

�������	

	�
������
	�
������
	�
����

Programmer’s
Guide

October 1996 Network Business Products

Printed in U.S.A., October 1996
L411001–9761 revisionA

SPWU013A

ThunderLAN �
Programmer’s Guide

TNETE100A, TNETE110A, TNETE211

Literature Number: SPWU013A
Manufacturing Part Number: L411001-9761 revision A

October 1996

Running Title—Attribute Reference

 ii

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright  1996, Texas Instruments Incorporated

iii

Preface

Read This First

About This Manual

The ThunderLAN Programmer’s Guide assists you in using the following
implementations of ThunderLAN networking hardware:

� TNETE100A Ethernet� controller
� TNETE110A Ethernet controller
� TNETE211 100 VG-AnyLAN physical media interface (PMI)

How to Use This Manual

The goal of this book is to assist you in the development of drivers for the
ThunderLAN controllers. This document contains the following chapters:

� Chapter 1, ThunderLAN Overview, describes some Texas
Instruments-specific hardware features. These include the enhanced
media independent interface (MII), which passes interrupts from an
attached physical interface (PHY) to the host.

� Chapter 2, ThunderLAN Registers, shows how to access the various
ThunderLAN registers and how to use these registers to access external
devices attached to ThunderLAN.

� Chapter 3, Initializing and Resetting, discusses how to initialize and reset
the controller and the attached PHYs.

� Chapter 4, Interrupt Handling, describes what happens when interrupts
occur and how to correct failure conditions.

� Chapter 5, List Structures, describes how to pass data to ThunderLAN
using a system of linked list structures.

� Chapter 6, Transmitting and Receiving Frames, explains the format and
procedure for transmitting and receiving, as well as the linked list structure
required.

� Chapter 7, Physical Interface, discusses the features of ThunderLAN
which support IEEE 802.3- and 802.12-compliant devices.

Notational Conventions

 iv

Notational Conventions

This document uses the following conventions:

� Program listings, program examples, and interactive displays are shown
in a special font. Examples use a bold version of the special font for
emphasis. Here is a sample program listing:

11 0005 0001 .field 1, 2
12 0005 0003 .field 3, 4
13 0005 0006 .field 6, 3
14 0006 .even

� A lower case ‘x’ in a number indicates that position can be anything (don’t
care). Here are some examples:

� 0x00
� 0x0004
� 0x4000501

Related Documentation
Information Technology Local and Metropolitan Area Networks–Part 12:

Demand-Priority Access Method, Physical Layer and Repeater
Specifications for 100-Mb/s Operation, Draft 8.0 of the Revision
Marked for Technical changes of IEEE Standard 802.12.

MAC Parameters, Physical Layer, Medium Attachment Units and
Repeater for 100-Mb/s Operation, Draft 5.0 of the Supplement to 1993
version of ANSI/IEEE Std. 802.3: Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) Access Method & Physical Layer
Specifications.

PCI Local Bus Specification , Revision 2.0 is the specification which
ThunderLAN is designed to meet. To obtain copies, contact PCI Special
Interest Group, P.O. Box 14070, Portland, OR 97214, 1–800–433–5177.

ThunderLAN Adaptive Performance Optimization Technical Brief (Texas
Instruments literature number SPWT089) discusses specific buffering
and pacing techniques for improving adapter performance by adjusting
the resources and transmit procedures to achieve optimal transmission
rate and minimal CPU use.

XL24C02 Data Sheet, EXEL Microelectronics, 1993, which contains the
device specifications for the XL24C02 2M-bit electrically erasable
EPROM.

 If You Need Assistance / Trademarks

v Read This First

If You Need Assistance. . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor PIC http://www.ti.com/sc/docs/pic/home.htm
Networking Home Page http://www.ti.com/sc/docs/network/nbuhomex.htm

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (713) 274-2285
U.S. Technical Training Organization (972) 644-5580
Networking Hotline Fax: (713) 274-4027

Email:TLANHOT@micro.ti.com

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32 Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 1 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200

� Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: comments@books.sc.ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When ordering documentation from a Literature Response Center, please specify the literature number of the
book.

Trademarks

 vi

Trademarks
Ethernet is a trademark of Xerox Corporation.
ThunderLAN and Adaptive Performance Optimization are trademarks of Texas Instruments
Incorporated.

 Contents

vii

Contents

1 ThunderLAN Overview 1-1.
1.1 ThunderLAN Architecture 1-2.
1.2 Networking Protocols 1-3.
1.3 PCI Interface 1-4.

1.3.1 PCI Cycles 1-4.
1.3.2 Byte Ordering 1-5.

2 ThunderLAN Registers 2-1.
2.1 Register Addresses 2-2.
2.2 PCI Configuration Space 2-4.
2.3 Host Registers 2-9.
2.4 Internal Registers 2-11.
2.5 MII PHY Registers 2-15.
2.6 External Devices 2-25.

2.6.1 BIOS ROM 2-25.
2.6.2 LEDs 2-25.
2.6.3 EEPROM 2-26.
2.6.4 ThunderLAN EEPROM Map 2-30.

3 Initializing and Resetting 3-1.
3.1 Initializing 3-2.

3.1.1 Finding the Network Interface Card (NIC) 3-2.
3.1.2 Finding the Controller in Memory and I/O Space 3-4.
3.1.3 Finding Which Interrupt was Assigned 3-5.
3.1.4 Turning on the I/O Port and Memory Address Decode 3-6.
3.1.5 Recovering the Silicon Revision Value 3-7.
3.1.6 Setting the PCI Bus Latency Timer 3-7.

3.2 Resetting 3-8.
3.2.1 Hardware Reset 3-8.
3.2.2 Software Reset 3-9.

4 Interrupt Handling 4-1.
4.1 Loading and Unloading an Interrupt Service Routine (ISR) 4-2.
4.2 Prioritizing Adapter Interrupts 4-5.
4.3 Acknowledging Interrupts (Acking) 4-6.
4.4 Interrupt Type Codes 4-7.

Contents

viii

4.4.1 No Interrupt (Invalid Code). Int_type = 000b 4-7.
4.4.2 Tx EOF Interrupt. Int_type = 001b 4-7.
4.4.3 Statistics Overflow Interrupt. Int_type = 010b 4-8.
4.4.4 Rx EOF Interrupt. Int_type = 011b 4-8.
4.4.5 Dummy Interrupt. Int_type = 100b 4-8.
4.4.6 Tx EOC Interrupt. Int_type = 101b 4-9.
4.4.7 Network Status Interrupt. Int_type = 110b and Int_Vec = 00h 4-9.
4.4.8 Adapter Check Interrupt. Int_type = 110b and Int_Vec ≠ 00h 4-10.
4.4.9 Rx EOC Interrupt. Int_type = 111b 4-13.

5 List Structures 5-1.
5.1 List Management 5-2.
5.2 CSTAT Field Bit Requirements 5-5.
5.3 One-Fragment Mode 5-6.
5.4 Receive List Format 5-7.
5.5 Transmit List Format 5-11.

6 Transmitting and Receiving Frames 6-1.
6.1 Frame Format 6-2.

6.1.1 Receive (Rx) Frame Format 6-2.
6.1.2 Transmit (Tx) Frame Format 6-3.

6.2 GO Command 6-4.
6.2.1 Starting Frame Reception (Rx GO Command) 6-4.
6.2.2 Starting Frame Transmission (Tx GO Command) 6-6.

7 Physical Interface (PHY) 7-1.
7.1 MII-Enhanced Interrupt Event Feature 7-2.
7.2 Nonmanaged MII Devices 7-7.
7.3 Bit-Rate Devices 7-8.
7.4 PHY Initialization 7-9.

A Register Definitions A-1.
A.1 PCI Configuration Registers A-2.

A.1.1 PCI Autoconfiguration from External 24C02 Serial EEPROM A-3.
A.1.2 PCI Vendor ID Register (@ 00h) Default = 104Ch A-4.
A.1.3 PCI Device ID Register (@ 02h) Default = 0500h A-4.
A.1.4 PCI Command Register (@ 04h) A-5.
A.1.5 PCI Status Register (@ 06h) A-6.
A.1.6 PCI Base Class Register (@ 0Bh) A-7.
A.1.7 PCI Subclass Register (@ 0Ah) A-7.
A.1.8 PCI Program Interface Register (@ 09h) A-7.
A.1.9 PCI Revision Register (@ 08h) A-7.
A.1.10 PCI Cache Line Size Register (@ 0Ch) A-7.
A.1.11 PCI Latency Timer Register (@ 0Dh) A-7.
A.1.12 PCI I/O Base Address Register (@ 10h) A-7.

 Contents

ix Contents

A.1.13 PCI Memory Base Address Register (@ 14h) A-8.
A.1.14 PCI BIOS ROM Base Address Register (@ 30h) A-8.
A.1.15 PCI NVRAM Register (@ 34h) A-8.
A.1.16 PCI Interrupt Line Register (@ 3Ch) A-9.
A.1.17 PCI Interrupt Pin Register (@ 3Dh) A-9.
A.1.18 PCI Min_Gnt (@ 3Eh) and Max_Lat (@ 3Fh) Registers A-10.
A.1.19 PCI Reset Control Register (@ 40h) A-10.
A.1.20 CardBus CIS Pointer (@ 28h) A-11.

A.2 Adapter Host Registers A-12.
A.2.1 Host Command Register–HOST_CMD @ Base_Address + 0 (Host) A-12.
A.2.2 Channel Parameter Register–CH_PARM @ Base_Address + 4 (Host) A-17. . . .
A.2.3 Host Interrupt Register–HOST_INT @ Base_Address + 10 (Host) A-18.
A.2.4 DIO Address Register–DIO_ADR @ Base_Address + 8 (Host) A-19.

RAM Addressing A-19.
A.2.5 DIO Data Register–DIO_DATA @ Base_Address + 12 (Host) A-20.

