Integrator/IM-AD1 User Guide

Copyright © 2001-2003. All rights reserved. ARM DUI 0163B

Integrator/IM-AD1 User Guide

Copyright © 2001-2003. All rights reserved.

Release Information

Date	Issue	Change	
Oct 2001	А	New document	
Nov 2003	В	Second release with minor corrections	

Proprietary Notice

Words and logos marked with [®] or [™] are registered trademarks or trademarks owned by ARM Limited, except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given by ARM in good faith. However, all warranties implied or expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable for any loss or damage arising from the use of any information in this document, or any error or omission in such information, or any incorrect use of the product.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Conformance Notices

This section contains conformance notices.

Federal Communications Commission Notice

This device is test equipment and consequently is exempt from part 15 of the FCC Rules under section 15.103 (c).

CE Declaration of Conformity

CE

The system should be powered down when not in use.

The Integrator generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment causes harmful interference to radio or television reception, which can be determined by turning the equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures:

- ensure attached cables do not lie across the card
- reorient the receiving antenna
- increase the distance between the equipment and the receiver
- · connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- consult the dealer or an experienced radio/TV technician for help.

— Note ———

It is recommended that wherever possible Shielded interface cables be used.

Contents Integrator/IM-AD1 User Guide

	Preta	ace	
		About this book	viii
		Feedback	xi
Chapter 1	Intro	oduction	
-	1.1	About the Integrator/IM-AD1	1-2
	1.2	Interface module features and architecture	1-4
	1.3	Links and LEDs	1-6
	1.4	Care of modules	1-7
Chapter 2	Gett	ing Started	
-	2.1	Fitting the interface module	2-2
	2.2	Setting up the logic module	2-3
	2.3	Running the test software	2-4
Chapter 3	Harc	Iware Reference	
-	3.1	Differences in signal routing between supported logic modules	3-2
	3.2	UART interface	3-3
	3.3	SPI	3-5
	3.4	PWM interface	3-6
	3.5	Stepper motor interface	3-8
	3.6	GPIO	3-12

3.7	CAN interface	3-14
3.8	ADC and DAC interfaces	3-18

Chapter 4	Reference Design Example			
•	4.1	About the design example		
	4.2	Example APB register peripheral	4-8	
	4.3	UART	4-13	
	4.4	SPI chip select register	4-14	
	4.5	Synchronous serial port	4-15	
	4.6	PWM controller	4-16	
	4.7	Stepper motor peripheral	4-17	
	4.8	GPIO	4-21	
	4.9	SSRAM interface	4-23	
	4.10	Vectored interrupt controller	4-24	
	4.11	CAN controller interface	4-26	
	4.12	ADC and DAC interface	4-27	
	4.13	Peripheral information block	4-28	
Appendix A	Signa	Il Descriptions		
	A.1	EXPA	A-2	
	A.2	EXPB	A-4	
	A.3	EXPIM	A-6	
	A.4	Logic analyzer connector	A-8	
	A.5	Multi-ICE (JTAG)	A-10	

Appendix B Mechanical Specification

B.1	Mechanical information	B-2
B.2	Connector reference	B-4

Glossary

Preface

This preface introduces the Integrator/IM-AD1 interface module and its user documentation. It contains the following sections:

- About this book on page viii
- *Feedback* on page xi.

About this book

This book provides user information for the ARM Integrator/IM-AD1 interface module. It describes the major features and how to use the interface module with an Integrator development platform.

Intended audience

This book is written for all developers who are using an Integrator/LM logic module to develop ARM-based devices. It assumes that you are an experienced developer, and that you are familiar with the ARM development tools.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the Integrator/IM-AD1 interface module. This chapter describes the main features of the interface module and identifies the main components.

Chapter 2 Getting Started

Read this chapter for information about preparing the interface module for use with a logic module and Integrator/AP motherboard.

Chapter 3 Hardware Reference

Read this chapter for a description of the interface module hardware.

Chapter 4 Reference Design Example

Read this chapter for a description of the example logic module configuration supplied that enables you to experiment with the interface module.

Appendix A Signal Descriptions

Read this appendix for connector pinout information.

Typographical conventions

italic	Highlights important notes, introduces special terminology, denotes internal cross-references, and citations.
bold	Highlights interface elements, such as menu names. Denotes ARM processor signal names. Also used for terms in descriptive lists, where appropriate.
monospace	Denotes text that can be entered at the keyboard, such as commands, file and program names, and source code.
<u>mono</u> space	Denotes a permitted abbreviation for a command or option. The underlined text can be entered instead of the full command or option name.
monospace italic	Denotes arguments to commands and functions where the argument is to be replaced by a specific value.
monospace bold	Denotes language keywords when used outside example code.

The following typographical conventions are used in this book:

Further reading

This section lists publications from both ARM Limited and third parties that provide additional information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list on the ARM web site.

ARM publications

The following documents provide information about related Integrator products:

- ARM Integrator/AP User Guide (ARM DUI 0098)
- ARM Integrator/CM9x6E-S User Guide (ARM DUI 0138)
- ARM Integrator/CM920T-ETM User Guide (ARM DUI 0149)
- ARM Integrator/CM9x0T and CM7x0T User Guide (ARM DUI 0157)
- ARM Integrator/CM7TDMI User Guide (ARM DUI 0126)
- ARM Integrator/LM-XCV600E+ and LM-EP20K600E+ User Guide (ARM DUI 0146).

The following publications provide information about ARM PrimeCell devices that can be used to control some of the interfaces described in this manual:

- ARM PrimeCell UART (PL011) Technical Reference Manual (ARM DDI 0183)
- ARM PrimeCell Synchronous Serial Port Master and Slave (PL022) Technical Reference Manual (ARM DDI 0194)
- ARM PrimeCell DC-DC Converter Interface (PL160) Technical Reference Manual (ARM DDI 0147)
- ARM PrimeCell Vectored Interrupt Controller (PL190) Technical Reference Manual (ARM DDI 0181).

The following publications provide reference information about ARM architecture:

- AMBA Specification (ARM IHI 0011)
- ARM Architectural Reference Manual (ARM DDI 0100).

The following publications provide information about the ARM Developer Suite:

- *Getting Started* (ARM DUI 0064)
- ADS Tools Guide (ARM DUI 0067)
- ADS Debuggers Guide (ARM DUI 0066)
- ADS Debug Target Guide (ARM DUI 0058)
- ADS Developer Guide (ARM DUI 0056)
- ADS CodeWarrior IDE Guide (ARM DUI 0065).

The following publication provides information about Multi-ICE:

• *Multi-ICE User Guide* (ARM DUI 0048).

Third-party documents

The following documents provide information about third-party components used on the Integrator/IM-AD1:

- CC770 Stand Alone CAN Controller Target Specification
 Robert Bosch GmbH
- L6506 L6506D Current Controller For Stepping Motors
 SGS-Thomson Microelectronics
- L298 Dual Full Bridge Driver
 SGS-Thomson Microelectronics
- AD7859 Datasheet Analog Devices, Inc.
- AD5342 Datasheet Analog Devices, Inc.

Feedback

ARM Limited welcomes feedback on both the Integrator/IM-AD1 and its documentation.

Feedback on this document

If you have any comments on this book, please send email to errata@arm.com giving:

- the document title
- the document number
- the page number(s) to which your comments apply
- a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the Integrator/IM-AD1

If you have any comments or suggestions about this product, please contact your supplier giving:

- the product name
- an explanation of your comments.

Preface

Chapter 1 Introduction

This chapter introduces the Integrator/IM-AD1. It contains the following sections:

- About the Integrator/IM-AD1 on page 1-2
- Interface module features and architecture on page 1-4
- Links and LEDs on page 1-6
- *Care of modules* on page 1-7.

1.1 About the Integrator/IM-AD1

The Integrator/IM-AD1 is an interface module that is designed to be used in conjunction with the Integrator/LM-XCV600E+ or LM-EP20K600E+ and future compatible logic modules. It provides several standard automotive and industrial interfaces, and can be used for:

- proof of concept and application development
- benchmarking
- PrimeCell development and testing
- SoC prototyping.

The interface module is designed to be mounted on top of the logic module and provides connectivity for peripherals in the logic module FPGA.

Figure 1-1 on page 1-3 shows the layout of the IM-AD1 and identifies the connectors.

The IM-AD1 can be used to implement additional peripherals to aid software development, for example additional timers or a vector interrupt controller. The IM-AD1 product consists of:

- a fully populated PCB
- example bit files for an LM
- example driver source code
- this documentation.

Figure 1-1 Integrator/IM-AD1 layout

1.2 Interface module features and architecture

This section describes the main features of the interface module and its architecture.

1.2.1 Features

The main features of the interface module are as follows:

- two Bosch CC770 Controller Area Network (CAN) controllers
- two 8-channel 12-bit *Analog to Digital Converters* (ADC) with 200ksamples/s sampling rate and 0-5V buffered inputs
- two 12-bit Digital to Analog Converter (DAC) channels with 0-5V outputs
- two L298 stepper motor drivers configured for bipolar motors
- two stepper motor control outputs for use with off-board drivers
- two 3A MOSFETs configured as switches for the *Pulse Width Modulated* (PWM) outputs
- RS232 serial transceiver
- two 32-bit General Purpose Input Output (GPIO) connectors
- JTAG (Multi-ICE) pass-through connector
- logic analyzer connector connected to the GPIO bus.

1.2.2 Architecture

Figure 1-2 shows the architecture of the interface module. For more detail on signal routing between the expansion connectors and the interface circuits, see Chapter 3 *Hardware Reference*.

