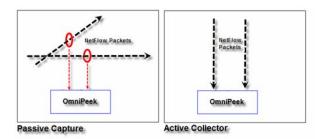


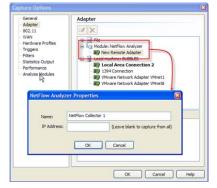
OmniPeek NetFlow Analyzer User's Guide


Introduction

We know, you love the OmniPeek UI (we all do), and you would like to use it to analyze packet based traffic as well as NetFlow statistics from the various Cisco Routers that are spread all over the network. Well guess what? Now you can do just that with the WildPackets NetFlow Analyzer for the OmniPeek Console!

The WildPackets NetFlow Analyzer is a remote adapter plug-in for the OmniPeek Console that captures and analyzes NetFlow traffic in two ways. Like other NetFlow clients, it can listen and collect NetFlow data that is being sent directly to it. But because

OmniPeek is a packet analyzer, the NetFlow Analyzer can also passively capture NetFlow packets being sent to other clients and display the NetFlow statistics for these packets as well. In both cases, the NetFlow statistics can be displayed in the monitor windows as well as individual capture windows.


Installation

To install and configure the NetFlow Analyzer Adapter, first download it from MyPeek, and install it onto a computer that already has OmniPeek Enterprise installed on it. Yes, the NetFlow Analyzer only works with OmniPeek Enterprise, so if you were thinking about an upgrade from Basic or Pro, now is definitely the time.

Configuration as a collector

To configure the NetFlow Analyzer as a collector, run OmniPeek and select the Monitor Adapter. The Monitor can be enabled by selecting Monitor from the top level menu, and then selecting Monitor Options. In the Monitor Options Dialog, go to the Adapter tab, open the NetFlow Analyzer group, and double-click on New Remote Adapter. When the NetFlow Properties Dialog appears, enter the unique name of the new

adapter and the IP address of the router the NetFlow data will be coming from, as shown below:

To collect and aggregate NetFlow data from more than one router, leave the IP Address blank.

Once the new NetFlow Analyzer entry has been created, select it and hit OK. That's it, the NetFlow Analyzer will now be listening on port 9996 for incoming NetFlow packets. Ah, but what if your router is sending NetFlow data to another port? There are two ways to address this. One is to configure the router to send the NetFlow data to port 9996. The other way is to change the port that

the NetFlow Analyzer is listening on. Changing the NetFlow Analyzer listen port is done by going to Tools -> Options -> Analysis Modules -> NetFlow Analyzer, hitting the Options button, and then changing the port as shown in the screenshot.

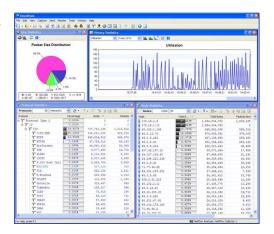
Router Configuration

It is important to note that in order to receive NetFlow data, a router must be configured to send it to the computer that the NetFlow Analyzer is running on. Configuring a router is outside the scope of these instructions, but I know it can be done!

Note: Keep in mind that if the router is sending NetFlow data, and the NetFlow analyzer is not collecting it, the computer being sent the data will respond with ICMP Destination Unreachable packets.

Using the NetFlow Analyzer

Ok, now the fun begins. To use the NetFlow Analyzer, go to the top level tool bar and select the icons shown in the following image:


Oh what a messy desktop you have. To clean this up, and make it look more like a dashboard, go to the top level Windows menu and select Tile. Now adjust the windows, you should see something like this:

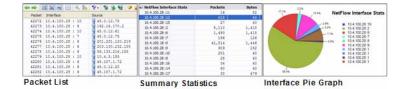
And that's it for the monitor, you are now all knowing and all powerful. But guess what, that's just the beginning.

Multiple NetFlow Capture Windows

With the global monitor you can collect NetFlow from one or more Cisco routers on different networks and aggregate the statistics into a single view. But let's say that you would like to monitor those networks separately. This can be achieved by creating separate NetFlow Adapter entries for each Cisco router, and creating a separate Capture Window for each.

As shown in the image, the key to separating different NetFlow feeds into separate captures is specifying the IP address of the Cisco Router in each NetFlow Adapter

entry. Of course, you can also use a non ip specific NetFlow Adapter entry for a real-time capture window as well and aggregate the feeds into a single capture window. The advantages of monitoring NetFlow with a capture window instead of the global monitor is that the Dashboard, the Expert, and the PeerMap are all capture window features, and not available in the global monitor. Below is a screen shot of a capture window with these features.



Capturing Other NetFlow Packets

As mentioned earlier, the NetFlow Analyzer can also capture NetFlow packets that are being sent to other devices, analyze the packets and display the NetFlow statistics. To capture and analyze NetFlow packets, create and enabled an Advanced Filter on the NetFlow Capture Analysis Module. This is done by creating a new filter, setting it from "Simple" to "Advanced". Next, select an Advanced Analysis Module node, and pick the NetFlow Analyzer from the list. When the NetFlow Filter is being used, packets captured by the adapter are not displyaed. Instead, packets representing the statistics from the NetFlow packets are displayed. This can be a little confusing at first since the Packets Received value at the top of the Capture Window will show the number of packets captured, while the Packets Filtered value will show the number of packets from the NetFlow statistics. Without any other filters enabled, the NetFlow Analyzer will capture and analyze all of the NetFlow packets on the port specified by the NetFlow port option. To target specific NetFlow packets simply add other filters.

Interface Statistics

Most routers have multiple interfaces, and NetFlow can report on any and/or all of them. The OmniPeek NetFlow Analyzer displays the interface for each packet in the packet list, and the interface statistics in the Summary Statistics. In turn, the Interface Statistics can be triggered on and graphed. Below are some screenshots of each:

NetFlow Versions

This version of the NetFlow Analyzer supports NetFlow versions 5, 9, and templates 256 and 257. If you are using other versions of NetFlow, and would like us to add support, please send us a trace file of the NetFlow packets.

Beta Notice

This version of the NetFlow Analyzer is a beta. We are excited about this innovative new tool and look forward to your feedback.

Limitations

Ah, but yes, there are limitations. The magic used by the NetFlow Analyzer to display NetFlow statistics in OmniPeek, is to collect the NetFlow data and create fake packets that are inserted into and processed by OmniPeek. For the most part, this works great. Features like Nodes, Protocols, Conversations, and Peer Map, and many of the Summary Statistics are accurate and useful. However, if you are so inclined to look at the packets, you will see that they are a facsimile of the real thing. They are real enough to generate useful statistics, but they are not meant to be analyzed. Because the packets are also generated based on the NetFlow data, the exact timestamp of the real packets is not known, and is generated using an algorithm to separate the timestamps of the packets evenly over the interval represented by each NetFlow record.

Also, this technique creates packets on the fly from NetFlow statistics that can represent very large numbers of packets. Because of this, best practices must be used in order for the NetFlow Analyzer to scale. At lower volumes the Expert can be used to display conversations. However, at higher volumes the Expert diagnoses should be disabled, and at even higher volumes the Expert itself should be disabled, and so and so forth. Obviously, the faster your computer, the more volume it will be able to process.

System Requirements

Hardware: The faster the better, with lots of memory. OS: Windows XP or Vista