A.3 Adapter Internal Registers A-21.
A.3.1 Network Command Register–NetCmd @ 0x00 (DIO) A-23.
A.3.2 Network Serial I/O Register–NetSio @ 0x00 (DIO) A-24.
A.3.3 Network Status Register–NetSts @ 0x00 (DIO) A-25.
A.3.4 Network Status Mask Register–NetMask @ 0x00 (DIO) A-26.
A.3.5 Network Configuration Register–NetConfig @ 0x04 (DIO) A-27.
A.3.6 Manufacturing Test Register–ManTest @ 0x04 (DIO) A-29.
A.3.7 Default PCI Parameter Registers–@ 0x08–0x0C (DIO) A-29.
A.3.8 General Address Registers–Areg_0-3 @ 0x10–0x24 (DIO) A-30.
A.3.9 Hash Address Registers–HASH1/HASH2 @ 0x28–0x2C (DIO) A-31.
A.3.10 Network Statistics Registers–@ 0x30–0x40 (DIO) A-32.
A.3.11 Adapter Commit Register–Acommit @ 0x40 (DIO) (Byte 3) A-34.
A.3.12 LED Register–LEDreg @ 0x44 (DIO) (Byte 0) A-35.
A.3.13 Burst Size Register–BSIZEreg @ 0x44 (DIO) (Byte 1) A-36.
A.3.14 Maximum Rx Frame Size Register–MaxRx @ 0x44 (DIO) (Bytes 2+3) A-37. . .
A.3.15 Interrupt Disable Register - INTDIS @ 0x48 (DIO) (BYTE 0) A-38.

A.4 10Base-T PHY Registers A-39.
A.4.1 PHY Generic Control Register–GEN_ctl @ 0x0 A-40.
A.4.2 PHY Generic Status Register–GEN_sts @ 0x1 A-42.
A.4.3 PHY Generic Identifier–GEN_id_hi/GEN_id_lo @ 0x2/0x3 A-44.
A.4.4 Autonegotiation Advertisement Register–AN_adv @ 0x4 A-45.
A.4.5 Autonegotiation Link Partner Ability Register–AN_lpa @ 0x5 A-46.
A.4.6 Autonegotiation Expansion Register–AN_exp @ 0x6 A-47.
A.4.7 ThunderLAN PHY Identifier High/Low–TLPHY_id @ 0x10 A-48.
A.4.8 ThunderLAN PHY Control Register–TLPHY_ctl @ 0x11 A-49.
A.4.9 ThunderLAN PHY Status Register–TLPHY_sts @ 0x12 A-50.

Contents

x

B TNETE211 100VG-AnyLAN Demand Priority Physical Media Independent (PMI) Interface B-1
B.1 100VG-AnyLAN Training B-2.
B.2 TNETE211 Register Descriptions B-6.

B.2.1 PHY Generic Control Register–GEN_ctl @ 0x0 B-7.
B.2.2 PHY Generic Status Register –GEN_sts @ 0x1 B-8.
B.2.3 PHY Generic Identifier–GEN_id_hi/GEN_id_lo @ 0x2/0x3 B-9.
B.2.4 ThunderLAN PHY Identifier High/Low–TLPHY_id @ 0x10 B-9.
B.2.5 ThunderLAN PHY Control Register–TLPHY_ctl @ 0x11 B-9.
B.2.6 ThunderLAN PHY Status Register–TLPHY_sts @ 0x12 B-11.

C TNETE100PM/TNETE110PM C-1.

 Figures

xi Contents

Figures

1–1 The ThunderLAN Controller 1-2.
1–2 PCI Bus Byte Assignment 1-5.
2–1 How ThunderLAN Registers are Addressed 2-2.
2–2 The PCI Configuration Space Registers 2-4.
2–3 Configuration EEPROM Data Format 2-5.
2–4 Host Registers 2-9.
2–5 Internal Registers 2-11.
2–6 MII PHY Registers 2-15.
4–1 Adapter Check Interrupt Fields 4-11.
5–1 List Pointers and Buffers 5-2.
5–2 Linked List Management Technique 5-3.
5–3 Receive List Format – One_Frag = 0 5-7.
5–4 Receive List Format – One_Frag = 1 5-7.
5–5 Receive CSTAT Request Fields 5-9.
5–6 Receive CSTAT Complete Fields 5-10.
5–7 Transmit List Format 5-11.
5–8 Transmit CSTAT Request Fields 5-13.
5–9 Transmit CSTAT Complete Fields 5-14.
6–1 Token Ring Logical Frame Format (Rx) 6-2.
6–2 Ethernet Logical Frame Format (Rx) 6-2.
6–3 Token Ring Logical Frame Format (Tx) 6-3.
6–4 Ethernet Logical Frame Format (Tx) 6-3.
7–1 100VG-AnyLAN Support Through ThunderLAN’s Enhanced 802.3u MII 7-2.
7–2 MII Frame Format: Read 7-3.
7–3 MII Frame Format: Write 7-4.
7–4 Assertion of Interrupt Waveform on the MDIO Line 7-6.
7–5 Waveform Showing Interrupt Between MII Frames 7-6.
A–1 PCI Configuration Register Address Map A-3.
A–2 Configuration EEPROM Data Format A-4.
A–3 Host Interface Address Map A-12.
A–4 ADAPTER Internal Register Map A-22.
A–5 Default PCI Parameter Register A-29.
A–6 Ethernet Error Counters A-32.
A–7 Demand Priority Error Counters A-34.
A–8 10Base-T PHY Registers A-39.
B–1 802.12 Training Frame Format B-2.
B–2 Training Flowchart B-4.
B–3 TNETE211 Registers B-7.

Tables

xii

Tables

2–1 ThunderLAN EEPROM Map 2-30.
4–1 Adapter Check Bit Definitions 4-11.
4–2 Adapter Check Failure Codes 4-12.
4–3 Relevance of Error Status Bits for Adapter Check Failure Codes 4-13.
5–1 Receive Parameter List Fields 5-8.
5–2 Receive CSTAT Request Bits 5-9.
5–3 Receive CSTAT Complete Bits 5-10.
5–4 Transmit Parameter List Fields 5-12.
5–5 Transmit CSTAT Request Bits 5-13.
5–6 Transmit CSTAT Complete Bits 5-14.
7–1 ThunderLAN MII Pins (100M-bps CSMA/CD) 7-3.
7–2 Possible Sources of MII Event Interrupts 7-5.
A–1 PCI Command Register Bits A-5.
A–2 PCI Status Register Bits A-6.
A–3 PCI NVRAM Register Bits A-9.
A–4 PCI Reset Control Register Bits A-10.
A–5 Host_CMD Register Bits A-12.
A–6 HOST_INT Register Bits A-18.
A–7 DIO_ADR Register Bits A-19.
A–8 Network Command Register Bits A-23.
A–9 Network Serial I/O Register Bits A-24.
A–10 Network Status Register Bits A-25.
A–11 Network Status Mask Register Bits A-26.
A–12 Network Configuration Register Bits A-27.
A–13 MAC Protocol Selection Codes A-29.
A–14 Ethernet Error Counters A-33.
A–15 Demand Priority Error Counters A-34.
A–16 Adapter Commit Register Bits A-35.
A–17 Burst Size Register Bits A-36.
A–18 Demand Priority Error Counters A-38.
A–19 PHY Generic Control Register Bits A-40.
A–20 PHY Generic Status Register Bits A-42.
A–21 Autonegotiation Advertisement Register Bits A-45.
A–22 Autonegotiation Link Partner Ability Register Bits A-46.
A–23 Autonegotiation Expansion Register Bits A-47.
A–24 ThunderLAN PHY Control Register Bits A-49.

 Tables

xiii Contents

A–25 ThunderLAN PHY Status Register Bits A-50.
B–1 PHY Generic Control Register Bits B-7.
B–2 PHY Generic Status Register Bits B-8.
B–3 ThunderLAN PHY Control Register Bits B-10.
B–4 ThunderLAN PHY Status Register Bits B-11.

xiv

 Running Title—Attribute Reference

1-1 Chapter Title—Attribute Reference

ThunderLAN Overview

The ThunderLAN family consists of highly integrated, single-chip networking
hardware. It uses a high-speed architecture that provides a complete peripher-
al component interconnect (PCI)- to-10Base-T/AUI (adapter unit interface)
Ethernet solution. It allows the flexibility to handle 100M-bps Ethernet proto-
cols as the user’s networking requirements change.

The TNETE100A, one implementation of the ThunderLAN architecture, is an
intelligent protocol network interface. Modular support for the 100 Base-T
(IEEE 802.3u) and 100VG-AnyLAN (IEEE 802.12) is provided via a media
independent interface (MII). The TNETE110A is the same device without the
MII and is 10M bps only. ThunderLAN uses a single driver suite to support mul-
tiple networking protocols.

ThunderLAN architecture was designed to achieve the following goals:

� High performance with low use of host CPU
� Simplicity of design
� Ease of upgrade to higher speed networks
� Freedom of choice of network protocol

ThunderLAN allows a simple system design by integrating a PCI controller, an
internal first in, first out (FIFO) buffer, a LAN controller, and a 10Base-T physi-
cal interface (PHY).

Topic Page

1.1 ThunderLAN Architecture 1-2.

1.2 Networking Protocols 1-3.

1.3 PCI Interface 1-4.

Chapter 1

ThunderLAN Architecture

 1-2

1.1 ThunderLAN Architecture

Figure 1–1. The ThunderLAN Controller

PCI Bus PCI
controller

FIFO
registers

Multiplexed
SRAM

LAN
controller

PHY

LAN

802.3

100M-bps
MII

An integrated PHY provides interface functions for 10Base-T carrier sense
multiple access/collision detect (CSMA/CD) (Ethernet). A MII is used to com-
municate with the integrated PHY. The PHY is an independent module from
the rest of the ThunderLAN controller. This allows the PHY to be reset and
placed in a power-down mode.

The PCI controller is responsible for direct memory accesses (DMAs) to and
from the host memory. It is designed to relieve the host from time-consuming
data movements, thereby reducing use of the host CPU. The PCI interface
supports a 32-bit data path.

ThunderLAN supports two transmit and one receive channels. The demand
priority protocol supports two frame priorities: normal and priority. The two
transmit channels provide independent host channels for these two priority
types. CSMA/CD protocols only support a single frame priority, but the two
channels can be used to prioritize network access, if needed. All received
frames pass through the single receive channel.