Figure 1-2 Integrator/IM-AD1 block diagram

1.3 Links and LEDs

The interface module provides one link and one LED. These are the CONFIG link and CONFIG LED.

Fitting the CONFIG link places all of the modules in the stack on which the interface module is mounted into CONFIG mode. This mode enables you to reprogram the FPGA image in the configuration flash on the logic module(s) using Multi-ICE (see the user guide for the logic module).

The CONFIG LED lights to indicate when the stack is in CONFIG mode.

1.4 Care of modules

This section contains advice about how to prevent damage to your Integrator modules.

— Caution ———

To prevent damage to your Integrator system, observe the following precautions:

- When removing a core or logic module from a motherboard, or when separating modules, take care not to damage the connectors. Do not apply a twisting force to the ends of the connectors. Loosen each connector first before pulling on both ends of the module at the same time.
- Use the system in a clean environment and avoid debris fouling the connectors on the underside of the PCB. Blocked holes can cause damage to connectors on the motherboard or module below. Visually inspect the module to ensure that connector holes are clear before mounting it onto another board.
- Observe *ElectroStatic Discharge* (ESD) precautions when handling any Integrator board.

Integrator/IM Interface Modules are designed to connect with ARM and third party development platforms that meet the interface specification. Interface Modules connect to the top of a stack because there are no EXPA/B connectors on the top side.

Introduction

Chapter 2 Getting Started

This chapter describes how to set up and start using the logic module. It contains the following sections:

- *Fitting the interface module* on page 2-2
- Setting up the logic module on page 2-3
- *Running the test software* on page 2-4

2.1 Fitting the interface module

The interface module is installed at the top of a stack of up to four logic modules. However, it only provides interface connections for the logic module immediately beneath it.

Figure 2-1 shows an example system comprising a core module and logic module attached to an Integrator/AP (see the *Integrator/AP User Guide* for more details). The interface module is installed at the top of the logic module stack.

Figure 2-1 Assembled Integrator development system

2.2 Setting up the logic module

You must load the required peripheral controllers into the logic module FPGA to drive the interfaces. The interface module is supplied with example configurations that provide PrimeCell peripherals for supported logic modules.

The logic module can be programmed using Multi-ICE with or without the IM-AD1 fitted. If the IM-AD1 is fitted however, the manufacturer-specific download connector on the logic module is inaccessible. See the logic module user guide for detailed instructions on downloading new FPGA configurations

To download the supplied example logic module FPGA configuration using Multi-ICE:

- 1. Insert CONFIG link on the logic module (or IM-AD1 if fitted to logic module).
- 2. Connect Multi-ICE unit to J10 on the logic module (or J9 on the IM-AD1).
- 3. Power up the Integrator system.
- 4. Start the Multi-ICE server on your PC and click the Autoconfigure button.
- 5. If you are using an Altera logic module, LM-EP20K1000E, switch 4 of switchpack S1 must be set to the CLOSED position.
- 6. Browse to: *Install_directory*\IM-AD1\configure.
- 7. Double-click the progcards.exe program file.
- 8. The progcards program automatically detects whether the logic module is an Altera or a Xilinx module and uses the appropriate .brd file to download the configuration file.
- 9. After the programming has completed:
 - power down the system
 - remove the CONFIG link
 - move the Multi-ICE connection to the core module.
- 10. Set the S1 switches on the logic module as follows:
 - Switch 1OpenSwitch 2ClosedSwitch 3OpenSwitch 4Open.

The logic module will now be configured with the example design.

If the IM-AD1 is not already fitted, install it on top of the logic module and the system is ready to use.

2.3 Running the test software

The supplied test program tests each of the interfaces on the IM-AD1. The example logic module configuration must be programmed into the logic module before the test program can be run.

— Note —

The test software requires various cables to be connected to the IM-AD1, details of these are given in the readme.txt file on the IM-AD1 CD.

To run the test program:

- 1. Connect a Multi-ICE unit to the core module.
- 2. Power up the Integrator system.
- 3. Start the Multi-ICE server and autoconfigure it.
- 4. Browse to:

Install_directory\IM-AD1\example\software\selftest\build\ads1.1\selftest_Data\Release

- 5. Double-click the selftest.axf file. This starts the ARM debugger and loads the test program.
- 6. Check the debugger is configured to use Multi-ICE by selecting **Options** \rightarrow **Configure Target**. If Multi-ICE is not highlighted, select it and click **OK**.
- 7. Click Yes at the Reload last image prompt.
- 8. Press the **Go** button on the debugger to run the test software.

Use the menu in the debugger console window to test individual interfaces or to run all the tests on all interfaces.

Chapter 3 Hardware Reference

This chapter describes the hardware interfaces and controllers on the interface module. This chapter contains the following sections:

- Differences in signal routing between supported logic modules on page 3-2
- *UART interface* on page 3-3
- SPI on page 3-5
- *PWM interface* on page 3-6
- *Stepper motor interface* on page 3-8
- GPIO on page 3-12
- CAN interface on page 3-14
- ADC and DAC interfaces on page 3-18.

3.1 Differences in signal routing between supported logic modules

The Integrator/LM-XCV600E+ and LM-EP20K600E+ logic module types route the signals from the interface module differently as follows:

The

– Note –

- LM-XCV600E+ is fitted with a Xilinx FPGA and routes the interface module **ABANK[59:0]** signals to bank 0 on the FPGA and the **BBANK[53:0]** signals to bank 1 on the FPGA.
- The LM-EP20K600E+ is fitted with an Altera FPGA and routes the interface module **ABANK[59:0]** signals to bank 5 on the FPGA and the **BBANK[53:0]** signals to bank 6 on the FGPA.

These pin assignments are contained in the example pin constraints file on the CD supplied with the interface module.

3.2 UART interface

The interface module provides one serial transceiver suitable for use with the PrimeCell UART (PL011) or other similar peripheral. Figure 3-1 shows the architecture of the UART interface.

Figure 3-1 Serial interface

The signals associated with the UART interface are assigned to the EXPIM socket pins as shown in Table 3-1.

Signal name	EXPIM connector	Description
UART_TXD	IM_BBANK41	Transmit data
UART_RTS	IM_BBANK42	Ready to send
UART_DTR	IM_BBANK43	Data terminal ready
UART_RXD	IM_BBANK44	Receive data
UART_DCD	IM_BBANK45	Data carrier detect
UART_DSR	IM_BBANK46	Data set ready
UART_CTS	IM_BBANK47	Clear to send
UART_RI	IM_BBANK48	Ring indicator

Table 3-1	Serial	interface	signal	assignment
-----------	--------	-----------	--------	------------

The serial interface uses a 9-pin D-type male connector for which the pin numbering is shown in Figure 3-2.

Figure 3-2 Serial connector pinout

Table 3-2 shows the signal assignment for the connector.

Pin	J18	Туре	Description
1	SER_DCD	Input	Data carrier detect
2	SER_RXD	Input	Receive data
3	SER_TXD	Output	Transmit data
4	SER_DTR	Output	Data terminal ready
5	SER_GND	Input	ground
6	SER_DSR	Input	Data set ready
7	SER_RTS	Output	Ready to send
8	SER_CTS	Input	Clear to send
9	SER_RI	Input	Ring indicator

Table 3-2 Serial connector signal assignment

_____Note _____

The serial interfaces signals operate at RS232 signal levels.

Serial port functionality corresponds to the DTE configuration.

3.3 SPI

This interface module provides two connectors for SPI ports. They are connected directly to the logic module FPGA and are used by the SSP PrimeCell (PL022) in the example configuration.

Table 3-3 shows the assignment of the SPI signals to the logic module signals on the EXPIM connector.

Table	3-3	SPI	signals
-------	-----	-----	---------

Signal	EXPIM connector	Description
SPI_CLK	IM_BBANK31	SPI Clock
SPI_TXD	IM_BBANK32	SPI transmit data
SPI_RXD	IM_BBANK33	SPI receive data
SPI_nCS0	IM_BBANK34	SPI chip select 0
SPI_nCS1	IM_BBANK35	SPI chip select 1
SPI_nCS2	IM_BBANK36	SPI chip select 2

Three chip select signals are provided to allow connection of three separate SPI devices. The SPI signals are routed to two connectors, J11 and J13, for ease of connection to different SPI devices, although both are connected to the same set of signals.

Figure 3-3 shows the pinout of the SPI connectors.

Figure 3-3 SPI interface connector pinout

3.4 PWM interface

The interface module is fitted with a dual MOSFET switch. This provides two outputs that can be configured as *Pulse Width Modulated* (PWM) outputs or used as DC switches to switch external loads.

The MOSFET can switch loads at up to 30V. Although the MOSFET is rated for 3A, because of the power dissipation of the package the maximum load current is 2.5A if only one PWM output is used or 1.75A if both outputs are used.

—— Warning ———

The device U21, fitted to the underside of the PCB, and the surrounding area of the board becomes very hot when high load currents are used.

As a PWM output, the interfaces can be driven by the DC-DC PrimeCell (PL160). The DC-DC PrimeCell has feedback inputs that negate the drive outputs when LOW. These inputs can be used to implement a current limit with external circuitry.

Table 3-4 shows the assignment of the PWM interface signals to the logic module signals on the EXPIM connector.

Signal	EXPIM connector	Description
PWM1_DRIVE	IM_BBANK37	PWM1 switch control signal
PWM2_DRIVE	IM_BBANK38	PWM2 switch control signal
PWM1_FB	IM_BBANK39	PWM1 feedback
PWM2_FB	IM_BBANK40	PWM2 feedback

Table 3-4 PWM interface signals

Figure 3-4 shows the pin numbering of the PWM connectors.

