sent to license@scali.com by the user. Scali will process the license request and reply
with a permanent license file. This file must be installed as /opt/scali/etc/license.dat on
the license server using the following command (as described above):

root# /opt/scali/sbin/smcinstall -u <licfile>

C-9 Scali kernel drivers
Scali MPI Connect contains proprietary kernel mode drivers which are loaded into the kernel.
The drivers (ScaKal, ScaDET and ScaSCI) will automatically build to fit the running kernel,
provided that a fully configured kernel source tree is installed. This is provided by the kernel-
source RPM on SUSE and RedHat distributions, however SUSE might require some manual
configuration.

If the automatic build process fails, the drivers must be built manually using the script
/opt/scali/libexec/rebuild_module.sh in the following way :

root# /opt/scali/libexec/rebuild_module.sh scakal <path to your linux kernel source>

optionally :

root# /opt/scali/libexec/rebuild_module.sh scadet <path to your linux kernel source>

if Scali MPI Connect for Direct Ethernet is installed, and :

root# /opt/scali/libexec/rebuild_module.sh ssci <path to your linux kernel source>

if Scali MPI Connect for SCI is installed. To complete the process, re-run the smcinstall script
with the same options as previously used.

C-10 Uninstalling SMC
To remove Scali MPI Connect, use the script :

root# /opt/scali/sbin/smcunistall

C-11 Troubleshooting Network providers
The Scali MPI Connect now uses DAT as its API to connect to drivers for different interconnects.
In DAT terminology the drivers are called provider libraries, or dapl’s.
Scali MPI Connect Release 4.4 Users Guide 59

Section:
C-11.1 Troubleshooting 3rdparty DAT providers

The only requirements are that the libraries have the proper permissions for shared objects,
and that the /etc/dat.conf is formatted according to the standard.

All available devices are listed with the scanet command.

C-11.2 Troubleshooting the GM provider

The GM provider provides a network device for each Myrinet card installed on the node, named
gm0, gm1... etc.

To verify that the gm0 device is operational, run an MPI test job on two, or more, nodes in
question:

user% mpimon -networks gm0 /opt/scali/examples/bin/bandwidth -- node1 node2

If the gm0 devices fails, the MPI job should fail with a "[1] No valid network connection from
1 to 0" message.

First of all, keep in mind that the GM source must be obtained from Myricom, and compiled on
your nodes. Scali provides the ScaGMbuilder package to do the job for you, the README, and
RELEASE_NOTES (under /opt/scali/doc/ScaGMbuilder) describes the procedure.

If you have just in installed your cluster, upgraded the GM source or just replaced the kernel,
the compilation of GM is in progress (takes about 10 min) is run. Verify that the GM binary is
installed with:

root# rpm -q gm

This should report whether the package is installed or not.

The (re)build process require that compiler tools, and kernel source is installed on all nodes.

Verify that the "gm" kernel module is loaded by running lsmod(8) on the compute node in
question.

Verify that GM is operational, a

root# /opt/gm/bin/gm_board_info

is enough to check, you should see all the nodes on your GM network listed. (This command
must be run on a node with a Myrinet card installed!)

A simple cause of failure is that /opt/gm/lib is not in /etc/ld.so.conf and/or ldconfig is
not run, you will get a unable to find libgm.so error message is this is the case.
Scali MPI Connect Release 4.4 Users Guide 60

Section:
Scali MPI Connect Release 4.4 Users Guide 61

Appendix D Bracket expansion and grouping

To ease usage of Scali software on large cluster configuration, many of the command line
utilities have bracket expansion and grouping functionality.

D-1 Bracket expansion
The following syntax applies:

<bracket> == "["<number_or_range>[,<number_or_range>]*"]"
<number_or_range> == <number> | <from>-<to>[:<stride>]
<number> == <digit>+
<from> == <digit>+
<to> == <digit>+
<stride> == <digit>+
<digit> == 0|1|2|3|4|5|6|7|8|9

This is typically used to expand nodenames from a range, using from 1 to multi-dimensional
numbering, or an explicit list.

If <to> or <from> contains leading zeros, then the expansion will contain leading zeros such
that the width is constant and equal to the larger of the widths of <to> and <from>.

The syntax does not allow for negative numbers. <from> does not have to be less that <to>.

Examples:

n[0-2]
is equivalent to
n0 n1 n2

n[00-10:3]
is equivalent to
n00 n03 n06 n09

D-2 Grouping
Utilities that use scagroup will accept a group alias wherever a host name of hostlist i expected.
The group alias will be resolved to a list of hostnames as specified in the file scagroup config
file. If there exists a file .scagroup.conf in the users home directory, this will be used.
Otherwise, the system default file /opt/scali/etc/scagroup.conf will be used.