ThunderLAN’s multiplexed SRAM is 3.375K bytes in size. This allows it to sup-
port one 1.5K byte FIFO for receive, two 0.75K byte FIFOs for the two transmit
(Tx) channels, and three 128-byte lists (see section 5.1, List Management). In
one-channel mode, the two Tx channels are combined, giving a single 1.5K-
byte FIFO for a single Tx channel. Supporting 1.5K byte of FIFO per channel
allows full frame buffering of Ethernet frames. PCI latency is such that a mini-
mum of 500 bytes of storage is required to support 100M-bps LANs. (Refer to
the PCI Local Bus Specification, revision 2.0, section 3.5, Latency).

ThunderLAN’s industry-standard MII permits ease of upgrade. External de-
vices can be connected to the MII and managed, if they support the two-wire
management interface. PHY layer functions for 100M-bps CSMA/CD and de-
mand priority are connected to the MII.

 Networking Protocols

1-3 ThunderLAN Overview

1.2 Networking Protocols

The MII also allows freedom in choosing a networking protocol. It allows the
use of standard 100M bps CSMA/CD PHY chips. ThunderLAN uses these sig-
nal lines to interface to an external 100M bps demand priority PHY. This gives
ThunderLAN the flexibility necessary to handle 10Base-T, 10Base-2,
10Base-5 AUI, 100Base-TX, 100Base-T4, 100Base-FX, and 100VG-AnyLAN
today, while supporting emerging technologies.

ThunderLAN is designed to simplify the software used to transmit frames, re-
ceive frames, and service the PHY events. It accomplishes this by integrating
time-consuming tasks into the controller. These tasks include:

� The DMA of data into and out of the controller
� A simplified, interrupt-driven frame buffer management technique
� The elimination of PHY register polling through MII interrupts

DMA of data is handled through list structures. ThunderLAN’s method of han-
dling data through list structures has parallels with the method used in Texas
Instruments TI380 COMMprocessors. There are some differences, such as
the use of a 0 forward pointer.

ThunderLAN is designed to meet PCI Local Bus Specification, revision 2.0 for
its PCI interface standards.

PCI Interface

 1-4

1.3 PCI Interface

The PCI local bus is a high-performance, 32- or 64-bit bus with multiplexed ad-
dress and data lines. The bus is designed to be a medium between highly inte-
grated peripheral controller components such as ThunderLAN, add-in boards,
and processor/memory systems.

1.3.1 PCI Cycles

ThunderLAN executes the following cycles when it acts as the PCI bus master.
The hexadecimal number shown is the bus command encoded in the PC/
BE[3::0]# signals.

� 0x7h–memory write
� 0xCh–memory read multiple
� 0xEh–memory read line

ThunderLAN responds to the following PCI cycles when acting in slave mode
on the PCI bus:

� 0x2h–I/O read
� 0x3h–I/O write
� 0x6h–memory read
� 0x7h–memory write
� 0xAh–configuration read
� 0xBh–configuration write
� 0xCh–memory read multiple
� 0xEh–memory read line
� 0xFh–memory write and invalidate

Future versions of ThunderLAN may not be limited to these PCI cycles. Texas
Instruments reserves the right to add or delete any cycles to the ThunderLAN
PCI controller. When designing a system, ensure that the attached interface
to ThunderLAN is fully compliant with the PCI Local Bus Specification.

 PCI Interface

1-5 ThunderLAN Overview

1.3.2 Byte Ordering

ThunderLAN follows the PCI Local Bus Specification convention when trans-
ferring data on the PCI bus. The PCI bus data is transferred on the PAD[31::0]
lines. PAD31 is the most significant bit, and PAD0 is the least significant bit.

The 32 data lines are enough to transfer four bytes per data cycle. Byte 0 is
the LSbyte and byte 3 is the MSbyte. Byte 0 uses bits 0–7, byte 1 uses bits
8–15, byte 2 uses bits 16–23, byte 3 uses bits 24–31.

Figure 1–2. PCI Bus Byte Assignment

Byte 0Byte 1Byte 2Byte 3

0781516232431

ThunderLAN uses the full four bytes per data cycle. The only exception is when
the data to be transferred is not octet aligned. In this case, the PCI controller
might not transfer the full four bytes on the first cycle. ThunderLAN deasserts
the IRDY signal only once, if needed, to synchronize the PCI bus to the internal
64-bit architecture. The deassertion of IRDY occurs on the third cycle of the
PCI bus. ThunderLAN does not deassert IRDY for the rest of the transfer un-
less the PCI bus asserts the TRDY signal.

 1-6

2-1

ThunderLAN Registers

ThunderLAN uses a variety of registers to perform its networking functions.
These include peripheral component interface (PCI) registers, host registers,
internal direct input /output (DIO) registers, media independent interface (MII)
registers, and physical interface (PHY) registers. Access to these is a require-
ment for setting up the ThunderLAN controller and any of the PHY devices at-
tached to the MII. They must be accessed as well for transmission, initiation,
and reception of data. Other activities which require the user to understand
ThunderLAN’s register spaces include determining the cause of event-driven
interrupts and how to clear them and diagnostic functions. This chapter ex-
plains register configurations and discusses control of these spaces through
code examples.

Topic Page

2.1 Register Addresses 2-2.

2.2 PCI Configuration Space 2-4.

2.3 Host Registers 2-9.

2.4 Internal Registers 2-11.

2.5 MII PHY Registers 2-15.

2.6 External Devices 2-25.

Chapter 2

Register Addresses

 2-2

2.1 Register Addresses

The following figure shows the various register spaces provided by Thunder-
LAN. It also shows how a driver uses ThunderLAN’s registers to interface to
external devices such as PHYs, BIOS ROMs, and EEPROMs.

Figure 2–1. How ThunderLAN Registers are Addressed

Host registers

HOST CMD

CH PARM

HOST INT

DIO ADR

DIO DATA

PCI
PCI registers

Memory
base address

BIOS ROM
base address

PCI NVRAM

I/O base
address

NetCmd

NetSts

NetSio

AREG0–3

HASH

Statistics
registers

LEDreg

Internal/DIO registers

MDIO/MDCLK

MII/PHY registers

Generic

Autonegotiation

Reserved

PHY specific

Serial EEPROM

BIOS ROM

LED

EDIO/EDCLK

LED IF

ThunderLAN

SRAM

One block of registers, the host registers, appear at a programmable place in
memory or port address space, directly on the PCI bus. The beginning address
is determined by the value written into the PCI configuration space base ad-
dress registers. Once the base register’s address is determined, ThunderLAN
reads and writes to these registers like ordinary memory or I/O ports. Since the
ThunderLAN devices are directly connected to the PCI, there is no external
decode logic that generates a chip select—all the decode is done internally.

ThunderLAN’s internal/DIO registers are accessed via the DIO_ADR and
DIO_DATA registers in the host register group. An address is placed in the host
DIO_ADR register, and the data to be read or written to the DIO register is read
or written to the DIO_DATA register. The internal/DIO register space is refer-
enced indirectly via the host registers to minimize the amount of host address
space required to support the ThunderLAN controller. External devices and
their data are also reached via indirect reference through the host registers

 Register Addresses

2-3 ThunderLAN Registers

and PCI configuration registers to make control of the system possible through
the one PCI interface.

An EEPROM, required by the PCI, can be written to at manufacture time
through the PCI_NVRAM register, which is located in the host register space.
The EEPROM can also be accessed through the NetSio register which is lo-
cated in the internal/DIO register space. Control registers on the PHY side of
the MII management interface can be similarly written and read through the
NetSio register.

A BIOS ROM can be enabled via the BRE bit in the PCI BIOS ROM base ad-
dress register, and its chip selected address dynamically assigned via a base
register in the configuration space. The BRE bit points to a valid address in the
ROM address space which causes two byte-address strobe cycles (EALE,
EXLE) and a read before the PCI cycle is completed.

PCI Configuration Space

 2-4

2.2 PCI Configuration Space

Figure 2–2. The PCI Configuration Space Registers

read only

read/write
read/write

read/write

read/write
read/write

read/write

read only
read/write
read only

Byte 0Byte 1Byte 2Byte 3
031

FFh

44h
40h
3Ch
38h
34h
30h

28h

18h

14h
10h

0Ch

08h
04h
00h

Reset control
Interrupt lineInt pin(01h)Min_GntMax_Lat

Reserved (00h)

BIOS ROM base address

Memory base address
I/O base address

size
Cache line

timer
LatencyReserved

(00h)(00h)
Reserved

Revision
(00h)

Program interfaceSubclass
(02h)

Base class

Vendor IDDevice ID
Status Command

Cardbus CIS Pointer
Reserved (00h)

Reserved (00h)
Reserved (00h)

Reserved (00h)
IntDisReserved (00h)

Reserved (00h)

PCI NVRAMReserved (00h)

48h

B4h

read only

2Ch

Reserved (00h)

Reserved (00h)

Register configuration space information fields are needed to identify a board
in a slot to a driver. The functional purpose of the board, the manufacturer, the
revision, and several bus requirements can be obtained by inspecting these
parameters. The PCI configuration space uses these registers which are
called out in the PCI Local Bus Specification. These enable the PCI system to:

� Identify the ThunderLAN controller. This includes setting the interrupt as-
signed to ThunderLAN.

� Map the host registers using either the I/O base address register or the
memory base address register. The driver uses the address contained in
these registers to access ThunderLAN’s internal registers.

 PCI Configuration Space

2-5 ThunderLAN Registers

� Set up the PCI bus. Several PCI bus options can be selected through
these registers, including latency and grant. (Refer to PCI Local Bus Spec-
ification, subsection 3.5)

� Map a BIOS ROM using the BIOS ROM base address register

Many of the registers in the PCI configuration space are accessed with PCI
BIOS calls. Refer to the PCI Local Bus Specification, chapter 6, for the com-
mands supported by your specific PCI BIOS. Some operating systems (O/Ss)
provide BIOS call support. Your operating system’s user’s guide contains
these specific BIOS support routines.