Figure 3-4 PWM interface connector (J10/J14)

Hardware Reference

Table 3-5 shows the signal assignment.

Pin	J14	J10	Description
1	PWM1_+V	PWM2_+V	PWM supply voltage
2	PWM1_SWITCH	PWM2_SWITCH	PWM switched load connection
3	PWM1_FB	PWM2_FB	PWM feedback signal
4	PWM_GND	PWM_GND	PWM ground

Table 3-5 PWM connector signals

3.5 Stepper motor interface

The IM-AD1 provides four stepper motor interfaces. Two of these, Step 1 and Step 2, are provided with on-board motor drivers for bipolar motors. The remaining two, Step 3 and Step 4, provide logic-level signals that are connected to two 10-pin headers. This enables you to connect to off-board motor drivers.

3.5.1 Functional description

The on-board stepper motor drivers comprise a L6506 current controller and L298 bridge drivers. These are controlled directly by outputs from the logic module and are configured to drive bipolar motors. Figure 3-5 shows the architecture of one stepper motor driver.

Figure 3-5 Stepper motor drivers (Step 1)

The L298 contains driver circuitry for two bridges, and each bridge has separate enable signals. The enable signals and four phase drive signals are supplied by a stepper motor controller instantiated in the logic module FPGA (see Chapter 4 *Reference Design Example*). The controller logic uses the 4MHz **IM_CLK** signal divided to provide a step clock.

The L6506 uses a chopper circuit, operating at a frequency of 21kHz, to control the current on the phase drive signals to the stepper motor. A 0.1Ω sense resistor is provided to generate a voltage drop that is proportional to the motor current. The sense voltage is compared against a reference voltage of 0.15V that is supplied to the L6506 by a resistive divider. When the reference voltage is reached, the phase drive signals are turned off until the start of the next chopper period.

The current limit is set by the reference voltage and sense resistor according to the equation:

$$I_{\text{peak}} = \frac{V_{\text{ref}}}{R_{\text{sense}}}$$

Therefore, with a 0.1Ω sense resistor fitted:

 $I_{peak} = 0.15 \text{ x } 10 = 1.5 \text{ A}$

The reference voltage, and therefore the current limit, can be adjusted by altering the values of the divider resistors. Although the DC current switching limit of L298 is 2A, due to the power dissipation limit of the device and the heatsink, the maximum load current for each stepper winding is 1.5A. The L298 can switch drive voltages up to 46V.

—— Warning ——

The L298 devices, U24 and U26, and their heatsinks are very hot when high load currents are used.

3.5.2 Stepper motor interface signal summary

Table 3-6 shows the assignment of the stepper motor interface signals to the logic module signals on the EXPB connector.

Signal	EXPB connector	Description
STEP1_ENA	F0	Enable signal for STEP1_O1 and STEP1_O2
STEP1_ENB	F1	Enable signal for STEP1_O3 and STEP1_O4
STEP1_PH1	F2	Step1 phase 1 drive signal
STEP1_PH2	F3	Step1 phase 2 drive signal
STEP1_PH3	F4	Step1 phase 3 drive signal
STEP1_PH4	F5	Step1 phase 4 drive signal
STEP2_ENA	F6	Enable signal for STEP2_O1 and STEP2_O2
STEP2_ENB	F7	Enable signal for STEP2_O3 and STEP2_O4

Table 3-6 Stepper motor interface signals

Signal	EXPB connector	Description
STEP2_PH1	F8	Step2 phase 1 drive signal
STEP2_PH2	F9	Step2 phase 2 drive signal
STEP2_PH3	F10	Step2 phase 3 drive signal
STEP2_PH4	F11	Step2 phase 4 drive signal
STEP3_ENA	F12	Enable signal for STEP3_O1 and STEP3_O2
STEP3_ENB	F13	Enable signal for STEP3_O3 and STEP3_O4
STEP3_PH1	F14	Step3 phase 1 drive signal
STEP3_PH2	F15	Step3 phase 2 drive signal
STEP3_PH3	F16	Step3 phase 3 drive signal
STEP3_PH4	F17	Step3 phase 4 drive signal
STEP4_ENA	F18	Enable signal for STEP4_O1 and STEP4_O2
STEP4_ENB	F19	Enable signal for STEP4_O3 and STEP4_O4
STEP4_PH1	F20	Step4 phase 1 drive signal
STEP4_PH2	F21	Step4 phase 2 drive signal
STEP4_PH3	F22	Step4 phase 3 drive signal
STEP4_PH4	F23	Step4 phase 4 drive signal

Table 3-6 Stepper motor interface signals (continued)

3.5.3 Stepper motor connectors

Figure 3-6 shows the pin numbering of the stepper motor connectors.

Figure 3-6 Stepper motor connector (J19/J23)

Table 3-7 shows the signal assignment.

Pin	J19	J23 Description	
1	STEP1_VSS	STEP2_VSS	Stepper motor supply
2	STEP1_01	STEP2_O1	Stepper motor drive output 1
3	STEP1_O2	STEP2_O2	Stepper motor drive output 2
4	STEP1_O3	STEP2_O3	Stepper motor drive output 3
5	STEP1_O4	STEP2_O4	Stepper motor drive output 4
6	STEP_GND	STEP_GND	Stepper motor ground

Table 3-7 Stepper motor connector signals

3.6 GPIO

The interface module provides two connectors for GPIO interfaces. Each connector provides 32 GPIO lines connected directly to the logic module FPGA. The connectors are shown in Figure 3-7.

	J17	_		J16	_
+5V		+3V3	+5V		+3V3
GND		GPIOA0	GND		GPIOB0
GPIOA1		GND	GPIOB1		GND
GPIOA2		GPIOA3	GPIOB2		GPIOB3
GPIOA4		GND	GPIOB4		GND
GPIOA5		GPIOA6	GPIOB5		GPIOB6
GPIOA7		GND	GPIOB7		GND
GPIOA8		GPIOA9	GPIOB8		GPIOB9
GPIOA10		GND	GPIOB10		GND
GPIOA11		GPIOA12	GPIOB11		GPIOB12
GPIOA13		GND	GPIOB13		GND
GPIOA14		GPIOA15	GPIOB14		GPIOB15
GPIOA16		GND	GPIOB16		GND
GPIOA17		GPIOA18	GPIOB17		GPIOB18
GPIOA19		GND	GPIOB19		GND
GPIOA20		GPIOA21	GPIOB20		GPIOB21
GPIOA22		GND	GPIOB22		GND
GPIOA23		GPIOA24	GPIOB23		GPIOB24
GPIOA25		GND	GPIOB25		GND
GPIOA26		GPIOA27	GPIOB26		GPIOB27
GPIOA28		GND	GPIOB28		GND
GPIOA29		GPIOA30	GPIOB29		GPIOB30
GPIOA31		GND	GPIOB31		GND
+12V		-12V	+12V		-12V
+5v		+3V3	+5v		+3V3
	49 50			49 50	

Figure 3-7 GPIO connectors J16 and J17
The example configuration includes two simple 32-bit GPIO controllers. **GPIOA[31:0]** connect to the EXPIM signals **IM_ABANK[31:0]** and **GPIOB[31:0]** connects to the EXPA signals **B[31:0]**. The **B[31:0]** signals can be monitored on the logic analyzer connector J7.

3.7 CAN interface

The IM-AD1 has two CAN interfaces provided by Bosch CC770 serial communications controllers. The network interfaces are provided by Philips TJA1050 transceivers, each capable of 1Mb/s data transfer.

Figure 3-8 shows the architecture of the CAN interface. The CAN controllers are 5V devices and are supported by buffers at their interface with the 3.3V system buses provided by the logic module. The CAN controllers are configured to operate with an 8-bit non-multiplexed asynchronous host interface. Each of the CAN controllers has a 16MHz crystal that it uses for its internal clocks.

Figure 3-8 CAN interface architecture

All interface signals are routed to the logic module. The CAN controllers are supported by an AHB interface instantiated into the logic module code example supplied with the IM-AD1.

The transmit and receive data signals, **CANx_TXD** and **CANx_RXD**, at the EXPIM connectors are not used for the normal operation of the interfaces. They are provided to allow you to implement your own CAN controller logic in the logic module FPGA.

The surface mount links, LK1 and LK2, are provided so that the transmit data signals to the TJA1050 transceivers can be driven either from the CAN controllers or directly from the logic module FPGA.

Table 3-8 shows the assignment of the CAN controller interface signals to the logic module signals on the EXPIM connector.

Signal	EXPIM connector	Description	
CAN_A[7:0]	IM_BBANK[7:0]	CAN address bus	
CAN_D[7:0]	IM_BBANK[8:15]	CAN data bus	
CAN_T/R	IM_BBANK16	CAN buffer direction control	
CAN_nOE	IM_BBANK17	CAN buffer output enable	
CAN1_nRESET	IM_BBANK18	CAN1 reset signal	
CAN2_nRESET	IM_BBANK19	CAN2 reset signal	
CAN_R/nW	IM_BBANK20	CAN read / write	
CAN1_nCS	IM_BBANK21	CAN1 chip select	
CAN2_nCS	IM_BBANK22	CAN2 chip select	
CAN1_TXD	IM_BBANK23	CAN1 transmit data	
CAN2_TXD	IM_BBANK24	CAN2 transmit data	
CAN1_nDSACK0	IM_BBANK25	CAN1 data acknowledge	
CAN2_nDSACK0	IM_BBANK26	CAN2 data acknowledge	
CAN1_nINT	IM_BBANK27	CAN1 interrupt	

Table 3-8 CAN interface signal assignment

Signal	EXPIM connector	Description
CAN2_nINT	IM_BBANK28	CAN2 interrupt
CAN1_RXD	IM_BBANK29	CAN1 receive data
CAN2_RXD	IM_BBANK30	CAN2 receive data

Table 3-8 CAN interface signal assignment (continued)

You connect the CAN interfaces through the 9-pin D-type plugs J3A (top) and J3B (bottom), with CAN1 connecting to J3A.