D-2.1 File format
Each group has the keyword group at the beginning of a line followed by a group alias and a
list of hostnames included in the group. The list may itself contain previously defined group
aliases which will be recursivly resolved. The host list may use bracket expressions which
will be resolved as specified above.

The file may contain comments which is a line starting with # .

Examples:
 group master n00
 group slaves n[01-32]
 group all master slaves
Scali MPI Connect Release 4.4 Users Guide 62

Section:
Scali MPI Connect Release 4.4 Users Guide 63

Appendix E Related documentation

[1] MPI: A Message-Passing Interface Standard
The Message Passing Interface Forum, Version 1.1, June 12, 1995,
Message Passing Interface Forum, http://www.mpi-forum.org

[2] MPI: The complete Reference: Volume 1, The MPI Core
Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, Jack Dongarra. 2e,
1998, The MIT Press, http://www.mitpress.com

[3] MPI: The complete Reference: Volume 2, The MPI Extension
William Grop, Steven Huss-Lederman, Ewing Lusk, Bill Nitzberg, W. Saphir, Marc Snir,
1998, The MIT Press, http://www.mitpress.com

[4] Dat Collaborative: User-level API-spesification(uDAPL)
http://www.datcollaborative.org

[5] Scali Manage Users Guide
Scali AS, http://www.scali.com/

[6] Scali MPI Connect Product Description
Scali AS, http://www.scali.com/

[7] Scali Free Tools
Scali AS, http://www.scali.com/

[8] Review of Performance Analysis Tools for MPI Parallel Programs
UTK Computer Science Department, http://www.cs.utk.edu/~browne/perftools-review/

[9] Debugging Tools and Standards
HPDF - High Performance Debugger Forum, http://www.ptools.org/hpdf/

[10] Parallel Systems Software and Tools
NHSE - National HPCC Software Exchange, http://www.nhse.org/ptlib

[11] MPICH - A Portable Implementation of MPI
The MPICH home page, http://www.mcs.anl.gov/mpi/mpich/index.html

[12] MPI Test Suites freely available
Argonne National Laboratory, http://www-unix.mcs.anl.gov/mpi/mpi-test/tsuite.html

[13] ROMIO - A high-performance, portable implemetation of MPI-IO
The I/O chapter in MPI-2. Homepage: http://www-unix.mcs.anl.gov/romio/
Scali MPI Connect Release 4.4 Users Guide 64

Section:
Scali MPI Connect Release 4.4 Users Guide 65

List of figures
1-1 A cluster system..5
2-1 The way from application startup to execution ... 11
2-2 Scali MPI Connect relies on DAT to interface to a number of interconnects 12
2-3 Thresholds for different communication protocol .. 16
2-4 Resources and communication concepts in Scali MPI Connect 17
3-1 /opt/scali/bin/mpirun -debug all ./kollektive-8 ./ultrasound_fetus-256x256-8.pgm ... 29
Scali MPI Connect Release 4.4 Users Guide 66

Section:
Scali MPI Connect Release 4.4 Users Guide 67

Index
B
Benchmarking ScaMPI..48
C
Communication protocols in ScaMPI ...16

Eagerbuffering protocol..17
Inlining protocol...17
Transporter protocol ... 17, 18

Communication resources in ScaMPI ..31
Compiling

ScaMPI ..21
ScaMPI example program ..22

E
Environment ..21
L
libfmpi ...22
libmpi ..22
Linking

ScaMPI ..22
M
MPI..64
mpi.h...33
mpiboot ...11
MPICH ...64
mpid..11
mpif.h ...33
mpimon .. 11, 24

Basic usage ...24
mpirun ..27
mpisubmon..11
Myrinet ..15
O
Optimize ScaMPI performance..48
P
Profiling

ScaMPI ..37
R
Running

ScaMPI ..23
ScaMPI example program ..21

S
ScaMPI

Builtin-segment-protect-violation-handler ..30
Builtin-timing...41
Builtin-trace...38
Executables ...11

SCAMPI_BACKOFF_ENABLE, backoff-mechanism ..48
SCAMPI_BACKOFF_IDLE,backoff-mechanism..48
SCAMPI_BACKOFF_MAX, backoff-mechanism ...48
SCAMPI_BACKOFF_MIN, backoff-mechanism..48
SCAMPI_DISABLE_HPT, disable high precision timer...54
Scali MPI Connect Release 4.4 Users Guide 68

SCAMPI_INSTALL_SIGSEGV_HANDLER, builtin SIGSEGV handler................................. 30, 55
SCAMPI_NODENAME, set hostname ...54
SCAMPI_TIMING, builtin timing-facility...41
SCAMPI_TRACE, builtin trace-facility ..38
SCAMPI_WORKING_DIRECTORY, set working directory ..54
SSP ...8
T
Troubleshooting ScaMPI ...54
Scali MPI Connect Release 4.4 Users Guide 69