The PCI specification requires that a bus-resident device respond to bus cycle
codes reserved for reading and writing to configuration space. See the PCI
Local Bus Specification document for more information on how these short,
slot-dependent address spaces appear to the host processor. The shaded
registers in Figure 2–3 can be autoloaded from an external serial EEPROM.

Check the following before accessing the PCI configuration space:

� Ensure that there is a PCI BIOS present or other support for BIOS calls.

� Ensure that the BIOS is the right revision.

� Use a PCI BIOS call to find all attached devices on the PCI bus. Make sure
that you are talking to the right device on the PCI bus.

Attaching a pullup resistor to the EDIO pin allows the board designer to auto-
matically read an EEPROM after reset to determine the contents of the first
eight bytes, shown shaded below. If the host attempts to read any of the config-
uration space during the time the adapter is reading the EEPROM, Thunder-
LAN rejects the request by signaling target-retry.

Figure 2–3. Configuration EEPROM Data Format

Address

C8h

C7h

C6h

C5h

C4h

C3h

C2h

C1h

C0h

Checksum

Max_Lat

Min_Gnt

Subclass

Revision

Device ID MSByte

Device ID LSByte

Vendor ID MSByte

Vendor ID LSByte

PCI Configuration Space

 2-6

Normally, access to the configuration space is limited to the operating system.
On power-up, the vendor ID, device ID, revision, subclass, Min_Gnt, and
Max_Lat registers are loaded with default values. Vendor-specific data is
loaded into these registers by placing the data into the EEPROM, which is read
at the end of reset if autoload is enabled with a pullup resistor on the EDIO pin.
If the data read from the EEPROM has a checksum error, values are fetched
from the default PCI parameter registers, which are located at addresses
0x08h to 0x0Fh in the internal/DIO registers space.

Some fields in the configuration space like the bits in the memory base address
register and the I/O base address register, which indicate the space size al-
location required to access the host registers, are hardwired in the Thunder-
LAN controllers. Some of the allowed PCI configuration space values like base
registers beyond the basic I/O and memory base registers are not implement-
ed because no other entities are supported by this PCI interface other than the
network function.

To find register information, you must first identify the PCI function ID:

//––

// PCIFindDevice – Find PCI device

//

// Parameters:

// DeviceID WORD The device ID

// VendorID WORD The vendor ID

// Index WORD index (normally 0, use when more than
1 device)

// pDev WORD* Where to put the device id

//

// Return val:

// int 0 if successful. see std return codes in
header

//––

WORD PciFindDevice(

 WORD deviceID,

 WORD vendorID,

 WORD Index,

 WORD *pDev)

{

 union REGS r;

 PCI Configuration Space

2-7 ThunderLAN Registers

 r.h.ah = PCI_FUNCTION_ID;

 r.h.al = FIND_PCI_DEVICE;

 r.x.cx = DeviceID;

 r.x.dx = VendorID;

 r.x.si = Index;

 int86(PCI_INT, &r, &r);

 *pDev = (WORD)r.x.bx;

 return (int)r.h.ah;

}

This code returns the function ID that is used to request reads and writes to
the ThunderLAN PCI configuration space; this varies from installation to instal-
lation, based on hardware implementation and slot. This ID is necessary to de-
termine where ThunderLAN is. The device ID indicates a networking card, and
the vendor ID is the manufacturer code. These values can be overlaid in the
configuration space with values from the EEPROM during the autoconfigura-
tion. These should be available to the driver software either in the BIOS ROM
or on machine-readable media supplied with the network board(s).

The following example reads a byte of a PCI register:

//––

// PciRdByte() – Read a byte from PCI configuration space

//

// Parameters:

// devid WORD pci device identifier

// addr WORD config address

//

// Return val:

// BYTE value read

//––

BYTE PciRdByte(WORD devid, WORD addr)

{

 union REGS r;

 r.h.ah = PCI_FUNCTION_ID; /* PCI_FUNCTION_ID
0xB1 */

 r.h.al = READ_CONFIG_BYTE; /* READ_CONFIG_WORD
0x09 */

 r.x.bx = devid;

PCI Configuration Space

 2-8

 r.x.di = addr;

 int86(PCI_INT, &r, &r); /* PCI_INT 0x1A */

 return (r.x.cx & 0xFF);

}

Normally, the constants in this routine (the values assigned to ah, al, and the
opcode for the int86 call) are assigned in the header file for the C code. Their
values are inserted as comments to enable the reader to resolve the actual val-
ues that are used. The device ID, devid, is known to the driver and is used with
another PCI O/S call to find the base addresses needed for this call.

//––

// PciRdWord() – PCI read config word

//

// Parameters:

// devid WORD pci device number

// addr WORD address to read

//

// Return val:

// WORD value read

//––

WORD PciRdWord(WORD devid, WORD addr)

{

 union REGS r;

 r.h.ah = PCI_FUNCTION_ID;

 r.h.al = READ_CONFIG_WORD;

 r.x.bx = devid;

 r.x.di = addr;

 int86(PCI_INT, &r, &r);

 return(r.x.cx);

}

This code passes an address >10 if the driver regards the host registers as
memory locations (ThunderLAN’s first base address register is hardwired as
a memory base register), or >14 if the driver treated the host registers as an
I/O block (ThunderLAN’s second base register is hardwired as an I/O base
register). For the I/O port, the following C instruction could be used to put a val-
ue into the DIO_ADR host register:

outpw(base_addr+OFF_DIO_ADDR,value);

OFF_DIO_ADDR is a constant for the header file. A memory transfer instruc-
tion is used if memory space is used instead of I/O space.

 Host Registers

2-9 ThunderLAN Registers

2.3 Host Registers

Figure 2–4. Host Registers

offset
Base address

+12

+8

+4

+0

DIO_DATA

DIO_ADRHOST_INT

CH_PARM

HOST_CMD

0151631

ThunderLAN implements the host registers shown above. These are the pri-
mary control points for ThunderLAN. Through the host registers, a driver can:

� Reset the ThunderLAN controller

� Start transmit and receive channels

� Handle interrupts: Acknowledge interrupts, turn certain kinds of interrupts
on or off, or pace interrupts with the host

� Access the internal registers

� Access the internal SRAM for diagnostic purposes

The HOST_CMD register gives commands to the ThunderLAN controller. It is
used in conjunction with the CH_PARM register to start the transmit and re-
ceive processes (Tx GO/Rx GO). It is also used in conjunction with the
HOST_INT register to acknowledge (ack) interrupts. Through HOST_CMD,
interrupt pacing can be selected.

The CH_PARM register is used to give the physical addresses of a transmit
or receive list to ThunderLAN’s direct memory access (DMA) controller. Thun-
derLAN uses the address in the CH_PARM register to DMA data into or out
of its FIFOs. In an adapter check, an error condition where ThunderLAN must
be reset, CH_PARM contains information on the nature of the error.

The HOST_INT register contains information on the type of interrupt that was
given to the host processor. It is also used with the CH_PARM register to indi-
cate adapter checks. HOST_INT is designed to make interrupt handling rou-
tines simple and powerful. The last two significant bits are set to 0 so that this
register may be used as a table offset in a jump table. The bit definitions are
mapped to the most significant word (MSW) of the HOST_CMD register. This
allows acknowledging of interrupt operations by simply taking the value in
HOST_INT and writing it to HOST_CMD.

The DIO_ADR and DIO_DATA registers work in tandem to allow accesses to
the internal DIO registers and SRAM. The value in DIO_ADR selects the regis-
ter or memory locations to be accessed.

Host Registers

 2-10

To enable reads of adjacent addresses without reposting the address, bit 15
of the DIO_ADR register can be set, which causes the address to be post-in-
cremented by 4 after each access of the DIO_DATA register. This function is
useful when reading the statistics or reading the internal SRAM. Autoincre-
menting while reading the FIFO memory causes a move to the same part of
the next 68-bit word; it does not move to the next part of the same 68-bit word.
The two least significant bits (LSBs) of the DIO_ADR must be expressly set
to get to the various parts of each 68-bit entity.

The host registers are addressed either as memory or I/O ports. The PCI con-
figuration space has locations for the O/S to assign up to six memory or I/O
base addresses. The depth of the space requested for each base register im-
plemented is determined by the number of bits, starting at the LSBs, whose
values are fixed. The O/S writes to the rest of the bits (with the assumption that
the fixed positions are equal to 0) at the beginning address of that block.

As an example, the LSB determines whether the base register is a memory
(0) or an I/O space (1) base register. ThunderLAN’s PCI interface reserves
memory I/O space by implementing an I/O and a memory configuration base
register, both with the four LSBs in these registers fixed to indicate the field
width requested be reserved in the respective address space for the host reg-
ister block (four quad words or 16 bytes). The rest of the bits of a base register
are filled in by the O/S after all the space requests are considered.

Assigning space in this way assures that all starts of fields are naturally aligned
to long words or better. It is important to note that by the time either the BIOS
code or driver code is allowed to run, the O/S has queried the card and as-
signed the base addresses. The host registers can be accessed equally in
both address spaces on host processor systems that support both.

Some processors only support memory spaces; in these cases the I/O spaces
are assigned a 0, which is not a valid base register value for a peripheral. The
driver must check for a 0 base offset value before using the I/O method of
accessing the ThunderLAN registers. The base offset must be constant be-
tween host processor resets, but can be different for each execution of the pro-
gram. All host register accesses are done relative to the value found in the re-
spective configuration base register.

The unimplemented base registers in the configuration space return all 0s on
a read. This is equivalent to requesting a 232-byte data space—all of the avail-
able address space in a 32-bit address system. PCI interprets an all-bits-fixed
situation as not implemented.