Figure 3-9 shows the pin locations for this type of connector.

Figure 3-9 CAN connector pin locations

Table 3-9 shows the signal assignment.

Pin	J3A	J3B
1	Not connected	Not connected
2	CAN1_L	CAN2_L
3	GND	GND
4	Not connected	Not connected
5	GND	GND
6	GND	GND
7	CAN1_H	CAN2_H
8	Not connected	Not connected
9	Not connected	Not connected

Table 3-9 CAN connector signal assignments

3.8 ADC and DAC interfaces

The interface module provides two *A* to *D* Converters (ADC) and a *D* to *A* Converter (DAC). The two ADCs each provide eight analog inputs with buffered 0-5V inputs, an internal multiplexer, and a 12-bit converter. The ADCs provide a 16-bit host interface with conversion data appearing on **D**[11:0] (and zeros on **D**[15:12]). The ADCs are clocked by a 4MHz crystal and are able to perform 200ksamples/s.

The DAC provides two 0-5V outputs with a 12-bit resolution.

The ADCs and DAC are powered from a 5V supply and share buffers to interface them to the 3.3V system bus provided by the logic module.

Figure 3-10 shows the architecture of the ADCs and DACs.

Figure 3-10 ADC and DAC interface architecture

All of the interface signals are routed to the FPGA on the logic module. The ADCs and DAC are supported by an AHB interface that is instantiated in the logic module code example supplied with the IM-AD1.

Table 3-10 shows the assignment of the ADC and DAC interface signals to the logic module signals on the EXPIM connector.

Signal	EXPIM connector	Description
AD_D[15:0]	IM_ABANK[47:32]	ADC and DAC data bus
AD_T/R	IM_ABANK48	Buffer direction control
AD_nOE	IM_ABANK49	Buffer output enable
ADC1_nCONV	IM_ABANK50	ADC1 conversion start signal
ADC1_nCS	IM_ABANK51	ADC1 chip select
ADC1_nWR	IM_ABANK52	ADC1 write strobe
ADC1_nRD	IM_ABANK53	ADC1 read strobe
ADC2_nCONV	IM_ABANK54	ADC2 conversion start signal
ADC2_nCS	IM_ABANK55	ADC2 chip select
ADC2_nWR	IM_ABANK56	ADC2 write strobe
ADC2_nRD	IM_ABANK57	ADC2 read strobe
ADC1_BUSY	IM_ABANK58	ADC1 busy
ADC2_BUSY	IM_ABANK59	ADC2 busy
DAC_nCLR	IM_BBANK49	DAC clear
DAC_nLDAC	IM_BBANK50	DAC load signal
DAC_A0	IM_BBANK51	DAC address bit
DAC_nCS	IM_BBANK52	DAC chip select
DAC_nWR	IM_BBANK53	DAC write strobe
ADC_CLK	IM_CLK	ADC clock

Table 3-10	ADC	and DAC	interface	signal	S
------------	-----	---------	-----------	--------	---

The ADCs are clocked from a 4MHz oscillator. This also supplies the **IM_CLK** signal routed to the logic module FPGA. This is used in the example logic to clock the DC-DC converter PrimeCell peripheral and the stepper motor interfaces.

The analog inputs to the ADCs are buffered by LMV324 operational amplifiers (op-amps). The op-amps are configured to give unity gain but the inputs have a resistive divider that divides the input voltage by 2. A 0-5V input signal range at the buffer inputs provides a 0-2.5V full range at the ADC input. If different input ranges are required the divider resistor values can be changed.

The op-amp buffers cannot drive their outputs lower than 65mV. This means input signals less than 130mV will have incorrect ADC values.

The reference voltage from one of the ADCs is buffered and fed to the reference inputs of the other ADC and the DAC so that all devices share a common reference. The GAIN input to the DAC is tied HIGH to configure the output range of the DAC to be 0 to 2xVref.

Figure 3-11 shows the pinout of the ADC interface connector (J1).

Figure 3-11 ADC connector pinout

Figure 3-12 shows the pinout of the DAC interface connector (J2).

Figure 3-12 DAC connector pinout

Hardware Reference

Chapter 4 Reference Design Example

This chapter describes how to set up and start using the supplied example design. It contains the following sections:

- *About the design example* on page 4-2
- *Example APB register peripheral* on page 4-8
- UART on page 4-13
- SPI chip select register on page 4-14
- Synchronous serial port on page 4-15
- *PWM controller* on page 4-16
- Stepper motor peripheral on page 4-17
- *GPIO* on page 4-21
- SSRAM interface on page 4-23
- *Vectored interrupt controller* on page 4-24
- *CAN controller interface* on page 4-26
- *ADC and DAC interface* on page 4-27
- *Peripheral information block* on page 4-28.

4.1 About the design example

This chapter describes the reference design example supplied with the interface module. The interface module is not fitted with any programmable devices because it is intended to provide interfaces for peripherals instantiated into a logic module FPGA.

The interface module design example for the logic module is supplied in VHDL. Although the PrimeCell peripherals can be seen instantiated in the top level VHDL file IMAD1fpga.vhd, the HDL source code for the PrimeCell peripherals themselves are not supplied. All other non-PrimeCell HDL source code is provided on the CD.

The design example supports AHB-based designs for Integrator/LM-XCV600E+ and LM-EP20K600E+ logic modules.

4.1.1 About PrimeCells

The ARM PrimeCell peripherals are a range of synthesizable peripherals that are ideally suited for use in ARM-based designs. The interface module is supplied with PrimeCell peripherals for some of the interfaces on the board and the accompanying CD contains documentation for them.

4.1.2 Example architecture

The architecture of the example is shown in Figure 4-1 on page 4-3. The design example contains the following peripherals:

- PrimeCell:
 - UART
 - Synchronous Serial Port (SSP)
 - DC-DC converter
 - Vectored Interrupt Controller (VIC).
- Non-PrimeCell:
 - APB control registers
 - GPIO
 - Stepper motor interface
 - CAN controller interface
 - ADC and DAC interface
 - Peripheral Information Block (PIB).

Figure 4-1 Design example architecture

Table 4-1 provides a summary description of the supplied VHDL files. A more detailed description of each VHDL block is included within the files in the form of comments.

Table 4-1 VHDL file descriptions

File	Description
IMAD1fpga	This file is the top-level VHDL that instantiates all of the interface for the example. The VHDL for the PrimeCell interfaces are not supplied but are available from ARM as separate products.
AHBDecoder	The decoder provides the AHB peripherals with select line generated from the address lines and the module ID (position in stack) signals from the motherboard. The Integrator family of boards uses a distributed address decoding system (see <i>Address assignment of logic modules</i> on page 4-5).
AHBDefaultSlave	This block provides a default slave response when the logic module address space is addressed but the address does not correspond to any of the instantiated peripherals.

Table 4-1 VHD	L file descriptions	(continued)
---------------	---------------------	-------------

File	Description
AHBMux7S1M	This is the AHB multiplexor that connects the read data buses and the HRESP and HREADY signals from all of the slaves to the AHB master.
AHBZBTRAM	An SSRAM controller block to support word, halfword, and byte operations to the SSRAM on the logic module.
AHB2APB	This is the bridge block required to connect APB peripherals to the high-speed AMBA AHB bus. It produces the peripheral select signals for each of the APB peripherals.
APBRegs	 The APB register peripheral provides memory-mapped registers that you can use to: configure the two clock generators (protected by the LM_LOCK register) write to the user LEDs read the user switch inputs produce an interrupt for the LM push button.
AHBPIB	 This provides the ROM block that gives the following information about each peripheral: base address PrimeCell number peripheral revision number FPGA revision number.
BuildOptions	This file defines generation of the PrimeCells in the example and allows control over the synthesis so that PrimeCells can be included or excluded. It specifies the base address of all the peripherals.
GPI032	This is a simple 32-bit GPIO block.
SPICSReg	This is a simple register that is used to generate the chip selects for the SPI bus.
AHB2CAN	This is the interface between the AHB and Bosch CC770 CAN devices.
AHB2AD7859	This is the interface between the AHB and the ADC and DAC converters.
Stepper	This is the stepper motor controller logic, which has an APB interface.

4.1.3 Example memory map

The supplied examples set up the memory map for the logic module as shown in Figure 4-2 on page 4-5. This shows the locations to which logic modules are assigned by the main address decoder on an Integrator/AP motherboard when the logic modules are fitted in the EXPA/EXPB connector positions. The diagram also shows how the example decodes the address space for the logic module when it is LM0 (bottom of the stack).

Figure 4-2 Integrator system memory map

— Note –

The Integrator system implements a distributed address decoding scheme in which each core or logic module is responsible for decoding its own address space. It is important when implementing a logic module design, to ensure that the module responds to all memory accesses in the appropriate memory region (see the user guide for your motherboard).