	Chapter 1 Introduction
	1.1 Scali MPI Connect product context
	1.2 Support
	1.2.1 Scali mailing lists
	1.2.2 SMC FAQ
	1.2.3 SMC release documents
	1.2.4 Problem reports
	1.2.5 Platforms supported
	1.2.6 Licensing
	1.2.7 Feedback

	1.3 How to read this guide
	1.4 Acronyms and abbreviations
	1.5 Terms and conventions
	1.6 Typographic conventions

	Chapter 2 Description of Scali MPI Connect
	2.1 Scali MPI Connect components
	2.2 SMC network devices
	2.2.1 Network devices
	2.2.2 Shared Memory Device
	2.2.3 Ethernet Devices
	2.2.4 Myrinet
	2.2.5 Infiniband
	2.2.6 SCI

	2.3 Communication protocols on DAT-devices
	2.3.1 Channel buffer
	2.3.2 Inlining protocol
	2.3.3 Eagerbuffering protocol
	2.3.4 Transporter protocol
	2.3.5 Zerocopy protocol

	2.4 Support for other interconnects
	2.5 MPI-2 Features

	Chapter 3 Using Scali MPI Connect
	3.1 Setting up a Scali MPI Connect environment
	3.1.1 Scali MPI Connect environment variables

	3.2 Compiling and linking
	3.2.1 Running
	3.2.2 Compiler support
	3.2.3 Linker flags
	3.2.4 Notes on Compiling and linking on AMD64 and EM64T
	3.2.5 Notes on Compiling and linking on Power series
	3.2.6 Notes on compiling with MPI-2 features

	3.3 Running Scali MPI Connect programs
	3.3.1 Naming conventions
	3.3.2 mpimon - monitor program
	3.3.3 mpirun - wrapper script

	3.4 Suspending and resuming jobs
	3.5 Running with dynamic interconnect failover capabilities
	3.6 Running with tcp error detection - TFDR
	3.7 Debugging and profiling
	3.7.1 Debugging with a sequential debugger
	3.7.2 Built-in-tools for debugging
	3.7.3 Assistance for external profiling
	3.7.4 Debugging with Etnus Totalview

	3.8 Controlling communication resources
	3.8.1 Communication resources on DAT-devices

	3.9 Good programming practice with SMC
	3.9.1 Matching MPI_Recv() with MPI_Probe()
	3.9.2 Using MPI_Isend(), MPI_Irecv()
	3.9.3 Using MPI_Bsend()
	3.9.4 Avoid starving MPI-processes - fairness
	3.9.5 Unsafe MPI programs
	3.9.6 Name space pollution

	3.10 Error and warning messages
	3.10.1 User interface errors and warnings
	3.10.2 Fatal errors

	3.11 Mpimon options
	3.11.1 Giving numeric values to mpimon

	Chapter 4 Profiling with Scali MPI Connect
	4.1 Example
	4.2 Tracing
	4.2.1 Using Scali MPI Connect built-in trace
	4.2.2 Features

	4.3 Timing
	4.3.1 Using Scali MPI Connect built-in timing

	4.4 Using the scanalyze
	4.4.1 Analysing all2all

	4.5 Using SMC's built-in CPU-usage functionality

	Chapter 5 Tuning SMC to your application
	5.1 Tuning communication resources
	5.1.1 Automatic buffer management

	5.2 How to optimize MPI performance
	5.2.1 Performance analysis
	5.2.2 Using processor-power to poll
	5.2.3 Reorder network traffic to avoid conflicts

	5.3 Benchmarking
	5.3.1 How to get expected performance
	5.3.2 Memory consumption increase after warm-up

	5.4 Collective operations
	5.4.1 Finding the best algorithm

	Appendix A Example MPI code
	A-1 Programs in the ScaMPItst package
	A-2 Image contrast enhancement

	Appendix B Troubleshooting
	B-1 When things do not work - troubleshooting

	Appendix C Install Scali MPI Connect
	C-1 Per node installation of Scali MPI Connect
	C-2 Install Scali MPI Connect for TCP/IP
	C-3 Install Scali MPI Connect for Direct Ethernet
	C-4 Install Scali MPI Connect for Myrinet
	C-5 Install Scali MPI Connect for Infiniband
	C-6 Install Scali MPI Connect for SCI
	C-7 Install and configure SCI management software
	C-8 License options
	C-9 Scali kernel drivers
	C-10 Uninstalling SMC
	C-11 Troubleshooting Network providers

	Appendix D Bracket expansion and grouping
	D-1 Bracket expansion
	D-2 Grouping

	Appendix E Related documentation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