 Internal Registers

2-11 ThunderLAN Registers

2.4 Internal Registers

Figure 2–5. Internal Registers

DIO address

0x44

0x40

0x3C

0x38

0x34

0x30

0x2C

0x28

0x24

0x20

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

LEDregBSIZEregMaxRx

collisions
Excessive

collisions
Late

errors
Carrier loss

Acommit

Multicollision Tx framesSingle collision Tx frames

frames
Deferred Tx

frames
CRC error

frames
Code error

Good Rx frames

Good Tx frames

Rx overrun

Tx underrun

HASH2

HASH1

(31 to 24)
Areg_3

(23 to 16)
Areg_3

(15 to 8)
Areg_3

(7 to 0)
Areg_3

(15 to 8)
Areg_2

(7 to 0)
Areg_2

(47 to 40)
Areg_3

(39 to 32)
Areg_3

(47 to 40)
Areg_2

(39 to 32)
Areg_2

(31 to 24)
Areg_2

(23 to 16)
Areg_2

(31 to 24)
Areg_1

(23 to 16)
Areg_1

(15 to 8)
Areg_1

(7 to 0)
Areg_1

(15 to 8)
Areg_0

(7 to 0)
Areg_0

(47 to 40)
Areg_1

(39 to 32)
Areg_1

(47 to 40)
Areg_0

(39 to 32)
Areg_0

(31 to 24)
Areg_0

(23 to 16)
Areg_0

 revision
Default

Subclass
Default

Min_Lat
Default

Max_Lat
Default

LSbyte
vendor ID

Default

MSbyte
vendor ID

Default

LSbyte
device ID
Default

MSbyte
device ID
Default

NetConfigMan Test

NetCmdNetSioNetStsNetMask

Byte 0Byte 1Byte 2Byte 3

The internal registers are used less often than the host registers. They are
used for:

� Setting diagnostic options, such as loopback (wrap) and copy all frames

� Setting network options. This is usually a one-time operation at initialization.

Internal Registers

 2-12

� Setting commit levels and PCI burst levels

� Interfacing via the management interface to the PHY registers

� Determining status interrupts

� Setting eight bytes of default PCI configuration data if the EEPROM
checksum is bad

� Setting the various unicast and multicast addresses

� Providing network statistics

� Setting the LEDs and implementing a BIOS ROM

The NetCmd register is used to set many of the diagnostic modes such as
wrap, copy short frames (CSF), copy all frames (CAF), no broadcast
(NOBRX), duplex, and token ring frame formats. It also includes a reset bit,
which is used to allow changes in the NetConfig register for additional network
configuration options.

NetSio, the network serial I/O register, is used to control the MDIO/MDCLK
management interface. It is also used to communicate with an EEPROM, us-
ing the EDIO/EDCLK serial interface. This register can also enable or disable
PHY interrupts.

The NetSts and NetMask registers work in tandem to determine the nature of
a status interrupt. The bits in the NetMask register are used to mask whether
the status flags in NetSts cause interrupts or not.

The NetConfig register sets network configuration options during reset. This
register can only be written to when ThunderLAN is in reset (NRESET = 0). It
allows the controller to receive CRCs (RxCRC), pass errored frames (PEF),
use a one-fragment list on receive (refer to subsection 5.3, One-Fragment
Mode, for more information), use a single transmit channel, enable the internal
PHY, and select the network protocol (CSMA/CD or demand priority).

The AREG registers allow ThunderLAN to recognize any four 48-bit IEEE 802
address. This includes specific, group, local, or universal addresses. They can
be Ethernet or token ring addresses. The HASH registers allow group ad-
dressed frames to be accepted on the basis of a hashing table.

The statistics registers hold the appropriate network counters, including good
Tx and Rx frames, collisions, deferred frames, and error counters. The LEDs
are controlled through the LEDreg register, which directly controls the values
output on the LED lines EAD[7::0]. All are, therefore, software programmable.
LEDreg can also be used to implement a BIOS ROM. The Acommit register

 Internal Registers

2-13 ThunderLAN Registers

is used to set the network transmit commit level. The BSIZEreg register is used
to set the bus burst size on both Tx and Rx frames.

The internal registers are accessed via the DIO_DATA and DIO_ADR host
registers. DIO_ADR holds the DIO address of the register. The data is then
read from or written to DIO_DATA.

Before one can write to an internal register, one must find the proper address
for the host registers to use as pointers to the internal register block, and de-
cide whether to use the memory pointer or the I/O port pointer value. Following
is an example of x86 C code to access a byte from an internal register using
the I/O port pointer value:

//––

// DioRdByte() – Read byte from adapter internal register

//

// Parameters:

// base_addr WORD base address of TLAN internal registers

// addr WORD offset of register to read

//

// Return val:

// BYTE value read

//––

BYTE DioRdByte(WORD base_addr, WORD addr)

{

 outpw(base_addr+OFF_DIO_ADDR, addr);

 return(inp((base_addr+OFF_DIO_DATA) + (addr&3)));

}

The address of the register being read is determined by the calling program
and is passed to this routine as a parameter, along with the the I/O base ad-
dress. An output is executed to the DIO_ADR host register as part of setting
up the pointer address. In x86 architectures, there are separate instructions
for 16-bit port writes and 8-bit port writes; the 16-bit version is used to write all
the address field’s 16 bits in one operation. Internally, this causes the data from
the internal register at that address to be deposited in the DIO_DATA host reg-
ister. A byte read of the data register gets the LSbyte (addr&3). A more sophis-
ticated routine honors the address of the byte specifically requested and sees
that those eight bits are shifted down to a byte to be returned. If you want to
read a whole word from one of the internal registers (32 bits), you could per-
form two 16-bit reads and merge the values to be returned as a 32-bit value
like this:

Internal Registers

 2-14

//––

// DioRdDword() – read 32 bits from internal TLAN register

//

// Parameters:

// base_addr WORD base address of TLAN internal registers

// addr WORD address to read

//

// Return val:

// DWORD value read

//––

DWORD DioRdDword(WORD base_addr, WORD addr)

{

 DWORD data;

 addr &= 0x3fff;

 outpw(base_addr+OFF_DIO_ADDR, addr);

 data = ((DWORD)inpw(base_addr+OFF_DIO_DATA))&0x0000ffffl;

 data |= ((DWORD)inpw(base_addr+OFF_DIO_DATA+2)) << 16l;

 return(data);

}

 MII PHY Registers

2-15 ThunderLAN Registers

2.5 MII PHY Registers

Figure 2–6. MII PHY Registers

Register

Vendor-specific registers

Reserved by IEEE 802.3

Autonegotiation next page transmit

Autonegotiation expansion

Autonegotiation link-partner ability

Autonegotiation advertisement

PHY generic identifier (low)

PHY generic identifier (high)

PHY generic status register

PHY generic control register

0x1F

through

0x10

0x0F

through

0x08

0x07

0x06

0x05

0x04

0x03

0x02

0x01

0x00

Vendor-specific registers

Reserved

Reserved

Reserved

AN next page transmit

AN expansion

AN link-partner ability

AN advertisement

PHY identifier

PHY identifier

Status

Control

Vendor-specific registers

Vendor-specific registers

Description

The 802.3 standard specifies a basic set of registers that must be present.
These include a control register at 0x00 and a status register at 0x01. An ex-
tended set from 0x02 through 0x1F can also be implemented. Within the ex-
tended set, 0x02 through 0x07 are defined and 0x08 through 0x0F are re-
served. The area between 0x10 and 0x1F can be used for vendor-specific ap-
plications. The basic set of registers is shown in dark gray above. The ex-
tended registers are shown in lighter gray and white. The light gray registers
are those defined by 802.3, and the white registers are vendor-specific. The
register specification for the internal 10Base-T PHY in ThunderLAN control-
lers is shown in Appendix A. We have also included the register specification
for the TNETE211 100VG-AnyLAN physical media interface (PMI) in Appen-
dix B.

The PHY registers are accessed to:

� Initialize the PHY, bring it in and out of reset, and isolate it from the MII
� Set PHY options, such as duplex and loopback
� Determine the type of speed and protocol supported by the PHY
� Conduct autonegotiation, if supported
� Select any vendor-specific options

The control register (GEN_ctl in ThunderLAN products) controls PHY options
such as reset, loopback, duplex, and autonegotiation enable. It also powers
down and isolates the PHY from the MII.

MII PHY Registers

 2-16

The status register (GEN_sts in ThunderLAN products) includes bits to identify
the technology supported by the PHY. This technology includes protocol and
duplex abilities. It indicates link, jabber, and autoconfiguration completion. Bit
0 of the status register also indicates whether the extended register set is sup-
ported.

The PHY identifier registers (GEN_id_hi/GEN_id_lo in ThunderLAN products)
contain an identifier code for the silicon revision and the silicon manufacturer.

Registers 0x04 thru 0x07 are used in the autonegotiation process. They in-
clude the autonegotiation advertisement, autonegotiation link partner ability,
autonegotiation expansion, and autonegotiation next page registers (AN_adv,
AN_lpa, AN_exp respectively).

In the vendor-specific area, Texas Instruments has implemented a TLPHY_id
register. This register is used to identify ThunderLAN-specific PHY devices.
ThunderLAN also implements a specific control register, TLPHY_ctl, and sta-
tus register, TLPHY_sts. The particulars of these registers change from PHY
to PHY. Please refer to Appendix A for the PHY that you are using.

Writing to a register in a PHY through the management interface involves writ-
ing data and clock bits into NetSio, an internal register, which uses the pointer
host registers. The data unit to or from a PHY register is always 16 bits.

The NetSio register uses three bits to drive the MDIO/MDCLK MII manage-
ment interface. These bits are MCLK, MTXEN, and MDATA. These bits directly
control the voltages present in the management interface and function like
this:

� MCLK directly controls the MDCLK signal. Setting MCLK in NetSio high
causes a logic 1 to appear on the MDCLK pin. Setting MCLK in the NetSio
register low causes a logic 0 to appear on the MDCLK pin.

� MTXEN controls the direction of the MDIO pin.

� When MTXEN is high, MDIO is driven with the value written on
MDATA.

� When MTXEN is low, MDATA mirrors the MDIO line.

Multiple PHYs can be attached to one MII. PHYs are selected through an ad-
dress which can be in a range from 0x00 to 0x1F. Some vendors’ PHYs have
pins that can be pulled up or down to indicate the PHY address. In order for
a particular PHY to be addressed, the driver must know the PHY address be-
forehand.