4.1.4 Address assignment of logic modules

The Integrator motherboards can have more than one logic module mounted on them. The base address of each logic module depends on its position in the stack and defines the value of bits [31:28] of the address for all devices on the logic module. Table 4-2 on page 4-6 shows the values of address bits [31:28] on logic modules fitted to an Integrator/AP in the EXPA/EXPB connector position (see the *Integrator/AP User Guide* for more information).

Position in stack	Bits 31:28
0 (bottom)	0xC
1	0xD
2	0xE
3 (top)	0xF

Table 4-2 Logic module addresses

4.1.5 Integrator/IM-AD1 memory map

The memory model for the design is shown in Table 4-2 and assumes that the logic module is mounted in position 0.

-	
Device	Address
logic module APB registers	0xC0000000
UART0	0xC0100000
SPICS	0xC0200000
SSP	0xC0300000
Reserved	0xC0400000
Reserved	0xC0500000
Reserved	0xC0600000
Reserved	0xC0700000
Reserved	0xC0800000
Reserved	0xC0900000
DCDC	0xC0A00000
STEPPERA	0xC0B00000

Table 4-3 Integrator/IM-AD1 memory map

Table 4-3 Integrator/IM-AD1 memory map (continued)

Device	Address
STEPPERB	0xC0C00000
GPIOA	0xC0D00000
GPIOB	0xC0E00000
Reserved	0xC1000000
SSRAM	0xC2000000
VIC	0xC3000000
CAN	0xC4000000
ADC/DAC	0xC5000000
PIB	0xCFFFFF00

4.2 Example APB register peripheral

Table 4-4 shows the mapping of the logic module registers. The addresses shown are offsets from the base addresses shown in Figure 4-2 on page 4-5.

Offset address	Name	Туре	Function
0×0000000	LM_OSC1	Read/write	Oscillator 1 divisor register
0x0000004	LM_OSC2	Read/write	Oscillator 2 divisor register
0x000008	LM_LOCK	Read/write	Oscillator lock register
0x000000C	LM_LEDS	Read/write	User LEDs control register
0x0000010	LM_INT	Read/write	Push button interrupt register
0x0000014	LM_SW	Read	Switches register

Table 4-4 Logic module registers

4.2.1 Oscillator divisor registers

The oscillator registers control the frequency of the clocks generated by the two clock generators on the logic module.

Before writing to the oscillator registers, you must unlock them by writing the value 0x0000A05F to the LM_LOCK register. After writing the oscillator register, relock them by writing any value other than 0x0000A05F to the LM_LOCK register.

The reference divider (R[6:0]) and VCO divider (V[8:0]) are used to calculate the output frequency as follows:

Frequency = 48MHz $\cdot \frac{(V[8:0] + 8)}{(R[6:0] + 2) \cdot OD}$

Table 4-5 on page 4-10 describes the oscillator register bits.

_____ Note _____

You can calculate values for the clock control signals using the ICS525 calculator on the Integrated Circuit Systems web site at:

http://www.icst.com/

You must also observe the operating range limits:

$$10MHz < 48MHz \cdot \frac{(V[8:0] + 8)}{(R[6:0] + 2)}$$

R[6:0] < 118

Table	4-5	LM_	OSCx	registers
-------	-----	-----	------	-----------

Bits	Name	Access	Function
18:16	OD	Read/write	Output divider:
			000 = divide by 10
			001 = divide by 2
			010 = divide by 8
			011 = divide by 4
			100 = divide by 5
			101 = divide by 7
			110 = divide by 9
			111 = divide by 6.
15:9	RDW	Read/write	Reference divider word. Defines the binary value of the R[6:0] pins of the clock generator.
8:0	VDW	Read/write	VCO divider word. Defines the binary value of the V[8:0] pins of the clock generator.

_____ Note _____

The default values for these registers set CLK1 to 25MHz and CLK2 to 12MHz.

4.2.2 Oscillator lock register

The lock register is used to control access to the oscillator registers, allowing them to be locked and unlocked. This mechanism prevents the oscillator registers from being overwritten accidently. Table 4-6 describes the lock register bits.

Table 4-6 LM_LOCK register

Bits	Name	Access	Function
16	LOCKED	Read	This bit indicates if the oscillator registers are locked or unlocked: 0 = unlocked 1 = locked.
15:0	LOCKVAL	Read/write	Write the value 0x0000A05F to this register to enable write accesses to the oscillator registers. Write any other value to this register to lock the oscillator registers.

4.2.3 User LEDs control register

The LEDs register is a 9-bit register used to control the nine user LEDs on the logic module. Writing a 0 to a bit lights the associated LED.

4.2.4 Push button interrupt register

The push button interrupt register contains 1 bit. It is a latched indication that the push button on the logic module has been pressed. The output from this register is used to drive an input to the interrupt controller. Table 4-7 describes the operation of this register.

			·····_···_···_···_···_·····
Bits	Name	Access	Function
0	LM_INT	Read	This bit when SET is a latched indication that the push button has been pressed.
		Write	Write 0 to this register to CLEAR the latched indication.
			Writing 1 to this register has the same effect as pressing the push button.

Table 4-7 LM_INT register

4.2.5 Switches register

This register is used to read the setting of the 8-way DIP switch on the logic module. A 0 indicates that the associated switch element is closed (ON).

4.3 UART

The UART used in the design example is the PrimeCell PL011. Refer to the *ARM PrimeCell UART (PL011) Technical Reference Manual* for more information.

The UART is clocked by the signal **CLK2** from the logic module. **CLK2** is set to 12MHz by default.

4.4 SPI chip select register

This is a 3-bit read/write register that controls the three chip select signals on the connectors J11 and J13. Writing a 1 causes the associated SPI chip select signal to go LOW.

Bit	Name	Access	Function
2	SPICS2	Read/write	0 = SPI_nCS2 is HIGH 1 = SPI_nCS2 is LOW
1	SPICS1	Read/write	0 = SPI_nCS1 is HIGH 1 = SPI_nCS1 is LOW
0	SPICS0	Read/write	0 = SPI_nCS0 is HIGH 1 = SPI_nCS0 is LOW

Table 4-8 SPI chip select register bit assignment

4.5 Synchronous serial port

The synchronous serial port PrimeCell is used to implement the SPI interface. Refer to the *ARM PrimeCell Synchronous Serial Port Master and Slave (PL022) Technical Reference Manual* for information about this device.

The SSP is clocked by the **CLK1** signal from the logic module. This clock is set to 25MHz by default.

4.6 **PWM controller**

The PWM control function is implemented by the DC-DC converter PrimeCell (PL160). Refer to the ARM *PrimeCell DC-DC Converter Interface (PL160) Technical Reference Manual* for information about this device.

The DC-DC PrimeCell uses the 4MHz **IM_CLK** signal to supply the **DCDCCLK** reference clock. It can divide this by 16, 32, 128, or 304 to provide four possible switching frequencies of 250kHz, 125kHz, 31.25kHz, and 13.158kHz.

The switching circuitry has turn on and turn off delays that limit the minimum pulse width and can also affect the accuracy of the PWM, particularly at the higher switching frequencies between 125kHz to 250kHz. The turn on and turn off delays for different voltages are shown in Table 4-9.

Load voltage	Turn on time	Turn off time
5V	1µs	0.6µs
30V	2µs	1.2µs

Table 4-9 PWM turn on and turn off delays

4.7 Stepper motor peripheral

The example design instantiates two stepper controller blocks, each of which has two stepper motor controllers. Stepper A controls the Step 1 and 2 interfaces which are connected to the L298 stepper motor drivers. Stepper B controls the Step 3 and 4 interfaces which are connected at logic level to the connectors J21 and J22.

Each controller contains three registers, as shown in Table 4-10. These define phase sequence generation, speed, and number of steps to rotate. The stepper motor controller is clocked from **PCLK** to keep it synchronous with the APB. The step speed register is fed with a 10kHz clock (which is divided down from the 4MHz **IM_CLK** signal) to control the speed of the motor.

Offset address	Name	Access	Function
0x0B00000	STEP1CONT	Read/write	Stepper 1 control register
0x0B00004	STEP1COUNT	Read/write	Stepper 1 step count register
0x0B00008	STEP1SPEED	Read/write	Stepper 1 Clock divider register
0x0B00010	STEP2CONT	Read/write	Stepper 2 controller register
0x0B00014	STEP2COUNT	Read/write	Stepper 2 step count register
0x0B00018	STEP2SPEED	Read/write	Stepper 2 Clock divider register
0x0C00000	STEP3CONT	Read/write	Stepper 3 control register
0x0C00004	STEP3COUNT	Read/write	Stepper 3 step count register
0x0C00008	STEP3SPEED	Read/write	Stepper 3 Clock divider register
0x0C00010	STEP4CONT	Read/write	Stepper 4 controller register
0x0C00014	STEP4COUNT	Read/write	Stepper 4 step count register
0x0C00018	STEP4SPEED	Read/write	Stepper 4 Clock divider register

Table 4-10 Stepper motor registers

Each of the registers is double buffered, allowing a new value to be written to a holding register while a previous count continues. Write to the STEPxCOUNT and STEPxSPEED register locations first and then follow this with a write to the STEPxCONT register. The controller loads the new values into the target registers when the current count completes.

4.7.1 Stepper x control register

The stepper controller control register defines the operating mode of the stepper.

_____ Note _____

You must consider the maximum speed of the stepper motor when programming the step speed register or issuing consecutive single step commands in the stepper control register.