ThunderLAN’s internal PHY for 10Base-T can only support two addresses.
When used in conjunction with the rest of the ThunderLAN device, the address

 MII PHY Registers

2-17 ThunderLAN Registers

is 0x1F. When the internal PHY for 10Base-T is used in a standalone mode,
that is, when run from another controller through the MII pins, it is at address
0x00. These are the only two addresses allowed for the internal PHY.

The 100VG-AnyLAN PMI device, the TNETE211, is used to attach 802.12
physical media dependent (PMD) devices to ThunderLAN’s MII. The
TNETE211 has five external pins (DEVSEL[4::0]) that program the address to
which it will respond. If multiple PHYs are used, each must be installed with
a unique address.

Before reading or writing to any PHY register, the MII serial interface must be
synchronized. This involves a one-time write of 32, 1 bits on the MDIO pin.
Once this is done, an access can be done with a two-bit start delimiter, then
a two-bit op code (for read or write), followed by five bits of PHY address, five
bits of register address, two bits of turnaround time in case the PHY is going
to write to the data line, and 16 bits of data.

The synchronization code could be done this way:

//––

// MIISync() – send MII synchronization pattern to all

// possible MII interfaces

//

// Parameters:

// base_addr base address on TLAN internal registers

//

// Return val:

// none

//––

void MIISync(WORD base_addr)

{

 register int i;

 clr(MTXEN);

where clr is a macro to set a bit to 0 in the NetSio internal register. In this case,
bit MTXEN in NetSio is cleared.

#define clr(x)

DioWrByte(base_addr,Net_Sio,(BYTE)(DioRd
Byte(base_addr,Net_Sio)&~x))

When the output enable bit is cleared and the PHYs have just been turned on,
none of them outputs data. The value on the data line is determined by the pull-

MII PHY Registers

 2-18

up resistor, which is recommended to be attached to this line. The MII devices
should see 1s.

An alternate way to give the PHYs a series of 1s, is to:

set(MDATA)

set(MTXEN)

clr(MCLK);

//delay here

DioRdByte(base_addr,Net_Sio);

set(MCLK);

Where MCLK is a constant for the third LSB (in the internal NetSio register)
and is defined as:

//delay

DioRdByte(base_addr,Net_Sio);

set(NMRST);

This is the command to set a bit to 0 in the internal NetSio register. In this case,
the MCLK bit in NetSio is set. Set could be defined this way:

#define set(x)

DioWrByte(base_addr,Net_Sio,(BYTE)(DioRdByte
(base_addr,Net_Sio) |x))

The routine to synchronize the PHYs is part of the startup code. The controller
at this point is held in reset due to the drivers writing a 1 to the Ad_Rst bit, bit
15 in the HOST_CMD register, or a reset being received on power-up through
the PCI system. Setting the NMRST bit to 0 places the MII bus in a reset state.

for (i = 0;i < 32;i++)

togLH(MCLK);

The command togLH is a combination of the clr and set commands on the
passed parameter and is defined this way:

#define togLH(x) {clr(x); \

 set(x);}

}

togLH is repeated 32 times to give PHYs the 32, 1 data bits that they need to
get synchronized. Note that the clock line is left in the high state at the end of
the loop.

 MII PHY Registers

2-19 ThunderLAN Registers

After synchronization, one could use code like the following to read a PHY reg-
ister:

//––

// MiiRdWord() – Read word from Phy MII, place at ptr,
return status

//

// Parameters:

// base_addr WORD base address of TLAN internal regis-
ters (passed

// for set/clr macros)

// dev WORD device to read from

// addr WORD register on dev to read from

// pval WORD* storage for data read

//

// Return val:

// int OK (0) on success, NO_ACK (1) on failure

//––

int MiiRdWord(WORD base_addr, WORD dev, WORD addr, WORD
*pval)

{

// mread array: 01 is the start delimiter sequence for
the MII

// interface, 10 specifies the operation will be a
read.

// See IEEE 802.3u

WORD i,tmp;

char ack;

BYTE b;

WORD diodata = base_addr+OFF_DIO_DATA+Net_Sio;

CritOn();

outpw(base_addr+OFF_DIO_ADDR,Net_Sio);

This example uses the host registers as I/O ports, so the code needs to resolve
a pointer to the host NetSio register. NetSio is added to the base DIO_DATA
register address to give the byte offset. The NetSio register is only one byte
long, and a byte port read instruction needs to activate the proper byte strobe
in the PCI interface. Filling in the lowest two bits with the NetSio offset constant
causes the NetCmd register to be read.

MII PHY Registers

 2-20

Interrupts are turned off with the CritOn() macro. This macro leaves a value
that can be sampled to see if it has been invoked. CritOn can be defined as
follows:

#define CritOn() if (CritLevel == 0) \

 { _asm { cli } } \

 CritLevel++

The NetSio register must be reached indirectly using the host registers. This
sets the address of the NetSio register, offset from the beginning of the internal
register block, in the host register which is used as an address pointer to the
Internal registers. This is a two-active-byte-strobe (out of four) write cycle. The
DIO_ADR register is 16 bits in width.

b = inp(diodata);

b &= ~MINTEN;

b &= ~MDATA;

b |= MCLK;

outp(diodata,b);

This cycle reads, modifies, and writes the contents of the NetSio register. It
turns off the MII interrupt by forcing the MINTEN bit to a logic low, makes sure
the data bit in the interface comes on with a logic low when enabled in the next
write, and makes sure the clock line in the two-wire MII management interface
starts high.

b |= MTXEN;

outp(diodata,b);

The previous code turns on the data output driver. ThunderLAN has to write
several fields to the MII before data is passed in either direction.

//togLH

b &= ~MCLK; outp(diodata,b);

b |= MCLK; outp(diodata,b); //0 data bit out

 MII PHY Registers

2-21 ThunderLAN Registers

This samples data on the rising edge of the MCLK bit. Take the first bit into the
PHY MII as follows:

b &= ~MCLK; outp(diodata,b);

b |= MDATA; outp(diodata,b);

b |= MCLK; outp(diodata,b); //1 data bit out

This concludes writing out the start delimiter bits. The data can be changed
before the clock is taken low, as when shifting out the operation code as fol-
lows:

b |= MDATA; outp(diodata,b); //1st part not nec.

//togLH

b &= ~MCLK; outp(diodata,b);

b |= MCLK; outp(diodata,b); //1

b &= ~MDATA; outp(diodata,b);

//togLH

b &= ~MCLK; outp(diodata,b);

b |= MCLK; outp(diodata,b); //0

10 is the read op code for an MII management operation.

// Send the device number Internal=31(0x1f),
 External=0(0x00)

for (i = 0x10;i;i >>= 1) /* 10 is the read op code*/

{

 if (i&dev)

 b |= MDATA;

 else

 b &= ~MDATA;

 outp(diodata,b);

 //togLH

 b &= ~MCLK; outp(diodata,b);

 b |= MCLK; outp(diodata,b);

}

The following loop index is used as a mask to walk through the device number
which is passed to this routine as a parameter. Each loop looks at a bit in the
device number, starting with the MSB. It sets the MDATA bit to match the inter-
nal representation of the NetSio register before outputting the composite value

MII PHY Registers

 2-22

to NetSio. Then the clock is cycled for each bit. The loop effectively cycles five
times.

// Send the register number MSB first

// Send the device number Internal=31(0x1f),
 External=0(0x00)

for (i = 0x10;i;i >>= 1)

{

 if (i&addr)

 b |= MDATA;

 else

 b &= ~MDATA;

 outp(diodata,b);

 //togLH

 b &= ~MCLK; outp(diodata,b);

 b |= MCLK; outp(diodata,b);

}

// 802.3u specifies an idle bit time after the register

// address is sent. This and the following zero bit are

// designated as ”Turn–around” cycles.

b &= ~MTXEN; outp(diodata,b);

To get an idle bit, turn off the data driver, then cycle the clock.

//togLH

b &= ~MCLK; outp(diodata,b); //end turn around cycle

b |= MCLK; outp(diodata,b); //this should clock “0”
 ackn bit out

b &= ~MCLK; outp(diodata,b); //take clock low wait
 for data valid

 MII PHY Registers

2-23 ThunderLAN Registers

After the addresses have been clocked out on a read cycle, there is a cycle
where neither side drives the data pin. If the PHY is synced and ready to re-
spond, it should drive a 0 next, followed by the 16 bits of data. The data is avail-
able up to 300 ns after the rising edge of the clock, so the software loop uses
that time to execute the instruction to make the clock go low again.

// Get PHY Ack

ack = inp(diodata);

if (!(ack & MDATA)) // if ack=0, record bits

{

 b |= MCLK; outp(diodata,b); // complete ack
cycle clock

 for (tmp = 0,i = 0x8000;i;i >>= 1)

The loop is set for 16 cycles, using the loop variable as a mask for pointing to
the bit position stored. The MSB comes in first. For each shift cycle, the clock
goes up to start the access and goes down to guarantee that some time
elapses between the rising edge of the clock and the time the data is sampled.

{

 b &= ~MCLK; outp(diodata,b);

 if (inp(diodata)&MDATA)

 tmp |= i; //if data bit=1, or position in

 b |= MCLK; outp(diodata,b);

}

}

else

If the PHY does not respond, one needs to complete the access cycle to keep
other PHYs from being left in mid-access. Leave the MDIO pin set for input but
set the data variable to all 1s. This routine gives 17 clock cycles, using the mac-
ro for togHL on the MCLK bit of the NetSio register. There are 17 clock cycles,
because the first one finishes the acknowledge cycle (the clock was left in a
logic low state when the data was read).

MII PHY Registers

 2-24

{

 for (i = 0;i < 17;i++)

 togLH(MCLK);

 tmp = 0xffff;

}

//togLH

b &= ~MCLK; outp(diodata,b);

b |= MCLK; outp(diodata,b);

b = inp(diodata);

This is the quiescent cycle following data transmission. Since this is a read op-
eration, ThunderLAN does not drive the line and the PHY turns off during this
cycle. If the quiescent cycle is not performed between the read and write op-
erations, the PHY is not able to assert the MDIO pin low to indicate a PHY inter-
rupt. After this cycle and a read, the driver sets the MINTEN bit high, which en-
ables PHY interrupts.

set(MINTEN);

*pval = tmp;

CritOff();

The function value returned is reserved for completion and error codes, and
is returned via a pointer. CritOff turns on the interrupts again and is defined as:

#define CritOff() if (––CritLevel == 0) \

 { _asm { sti } }

A similar routine with similar code is used to write values into the PHY registers
through the management interface.