Ensure there is a delay, typically a few milliseconds, between a DOCOUNT and a SINGLESTEP. Failing to leave a delay between the end of the count and writing a SINGLESTEP command results in unpredictable behavior. The minimum duration of the delay depends on the stepper motor.

The bits in this register are described in Table 4-11.

Bits	Name	Access	Function
7	BUSY	Read	This bit contains 1 when a count is in progress and 0 when the count is complete.
6	BUFFERFULL	Read	This bit contains 1 when the buffer is full and 0 when the buffer is available for a new value to be written. An inverted version of this bit is used as an interrupt source.
5	DRIVE ENABLE	Read/write	This bit enables and disables the phase outputs to the motor. When this bit is 0, ENA , ENB , PH1 , PH2 , PH3 , and PH4 are held at 0. When this bit is 1, these signals output the relevant drive waveform.
4	HALFSTEP	Read/write	These bits are used in combination to select the
3	WAVEDRIVE	Read/write	00 = Full step, two phase on (non-wave drive) drive sequence (see Figure 4-3 on page 4-19) 01 = Full step, one phase on (wave drive) drive sequence (see Figure 4-4 on page 4-19) 10 = Half step drive sequence (see Figure 4-5 on page 4-20)
			11 = Reserved

Table 4-11 Stepper control register

Table 4-11 Stepper control register (continued)

Bits	Name	Access	Function
2	DOCOUNT	Read/write	Write a 1 to this bit to transfer the contents of the buffer register to the count and speed registers. This causes the corresponding number of steps to be performed.
1	SINGLESTEP	Read/write	Write a 1 to this bit to advance the stepper motor by one step. The step speed register, step count register, and bit 2 are ignored.
0	DIR	Read/write	This bit controls the direction of rotation. The actual direction of rotation (clockwise or anticlockwise) depends on how the motor is wired to the interface module.
	Stepx_PH1		
	Stepx_PH2		
	Stepx_PH3		
	Stepx_PH4		
		Figure	4-3 Full-step two-phase output waveforms
	Stepx_PH1		
	Stepx_PH2		
	Stepx_PH3		
	Stepx_PH4	1	

Figure 4-4 Full-step single-phase output waveforms

Stepx_PH1	 	
Stepx_PH2		
Stepx_PH3	 	
Stepx_PH4		

Figure 4-5 Half-step output waveforms

4.7.2 Stepx count register

This is a 9-bit register that is used to specify the number of steps to advance. When the required number of steps are complete, the count stops and the register is loaded with the next value.

4.7.3 Stepx speed register

This register contains a 14-bit value that is used to divide a 10kHz clock signal to regulate the speed of the stepper motor. That is, the step speed register defines the number of 0.1ms periods between steps.

4.8 GPIO

There are two 32-bit GPIO blocks instantiated in the example design. Each GPIO provides 32 general-purpose input and output signals that are connected to the connectors J16 and J17. GPIOB is also connected to the 38-way Mictor connector J7 for easy connection to a logic analyzer. The GPIO registers are shown in Table 4-12.

Table 4-12 GPIO registers

Address offset	Name	Access	Size	Function
0x000000	GPIO_DATASET	Write	32	Data output set
	GPIO_DATAIN	Read	32	Read data input pins
0x000004	GPIO_DATACLR	Write	32	Data register output clear
	GPIO_DATAOUT	Read	32	Read data output pins
0x000008	GPIO_DIRN	Read/write	32	Data direction

4.8.1 Data output set register

The GPIO_DATASET location is used to set individual GPIO output bits as follows:

1 = SET the associated GPIO output bit

0 = leave the associated GPIO bit unchanged.

4.8.2 Read data input register

Read the current state of the GPIO input bits from this location.

4.8.3 Data register output clear

The GPIO_DATACLR location is used to clear individual GPIO output bits as follows:

1 = CLEAR the associated GPIO output bit

0 = leave the associated GPIO bit unchanged.

4.8.4 Read data output pins

Read the current state of the GPIO output bits from this location.

4.8.5 Data direction

The GPIO_DIRN location is used to set the direction of each GPIO pin as follows:

1 = pin is an output

0 = pin is an input (default).

Figure 4-6 shows the data direction control for one GPIO bit.

Figure 4-6 GPIO direction control (1 bit)

4.9 SSRAM interface

The SSRAM interface provides read and write access to the 1MB ZBT SSRAM on the logic module. Accesses take two system clock cycles for reads and writes. The interface supports word, halfword, and byte accesses to the SSRAM.

4.10 Vectored interrupt controller

The interrupt controller used in the example design is the Vectored Interrupt Controller (VIC) PrimeCell (PL190). Refer to the ARM PrimeCell Vectored Interrupt Controller (PL190) Technical Reference Manual for information about this device.

The assignment of interrupt sources to the VIC are shown in Table 4-13.

Interrupt source number	Interrupt source
0	LM_INT APB register
1	UART0
2	Reserved
3	SSP
4	STEP1 buffer empty
5	STEP2 buffer empty
6	STEP3 buffer empty
7	STEP4 buffer empty
8	CAN1
9	CAN2
10	ADC1 conversion complete
11	ADC2 conversion complete

Table 4-13 Interrupt assignment

4.10.1 Interrupt sources

The LM_INT interrupt comes from the push button interrupt register in the APB register block. The interrupt is latched if the push button on the logic module is pressed or if a 1 is written to the push button interrupt register. The interrupt is cleared by writing a 0 to the push button interrupt register.

The UART interrupt is the combined interrupt from the UART PrimeCell. Refer to *ARM PrimeCell UART (PL011) Technical Reference Manual* for details of the interrupt sources.

The SSP interrupt is the combined interrupt from the SSP PrimeCell. Refer to ARM PrimeCell Synchronous Serial Port (PL022) Technical Reference Manual for details of the interrupt sources.

The STEP1, STEP2, STEP3, and STEP4 interrupts are set active when the buffer registers of the corresponding stepper motor controller are empty. This indicates that a new step instruction can be written. The interrupts are cleared if the stepper controller buffer registers are holding a step instruction that is waiting to be carried out.

The CAN1 and CAN2 interrupts are interrupt signals from the CAN controller chips. The interrupt signals are a combination of interrupts from different sources within the CAN controller. Refer to the data sheet for the Bosch CC770 for details of the interrupt sources.

The ADC1 and ADC2 interrupts are generated from the **BUSY** signal of the corresponding AD7859 A/D converter chip. The ADC1 and ADC2 interrupts signal that the ADC has finished its conversion and the value can be read. The interrupt is set active when the BUSY signal falls at the end of a conversion. The interrupt is cleared by any read access to the ADC.

—— Note ———

The **BUSY** signal goes active during the power-on calibration of the ADC chips. That is, the ADC1 and ADC2 interrupts are set after power-on and the interrupts must be cleared by doing a dummy read access to the ADCs.

4.11 CAN controller interface

The CAN controller interface gives you access to the internal registers and reset signals of the Bosch CC770 CAN controllers. The offset addresses of CAN controller interfaces are shown in Table 4-14.

Offset address	Name	Function	
0x000000	CAN1Base	Interface to CAN1 controller registers	
0x100000	CAN2Base	Interface to CAN2 controller registers	
0x200000	CANRESET	CAN reset control register	

Table 4-14 CAN controller interface registers

4.11.1 CANxBase

You use the register interface locations to read and write the CAN registers. Register accesses take at least six system bus clock cycles and can be stretched by the CAN controller to a maximum of 550ns plus three system clock cycles.

The address pins **CAN_A[7:0]** of the CAN controllers are connected to **HADDR[9:2]**. This means that individual CAN registers are located on word boundaries starting from the base address of the device.

4.11.2 CAN reset control register

The CAN reset register controls the **nRESET** signals to the CAN controllers. The assignment of the bits in the register is shown in Table 4-15.

Bit	Name	Access	Function
1	CAN2nRESET	Read/write	Controls the nRESET signal to CAN2.
0	CAN1nRESET	Read/write	Controls the nRESET signal to CAN1.

Table 4-15 CAN reset register bit assignment

The CAN controllers are reset by writing a 0 to the associated bit so the **nRESET** signal goes LOW. The default setting of this register after power up is 0, so you must write a 1 before you can read and write the internal registers of the CAN controllers. However, after power up the CAN resets must be held LOW for at least 1ms.
4.12 ADC and DAC interface

This interface gives you access to the ADCs and DAC. The interface also contains a status and control register. The offset addresses of the ADC and DAC interface are shown in Table 4-16.

Offset address	Name	Function
0x000000	ADCSTATUS	This register enables you to monitor the status of the ADC busy signals
0x000004	DACnCLR	This register controls the nCLR signal to the DAC.
0x100000	ADC1Base	Interface to ADC1
0x200000	ADC2Base	Interface to ADC2
0x300000	DACBase	Interface to the DAC

Table 4-16 ADC and DAC interface registers

The ADCs each appear as one 16-bit location at the corresponding base address. The DAC appears as two locations at DACBase and DACBase+4 that correspond to the DAC A and B channels respectively. Refer to the AD7859 and AD5342 data sheets for details of ADC and DAC operations.

Accesses to these devices take four system bus clock cycles, although consecutive accesses incur an additional three wait states for the second and subsequent access. The DAC has the signal LDAC tied LOW. This means that a value is passed to the DAC as soon as it is written.

The ADC status register provides you with read-only access to the ADC busy signals. The bit assignment is shown in Table 4-17.

Bit	Name	Access	Function
1	ADC2BUSY	Read	Gives value of ADC2 busy signal
0	ADC1BUSY	Read	Gives value of ADC1 busy signal

Table 4-17 ADC status register bit assignment

The DACnCLR register provides you with read/write access to control the signal **nCLR** routed to the DAC. Write 0 to this register to reset the DAC value to 0. You must write a 1 to enable normal operation of the DAC.

4.13 Peripheral information block

The *Peripheral Information Block* (PIB) is a block of 32 words in ROM that provides you with information about the peripherals used in the design. The PIB is located at the top of the address space for the logic module.

Each word in the PIB provides information about one peripheral. A value of 0x00000000 indicates that there is no entry and that the next address must be checked. Each valid entry contains the information shown in Table 4-18.

Bits	Name	Function
31:24	Peripheral Base	Bits [27:20] of the peripheral base address. Bits [31:28] of the address are defined by the location of the logic module in the stack see <i>Address assignment of</i> <i>logic modules</i> on page 4-5.
23:8	Peripheral ID	For a PrimeCell, this is the PrimeCell number in BCD. For example, the VIC PrimeCell PL190 would be represented by 0x0190.
		For other peripherals the value 0xFFnn is assigned, where nn is a unique look-up value. (See the AHBPIB HDL source file for details.) The value 0xFFFF is a special case that is used to indicate the FPGA build number.
7:0	Peripheral Rev	This gives the revision number of the peripheral in BCD. For example, revision $v1.2$ is represented by $0x12$.

Table 4-18 PIB entry format

The last address of the PIB is used to store the FPGA build number. Bits [31:8] are all 1 and bits [7:0] store the revision number in BCD.

_____Note _____

Use the ARM executable utility read_pib.axf, supplied on the IM-AD1 CD, to display the PIB information.

Appendix A Signal Descriptions

This appendix describes the Integrator/IM-AD1 interface connectors and signal connections. It contains the following sections:

- EXPA on page A-2
- *EXPB* on page A-4
- EXPIM on page A-6
- Logic analyzer connector on page A-8
- *Multi-ICE (JTAG)* on page A-10.

— Note ———

For details of the I/O connectors, see Chapter 3 Hardware Reference.

A.1 EXPA

Figure A-1 shows the pin numbers of the EXPA socket. The socket is viewed as if looking down through the stack.

Figure A-1 EXPA socket pin numbering

The signals present on the EXPA connector are described in Table A-1.

Pin label	Signal	Description
A[31:0]	Not used	-
B[31:0]	B[31:0]	These signals connect to the FPGA on the logic module. They are used to carry the GIPOB[31:0] signals.
C[31:0]	Not used	-
D[31:0]	Not used	-

Table A-1 AHB signal assignment

A.2 EXPB

Figure A-2 shows the pin numbers of the socket EXPB on the underside of the interface module.

1	НО		GND		61
2		GND		FO	62
3	H1	GIID	F1		63
4		H2		F2	64
5	H3		GND		65
6		GND		F3	66
7	H4		F4		67
8		H5		F5	68
9	H6		GND	50	69
10		GND		F6	70
12		H8	F7	F8	72
13	H9	110	GND		73
14		GND	Carto	F9	74
15	H10	GIID	F10		75
16		H11		F11	76
17	H12		GND		77
18		GND		F12	78
19	H13		F13		79
20		H14		F14	80
21	H15		GND		81
22	LIE	GND	E16	F15	82
23	ПО	H17	FIO	F17	84
25	H18		GND		85
26		GND	Gitb	F18	86
27	H19		F19		87
28		H20		F20	88
29	H21		GND		89
30		GND		F21	90
31	H22		F22	F 00	91
32	H24	H23	CND	F23	92
33	1124	GND	GND	F24	93
35	H25		E25	124	95
36		H26		F26	96
37	H27		GND		97
38		GND		F27	98
39	H28		F28		99
40		H29		F29	100
41	H30		GND		101
42		GND	Ent	F30	102
43	I		F31	19	103
44			GND		104
46		GND	GIVD	.19	106
47	12		J10		107
48		J3	0.0	J11	108
49	J4		GND		109
50		GND		J12	110
51	J5		J13		111
52		J6		J14	112
53	J7		J16		113
54	EV	GND	-121/	J15	114
50	v	31/3	-12V	121/	115
57	5V	0,0	-12V		117
58		3V3		12V	119
59	5V		-12V		119
60		3V3		12V	120

Figure A-2 EXPB socket pin numbering

Table A-2 describes the signals on the pins labeled F[31:0], H[31:0], and J[16:0].

Pin label	Name	Description
F[31:24]	Not used	-
F[23:0]	F[23:0]	Stepper motor controller signals.
H[31:29]	Not used	-
H28	SYSCLK	System clock from the logic module
H[27:0]	Not used	-
J[15:14]	Not used	-
J13	nCFGEN	Sets motherboard into configuration mode
J12	nSRST	Multi-ICE reset (open collector)
J11	Not used	-
J10	RTCK	Returned JTAG test clock
J9	Not used	-
J8	nTRST	JTAG reset
J7	TDO	JTAG test data out
J6	TDI	JTAG test data in
J5	TMS	JTAG test mode select
J4	ТСК	JTAG test clock
J[3:0]	Not used	-

Table A-2 EXPB signal description

A.3 EXPIM

This connector is the same type of as that used for EXPA. Figure A-3 shows the pin numbers for EXPIM.

1	GND		GND		10
2		GND	IM BO	GND	10:
4		IM_A1		IM_B1	10
5 6	IM_A2	GND	IM_82	GND	10
7	IM_A3		IM_B3		10
9	IM_A5	1m_744	IM_B5	1141_04	10
10 11	IM A6	GND	IM B6	GND	110
12		IM_A7		IM_B7	113
13	IM_A8	GND	IM_88	GND	114
15 16	IM_A9	IM 410	IM_B9	IM B10	113
17	IM_A11		IM_B11		11
18	IM_A12	GND	IM_B12	GND	119
20 21	IM A14	IM_A13	IM B14	IM_B13	120
22		GND	[IM B15]	GND	12
24	IWLATS	IM_A16		IM_B16	12
25 26	IM_A17	GND	IM_B17	GND	12
27	IM_A18		IM_B18		12
20	IM_A20	IM_A19	IM_B20		12
30 31	IM A21	GND	IM B21	GND	13
32	IM A22	IM_A22		IM_B22	13
34	1111_723	GND	1141_020	GND	13
35 36	IM_A24	IM_A25	IM_B24	IM_B25	13
37	IM_A26		IM_B26		13
39	IM_A27		IM_B27		13
40 41	IM_A29	IM_A28	IM_B29	IM_B28	14
42 43	IM A30	GND	IM B30	GND	142
44		IM_A31		IM_B31	14
45 46	IM_A32	GND	IM_B32	GND	14
47 48	IM_A33	IM A34	IM_B33	IM B34	14
49	IM_A35	GND	IM_B35	GND	149
51	IM_A36		IM_B36		15
52	IM_A38	IWL_A37	IM_B38		15
54 55	IM_A39	GND	IM_B39	GND	15
56 57	IM A41	IM_A40	IM B41	IM_B40	15
58		GND	IM 842	GND	15
60	INT_742	IM_A43		IM_B43	16
61 62	IM_A44	GND	IM_B44	GND	16 16
63 64	IM_A45	IM A46	IM_B45	IM B46	163 164
65	IM_A47	GND	IM_B47	GND	16
67	IM_A48		IM_B48		16
69	IM_A50	IM_A49	IM_B50	IM_B49	16
70 71	IM_A51	GND	IM_B51	GND	170
72	IM 453	IM_A52	IM B52	IM_B52	17:
74		GND		GND	17
76	1111_7.54	IM_A55	101_004	IM_B55	176
77	IM_A56	GND	IM_B56	GND	17
79 80	IM_A57	IM A58	IM_B57	IM B58	179
81	IM_A59	GND	IM_B59		18
83	IM_A60		IM_B60		18
84 85	EXP85	IM_A61	EXP185	IM_B61	18
86 87	EXP87	GND	EXP187	GND	18
88	EXP89	EXP88	EXP189	EXP188	18
90		GND		GND	19
91 92	[EXP91	EXP92	EXPISI	EXP192	19
93 94	EXP93	GND	EXP193	EXP194	193 194
95 96	EXP95	EXP96	EXP195	EXP196	19 19
97	EXP97	EVDOR	EXP197	EVP100	19
90 99	1V8	LEVLAQ	1V8	EVL 190	19
100		1V8		1V8	20

Figure A-3 EXPIM connectors pin numbering

Table A-3 shows the signals for the interface module for Integrator/LM-XCV2000E or LM-EP20K1000E logic module types.

Label	LM-XCV2000E	LM-EP20K1000E	Description
IM_ABANK[59:0]	IM_0BANK[59:0]	IM_5BANK[59:0]	FPGA input/output pins.
IM_BBANK[53:0]	IM_1BANK[53:0]	IM_6BANK[53:0]	FPGA input/output pins.
EXP[92:85]	Not used	Not used	-
EXP93	IM_CLK	IM_CLK	Clock signal from IM-AD1 to the logic module FPGA.
EXP[96:94]	Not used	Not used	-
EXP97	VCCO_0	VCCO_5	Configurable voltage power supply rail. Not used (socket).
EXP98	VCCO_0	VCCO_5	Configurable voltage power supply rail. Not used (socket).
EXP185	Not used	Not used	-
EXP[189:187]	Not used	Not used	-
EXP191	CLK1_1	CLK1_1	Clock signal from the CLK1 buffer on the logic module
EXP194	GND	GND	Ground
EXP[196:192]	Not used	Not used	-
EXP197	VCCO_1	VCCO_6	Configurable voltage power supply rail. Not used (socket).
EXP198	VCCO_1	VCCO_6	Configurable voltage power supply rail Not used (socket).