 External Devices

2-25 ThunderLAN Registers

2.6 External Devices

This following section discusses the manner in which the ThunderLAN control-
ler interfaces to external devices. These devices include:

� A BIOS ROM

� Light emitting diodes (LEDs)

� A serial EEPROM

� Any devices (PMIs/PMDs) attached to the MDIO/MDCLK serial interface
of the MII

2.6.1 BIOS ROM

A BIOS ROM is supported with two external latches and a memory device. A
memory-space base register is implemented at location 0x30h in the PCI con-
figuration space, with 16 bits forced to fixed values. This reserves 64K bytes
of memory space. A PCI memory read is requested, and if the upper 16 bits
match the value posted in the BIOS ROM base address, hardware state ma-
chines begin a special cycle that posts the two eight-bit parts of the address
along with address strobes on the EAD[7::0] pins. The EAD[7::0] lines act as
an output bus during the output of the low eight bits signaled by the EALE
strobe, and the output of the next eight bits signaled by the EXLE strobe. They
act as an input bus when accepting the data from the EPROM which is sig-
naled by the EOE EPROM output enable strobe. This interface is designed to
support all types of read cycles from the host: byte, word, and long word. Four
cycles are automatically done to prepare a 32-bit response to the PCI read
cycle. During the state machine’s execution, the PCI read cycle sends wait
states to the host processor. Writes to the EPROM memory space are ac-
cepted and performed, but are internally ignored.

2.6.2 LEDs

The EAD[7::0] bus is an output bus when not involved in EPROM read cycles.
These pins are driven with the inverse of the pattern written into LEDreg, an
internal register. To access this register, a 0x44 is written to the DIO_ADR host
register, then either a byte write to the DIO_DATA host register or a read/
modify/write to the whole DIO_DATA host register is done to deposit the value
into LEDreg. A logic 1 in the register translates to an active low on the external
output pin. All bits in this register are set to 0 on the Ad_Rst bit, or when the
external reset, PRST#, is activated.

The meaning assigned to the LEDs, which LEDs are actually implemented,
and the times to set and clear them are all programmable. Texas Instruments

External Devices

 2-26

reserves the following two LED locations for its drivers. The bit numbers refer
to their locations in LEDreg.

� Bit 0 (LSB) displays link status.
� Bit 4 displays activity.

2.6.3 EEPROM

The implementation-specific configuration information is read or written into
the EEPROM from two sources. Control of the two-wire serial bus to the
EEPROM (EDIO and EDCLK bits) on reset (hardware or software) rests with
the four bits in the PCI_ NVRAM register (DATA, DDIR, CLOCK, CDIR) in the
PCI configuration space. Any time this register is written to, control of the
EDIO/EDCLK bus reverts back to this register.

The other possible source of values for this bus is from an internal register, the
network serial I/O register NetSio. Here the three bits used to control the inter-
face are EDATA, ETXEN, and ECLOK. The PCI_ NVRAM register interface to
this external EEPROM port was designed assuming that there might be anoth-
er master device on this bus. Note that NetSio does not implement a clock
direction register. Assuming that only one EEPROM is on the serial bus and
only the ThunderLAN device is driving the bus, both control implementations
are equivalent. Use NetSio when possible to read or write to the EEPROM.

 External Devices

2-27 ThunderLAN Registers

Writing to the NetSio register involves writing a >000 to the host register
DIO_ADR, then writing to the DIO_DATA host register. Control of the
EEPROM interface shifts to the bits in NetSio when a write takes place to the
DIO_DATA host register. Following is an example of how one might read a byte
of data from the EEPROM, using the control bits in NetSio from the internal
register block.

//––

// EeRdByte() – read byte of data from EEPROM (see
 Exel XL24C02 device specification)

//
// Parameters:
// base_addr WORD base address of TLAN internal

 registers

// addr WORD address to read
//
// Return val:
// BYTE value read
//––

BYTE EeRdByte(WORD base_addr, WORD addr)

{

 int i,ips,tmp;

 CritOn();

CritOn turns off the interrupts. Remember that there are two possible control
points for reading and writing to the EEPROM. This is an attempt to avoid a
control shift and avoid loss of focus on just which byte, word, or double word
one accesses, since accessing the EEPROM is a relatively long process.

// send EEPROM start sequence

set(ECLOK); set(EDATA); set(ETXEN); clr(EDATA);
clr(ECLOK);

External Devices

 2-28

Set and clear are macros for a read/modify/write routine for individual bits in
the NetSio register. The NetSio byte is read indirectly from the internal register
block with the host register address and data pointers, the bit passed as a
constant (really a bit mask) is ANDed to 0 (clear), or ORed to a 1 (set). The
pattern of bits to be set and cleared is given in the data sheet for the EEPROM.

// put EEPROM device identifier, address, and write

// command on bus

sel(base_addr, WRITE);

The EEPROM, with its serial interface, must receive a wakeup pattern and a
device number, since more than one device can be tied to this bus. This code
assumes that there is only one device, 0.

// EEPROM should have acked

if (!ack(base_addr))

 return (0);

// send address on EEPROM to read from

sendaddr(base_addr, addr);

sendaddr is a routine for serially sending out the address to be read from the
EEPROM. Each bit of the address must be accompanied by a clock.

// EEPROM should have ack’d address received

if (!ack(base_addr))

 return (0);

// send EEPROM start access sequence

set(ETXEN); set(ECLOK); set(EDATA); set(ETXEN);
clr(EDATA); clr(ECLOK);

 External Devices

2-29 ThunderLAN Registers

When the EEPROM address is shipped out, another special pattern of control
signal movements must take place to signal the start of the data transfer.

// send device ID, address and read command to EEPROM

sel(base_addr, READ);

// EEPROM should have acked

if (!ack(base_addr))

 return (0);

//clock bits in from EDATA and construct data in tmp

for (i = 8,tmp = 0,ips = 0x80;i;i––,ips >>= 1)

{

 set(ECLOK);

 if (test(EDATA))

 tmp |= ips;

 clr(ECLOK);

}

togHL(ECLOK);

Test is a macro, like set and clear, that indirectly reads the bit passed into the
NetSio register in the internal register block using the DIO_ADR and
DIO_DATA registers in the host register block.

// send EEPROM stop access sequence

clr(EDATA); set(ECLOK); set(EDATA); clr(ETXEN);

The following control signal movements are specified in the data sheet for the
EEPROM.

CritOff();

return((BYTE)(tmp & 0xff));

}

Similar routines can be created for writing a byte, reading and writing a word,
or reading and writing a double word to the EEPROM using the NetSio regis-
ter’s control bits. In the DOS/Windows environment, there are O/S calls pro-
vided for reading and writing to PCI configuration space. Routines similar to
network serial I/O routines can be written using the PCI O/S calls, but they are
more awkward. Instead of an indirect read, modify, and write cycle, one per-
forms an O/S PCI read call, a modify, and an O/S PCI write call for each bit
modified.

External Devices

 2-30

2.6.4 ThunderLAN EEPROM Map

ThunderLAN uses the following EEPROM map. Note that these values may
be used in several applications and systems including:

� ThunderLAN hardware
� A host running Texas Instruments ThunderLAN drivers
� Texas Instruments diagnostic routines

Table 2–1. ThunderLAN EEPROM Map

Address Default Binary Bits Description

0x70 0x70 ccccxbdx Acommit register and bit level PHY controls

cccc–commit level 0–7

b–Local loopback select

d–ThinNet select

0x71 0x33 ttttrrrr Transmit and receive burst size control

tttt–Transmit burst size control 0–7

rrrr–Receive burst size control 0–7

0x72 0x00 ccccbbbb PHY TLPHY_ctl register initialization options

cccc–Bits 15–12 of the MII register 0x11 TLPHY_ctl

bbbb–Bits 3–0 of the MII register 0x11 TLPHY_ctl

0x73 0x0f Interrupt pacing timer value

0x74 0xff Configuration space Latency_Timer register value

0x75 0xea LSB of maximum frame size to test

0x76 0x05 MSB of maximum frame size to test

0x77 0x40 LSB of small frame in mixed frame size test

0x78 0x00 MSB of small frame in mixed frame size test

 External Devices

2-31 ThunderLAN Registers

Table 2–1. ThunderLAN EEPROM Map (Continued)

Address DescriptionBinary BitsDefault

0x79 0x04 WxSHRAFI PHY and test control modes

W–PHY wrap request

S–Skip training request

H–HiPriority transmit frames request

R–Don’t copy short frame request

A–Don’t copy all frames request

F–Full duplex request

I– Internal ThunderLAN wrap request

0x7a 0x02 LFxTxADP Check modes and frame type

L–Ignore last byte plus one DMA no write test

F–Zero (ignore) bits 12 and 13 of Rx length request

T–Token ring format request

A–AT&T2X01 fix enable (receive logic state machine tweak)

D–Stop on first error

P–PMI wrap length check disable request

0x7b 0x05 Test to execute

1–Multicast test

2–Pipe test

3–Mix pipe test

4–PMI/TI-PHY interrupt test

5–Frame read/write test

6–Adapter check test

0x7c 0x14 Pipe depth value

0x7d 0x0a Reserved

0x7e 0x00 LSB of NetConfig register value

0x7f 0x06 MSB of NetConfig register value

Note: Multichannel mode must be selected for high priority frames to be
sent

0x80 0x82

0x81 0x08

External Devices

 2-32

Table 2–1. ThunderLAN EEPROM Map (Continued)