Table A-3 EXPIM signal descriptions

—— Caution ——

For correct operation of the interface module, VCCO_A and VCCO_B must be set to 3.3V. Ensure that the VCCO links are set correctly on the logic module.

A.4 Logic analyzer connector

A Mictor-type logic analyzer connector is provided. It connects to the B[31:0] signals used for GPIO B. If particular signals must be connected to a logic analyzer, the FPGA configuration can be changed to reassign the signal connections.

— Caution —

If the FPGA configuration is changed to reassign signal connections, the GPIO B connections on connector J16 also change.

Figure A-4 shows the pin numbers of this type of connector.

Figure A-4 J7 pin locations

Table A-4 shows the pinout of the logic analyzer connector.

Table	A-4 J7	connector	pinout
Table	A 4 07	00111100101	pinout

Signal	Pin	Pin	Signal
No connect	1	2	No connect
GND	3	4	No connect
SYSCLK	5	6	CLK_1
B31	7	8	B15
B30	9	10	B14
B29	11	12	B13
B28	13	14	B12
B27	15	16	B11
B26	17	18	B10
B25	19	20	B9
B24	21	22	B8
B23	23	24	B7
B22	25	26	B6
B21	27	28	B5
B20	29	30	B4
B19	31	32	B3
B18	33	34	B2
B17	35	36	B1
B16	37	38	B0

A.5 Multi-ICE (JTAG)

Figure A-5 shows the pinout of the Multi-ICE connector J21. For a description of the JTAG signals, see the user guide for your logic module.

Figure A-5 Multi-ICE connector pinout

Appendix B Mechanical Specification

This appendix contains the mechanical specification for Integrator/IM-AD1. It contains the following section:

- *Mechanical information* on page B-2
- *Connector reference* on page B-4.

B.1 Mechanical information

Figure B-1 shows the dimensions for the connectors on the top side of the board. See Table B-1 on page B-4 for details on connector type, part numbers, and manufacturers.

Figure B-1 Board dimensions (top view)

The Integrator/IM-AD1 is designed to be stackable (as the top card). Figure B-2 on page B-3 shows the dimensions for the connectors on the bottom side of the board as viewed from the top side of the board. These connectors carry the signals between the IM-AD1 and the logic module. (All dimensions are in mm.)

Figure B-2 Bottom board dimensions (viewed from top side)

B.2 Connector reference

Table B-1 lists the connectors on the IM-AD1. Two Weidmuller BL3.5/6 SN OR plugs and two BL3.5/4 SN OR plugs are supplied in a separate plastic bag. These mate with J10, J14, J19, and J23.

Reference	Туре	Manufacturer	Part number
J1	CON34_0.1"_34W_RA	Toby	302-R-34-D1-S1
J2	CON10_0.1"_10W_RA	Toby	302-R-10-D1-S1
J11	CON10_0.1"_10W_RA	Toby	302-R-10-D1-S1
J13	CON10_0.1"_10W_RA	Toby	302-R-10-D1-S1
J3	DB9_DUAL	Toby	DMR-DP-09P/09P-G-15.87
J5	SOLC-150-02-F-Q_0.64mm pitch	Samtec	SOLC-150-02-F-Q-P-A
J4	SOLC-150-02-F-Q_0.64mm pitch	Samtec	SOLC-150-02-F-Q-P-A
J6	SOLC-130-02-F-Q_0.64mm pitch	Samtec	SOLC-130-02-F-Q-P-A
J7	Mictor_38 way	Agilent	2-767004-2
J8	2x1_pin_header_0.1"_2W_LINK	Toby	THS-2-S
J9	CON20AP_0.1"_20W_VERT	Toby	302-S-20-D1-S1
J10	CON4_3.5mm_4W_RA	Weidmuller	SL 3.5/4/90G 3.2 SN OR
J14	CON4_3.5mm_4W_RA	Weidmuller	SL 3.5/4/90G 3.2 SN OR
J16	CON50_0.1"_50W_VERT	Toby	302-S-50-D1-S1
J17	CON50_0.1"_50W_VERT	Toby	302-S-50-D1-S1
J18	DB9_STRAIGHT	FCI	D09P24A4GV00
J19	CON6_3.5mm_6W_RA	Weidmuller	SL 3.5/6/90G 3.2 SN OR
J23	CON6_3.5mm_6W_RA	Weidmuller	SL 3.5/6/90G 3.2 SN OR
J21	CON10_0.1"_10W_VERT	Toby	302-S-10-D1-S1
J22	CON10_0.1"_10W_VERT	Toby	302-S-10-D1-S1

Table B-1 connector reference

Glossary

This glossary lists all the abbreviations used in the Integrator/IM-AD1 User Guide.

ADC	Analog to Digital Converter. A device that converts an analog signal into digital data.
АНВ	Advanced High Performance Bus. The ARM open standard for high-performance on-chip buses.
АРВ	Advanced Peripheral Bus. The ARM open standard for lower-speed peripherals.
CAN	Controller Area Network.
DAC	Digital to Analog Converter. A device that converts digital data into analog level signals.
FPGA	Field Programmable Gate Array.
GPIO	General Purpose Input/Output.
JTAG	Joint Test Action Group. The committee which defined the IEEE test access port and boundary-scan standard.
Multi-ICE	Multi-ICE is a system for debugging embedded processor cores using a JTAG interface.
PIB	Peripheral Information Block.
SPI	Serial Protocol Interface.

SSP	Synchronous Serial Port.
UART	Universal Asynchronous Receiver/Transmitter.
USB	Universal Serial Bus.
vco	Voltage Controlled Oscillator.
VIC	Vectored Interrupt Controller.
ZBT SSRAM	Zero Bus Turnaround Synchronous Static Random Access Memory.

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The references given are to page numbers.

А

ADC and DAC interface architecture 3-18 ADC and DAC interface registers 4-27 ADC connector 3-20 ADC, sampling rate 1-4 APB register peripheral 4-8 Architecture ADC and DAC interface 3-18 CAN controller interface 3-14 stepper interface 3-8 Architecture of the supplied example 4-2 ARM PrimeCell peripherals 4-2

В

Block diagram, system 1-5

С

CAN 4-26 CAN connector 3-16 CAN interface 3-14, 4-26 CAN interface signals 3-15 CAN reset register 4-26 Care of modules 1-7 CLK2 signal 4-15 CONFIG link 1-6 Connector identification 1-2 Connectors ADC 3-20 CAN 3-16 DAC 3-21 dimensions B-2 GPIO 3-12 Multi-ICE A-10 PWM 3-6 signals A-1 SPI 3-5 stepper 3-10

D

DAC connector 3-21 Data direction, GPIO 4-21 Data ouptut set, GPIO 4-21 Data register output clear, GPIO 4-21 Descriptions, VHDL files 4-3

Е

Electromagnetic conformity iii Example memory map 4-4 EXPA pinout A-2 EXPB pinout A-5 EXPIM pinout A-6 EXPIM signal descriptions A-7

F

FCC notice iii

G

GPIO 4-21 GPIO connector 3-12 GPIO interface 3-12 GPIO registers GPIO_DATACLR 4-21 GPIO_DATAIN 4-21 GPIO_DATAOUT 4-21 GPIO_DATASET 4-21 GPIO_DIRN 4-22

I

Identifying the connectors 1-2 IMCLK signal 3-19, 4-16, 4-17 Integrator memory map 4-5 Interrupt assignment 4-24

L

Logic analyzer connector A-8 Logic module FPGA configuration 2-3 Logic module registers 4-8 Logic module, address assignment 4-5

Μ

Mechanical specification B-2 Memory map, example 4-4 Multi-ICE (JTAG) connector A-10

Ν

Notices, FCC iii

0

Oscillator divisor registers 4-9 Oscillator lock register 4-11

Ρ

PCLK signal 4-17 Peripheral information block 4-28 Pinout EXPA A-2 Push button interrupt register 4-11 PWM connector 3-6 PWM control 4-16 PWM interface 3-6 PWM interface signals 3-6

R

Read data input pins, GPIO 4-21 Read data ouput pins, GPIO 4-21 Registers 4-26 ADC and DAC interface 4-27 GPIO_DATACLR 4-21 GPIO_DATAIN 4-21 GPIO_DATAOUT 4-21 GPIO_DATASET 4-21 GPIO_DIRN 4-22 LM_INT 4-8 LM_LEDS 4-8 LM_LOCK 4-8 LM_OSC1 4-8, 4-17 LM_OSC2 4-8 LM_SW 4-8 SPI chip select 4-14 step count 4-20 step speed 4-20 stepper control 4-18

S

Serial connector 3-4 Serial interface signals 3-3 Signal routing 3-2 Signals, pin location A-1 SPI 3-5 SPI chip select register 4-14 SPI connector 3-5 SPI signals 3-5 SSRAM interface 4-23 Step count register 4-20 Step speed register 4-20 Stepper controller control register 4-18 Stepper interface 3-8 Stepper motor connector 3-10 Stepper motor peripheral 4-17 Stepper signals 3-9 Supplied VHDL files 4-3 Switches register 4-12 Synchronous serial por 4-15 System assembly 1-2 System block diagram 1-5 System features 1-4

U

UART 3-3, 4-13 User LEDs control register 4-11

V

Vectored interrupt controller 4-24 VHDL file descriptions 4-3 VHDL files, supplied 4-3