Address DescriptionBinary BitsDefault

0x82 0x00

0x83 Ethernet address

0x84 Ethernet address

0x85 Ethernet address

0x87 Ethernet address

0x88 Ethernet address

0x86 Ethernet address

0x89 0xff Checksum

0x8a 0xff Checksum

0x8b 0x83

0x8c 0x08

0x8d 0x00

0x8e Token ring address

0x8f Token ring address

0x90 Token ring address

0x91 Token ring address

0x92 Token ring address

0x93 Token ring address

0x94 0xff Checksum

0x95 0xff Checksum

0x96 0x82

0x97 0x08

0x98 0x00

0x99 Ethernet address

0x9a Ethernet address

0x9b Ethernet address

 External Devices

2-33 ThunderLAN Registers

Table 2–1. ThunderLAN EEPROM Map (Continued)

Address DescriptionBinary BitsDefault

0x9c Ethernet address

0x9d Ethernet address

0x9e Ethernet address

0x9f 0xff Checksum

0xa0 0xff Checksum

0xa1 0x83

0xa2 0x08

0xa3 0x00

0xa4 Token ring address

0xa5 Token ring address

0xa6 Token ring address

0xa7 Token ring address

0xa8 Token ring address

0xa9 Token ring address

0xaa 0xff Checksum

0xab 0xff Checksum

0xac 0x82

0xad 0x08

0xae 0x00

0xaf Ethernet address

0xb0 Ethernet address

0xb1 Ethernet address

0xb2 Ethernet address

0xb3 Ethernet address

0xb4 Ethernet address

0xb5 0xff Checksum

External Devices

 2-34

Table 2–1. ThunderLAN EEPROM Map (Continued)

Address DescriptionBinary BitsDefault

0xb6 0xff Checksum

0xb7

0xb8

0xb9

0xba

0xbb

0xbc

0xbd

0xbe

0xbf

0xc0 Vendor ID register LSbyte

0xc1 Vendor ID MSbyte

0xc2 Device ID LSbyte

0xc3 Device ID MSbyte

0xc4 Revision

0xc5 Subclass

0xc6 Min_Gnt

0xc7 Max_Lat

0xc8 Checksum

3-1

Initializing and Resetting

This chapter describes the steps necessary to get a ThunderLAN device ready
to transmit and receive frames. It provides examples of the necessary code,
beginning with configuration of the ThunderLAN device on a peripheral com-
ponent interconnect (PCI) system. The chapter also defines the steps needed
for both hardware and software reset.

Topic Page

3.1 Initializing 3-2.

3.2 Resetting 3-8.

Chapter 3

Initializing

 3-2

3.1 Initializing

To initialize or to set the starting values for ThunderLAN, the device must pro-
ceed through a specific sequence of steps. This procedure assumes that the
autoconfiguration step of loading from the EEPROM to the PCI configuration
registers has already taken place.

3.1.1 Finding the Network Interface Card (NIC)

A PCI BIOS call must be performed to determine if there is a PCI card present
with a ThunderLAN controller. A ThunderLAN controller should have a
ThunderLAN device ID and should also have a vendor ID. The example code
uses the TI vendor ID. The call to find the board is:

#define TLAN_DEVICEID 0x0500 //PCI TLAN device ID)

...

#define TI_VENDORID 0x104C //PCI vendor ID
assigned to TI

...

if (PciFindDevice(TLAN_DEVICEID, TI_VENDORID, 0,
&nic.DevId))

error(”The PCI Bios can’t find a TLAN board”);

PciFindDevice is further broken down to an O/S call to the PCI interrupt service
routines in the BIOS formatted as:

//––

// PCIFindDevice – Find PCI device

//

// Parameters:

// DeviceID WORD The device ID

// VendorID WORD The vendor ID

// Index WORD index (normally 0, use when more
than 1 device)

// pDev WORD* Where to put the device id

//

// Return val:

// int 0 if successful. See std return codes
in header

//––

 Initializing

3-3 Initializing and Resetting

WORD PciFindDevice(

 WORD DeviceID,

 WORD VendorID,

 WORD Index,

 WORD *pDev)

{

 union REGS r;

 r.h.ah = PCI_FUNCTION_ID;

 r.h.al = FIND_PCI_DEVICE;

 r.x.cx = DeviceID;

 r.x.dx = VendorID;

 r.x.si = Index;

 int86(PCI_INT, &r, &r);

 *pDev = (WORD)r.x.bx;

 return (int)r.h.ah;

}

When the BIOS call is finished, the value returned is 0 if successful or an error
code if not successful. Once the BIOS board is found, references to it and prop-
erties assigned to it by the O/S are indirectly referenced by the value returned
to nic.devid. The structure nic is a collection of properties belonging to the NIC.
As the sample code learns more about the environment with respect to the
NIC, other information in this structure is filled in.

Initializing

 3-4

3.1.2 Finding the Controller in Memory and I/O Space

To access the host registers, the I/O base address must be determined. This
I/O base is needed, since the host registers are accessed as I/O ports. The I/O
base address register in the ThunderLAN controller has the LSB hardwired to
high. This code does an O/S call to read a 32-bit word from PCI_MEMBASELO
in the configuration space belonging to this board’s PCI device ID. If the first
base register is not an I/O register, the second base register location is
checked. If an I/O base register is found, it is stored away in the structure nic.
If neither of the first two locations is a valid I/O base register, an error is
declared and the program is ended. Note that the configuration space was
originally supplied with a space request and the operating system as part of
the power-on self test (POST) supplied the card with sufficient address space
by filling in the RAM bits in the base registers.

#define PCI_MEMBASELO 0x10 //low memory base
address register

#define PCI_IOBASELO 0x14 //low I/O base address
register

...

nic.IoBase = PciRdWord(nic.DevId,PCI_MEMBASELO);

 if (!(nic.IoBase & 1))

 {

 nic.IoBase = PciRdWord(nic.DevId,PCI_IOBASELO);

 if (!(nic.IoBase & 1))

 error(”PCI Config failed: Unexpected
non-I/O address found”);

 }

 Initializing

3-5 Initializing and Resetting

3.1.3 Finding Which Interrupt was Assigned

When the base register is established, the driver needs to find out what inter-
rupt was assigned to the card. The next code segment from GetPciConfig be-
low retrieves the PCI_INTLINE which in x86-based PCs refers to the interrupt
request (IRQ) numbers (0–15) of the standard dual 8259 configuration. Note
that this piece of information is retrieved via the key parameter of the evalua-
tion module network interface card’s (EVMNIC’s) PCI devIce ID.

(#define PCI_INTLINE 0x3C)

...

if (!(nic.Irq = PciRdByte(nic.DevId, PCI_INTLINE)))

 error(”PCI Config failed: Unconfigured interrupt”);

Implemented hardware interrupts in a PC range from 0 to 15, but 0 is usually
unavailable to peripherals. It is suggested that a value of 0 or greater than 15
be rejected. This gives greater system protection over a check for 0 or 255,
which is the PCI-compliant answer for none available. (Refer to the PCI Local
Bus Specification, section 6.2.4.)

Initializing

 3-6

3.1.4 Turning on the I/O Port and Memory Address Decode

The next step in the GetPciConfig section of the code is responsible for turning
on the ThunderLAN controller by enabling the decode of memory and I/O port
addresses. Without this step, there is no access to the host registers and there-
fore, to the internal registers or the MII granted to the host processor.

The PCI specification calls for the shutdown of address decode in both I/O port
space and memory space upon PCI reset to avoid multiple devices responding
to bus cycles before the operating system has a chance to sort out space re-
quirements. ThunderLAN complies with this requirement. Configuration space
access is not shut down on reset, as each slot has a chip select line guarantee-
ing unambiguous accesses.

// Enable I/O and memory accesses to the adapter, and
 bus master

PciWrWord(nic.DevId, PCI_COMMAND, IO_EN | MEM_EN |
BM_EN);

Where these constants have the following values:

#define PCI_COMMAND 0x04

#define IO_EN 0x0001

#define MEM_EN 0x0002

#define BM_EN 0x0004

and PciWrWord, a register level int86 O/S call, has the following definition:

void PciWrWord(WORD devid, WORD addr, WORD data).

The PciWrWord statement goes to the PCI configuration space associated
with the evaluation module (EVM) device ID and writes to the PCI command
register. This sets the three LSBs to enable I/O map decodes, memory de-
codes, and allows bus mastering to occur via the NIC.

Of the two signals, IO_EN and MEM_EN, the driver only needs to activate the
mechanism that is used to address the ThunderLAN controller: either I/O ports
or memory. Both are activated here in the sample code. BM_EN is required by
the ThunderLAN device to operate properly. All the network data must be
moved to and from the host by a ThunderLAN-initiated direct memory access
(DMA), but this capability must be separately enabled, as required by the PCI
Local Bus Specification. In other words, the PCI configuration register must
have all three of these bits and they must function in this way.

 Initializing

3-7 Initializing and Resetting

3.1.5 Recovering the Silicon Revision Value

At this point, the sample program needs to know what the default silicon revi-
sion for the controller is. There is a revision byte in the configuration space that
can be read with a PciRdxxxx command. This configuration byte is loaded with
EEPROM data to signal the board-level revision code. If the EEPROM data is
bad or nonexistent, a value for this byte is hardwired in an internal register at
location 0x0c. This byte indicates the silicon revision. However, once the
memory and I/O access modes are turned on, one can read this register direct-
ly and get the silicon revision, regardless of whether this default value was
needed in the PCI initialization. With this arrangement, the driver can find the
silicon revision and the board revision.

nic.Rev = DioRdByte(nic.IoBase,NET_DEFREV);

...

#define NET_DEFREV 0x0C //default revision reg

DioRdByte calls a routine that loads the host DIO_ADR register with
NET_DEFREV and does a byte-enabled read of the host DIO_DATA register,
returning the value to the member rev value of DIO_DATA for structure nic.

3.1.6 Setting the PCI Bus Latency Timer

An additional step that must be performed in the PCI configuration section of
the code is to set the latency timer to the maximum value of 0xff. It had been
loaded with 0 at reset. The instruction is:

PciWrByte(nic.DevId,PCI_LATENCYTIMER,0xFF);

...

#define PCI_LATENCYTIMER 0x0D

Where PciWrByte is a register-level interrupt 86 (int86) O/S call for reading PCI
configuration space, nic.devId is the NIC’s PCI system identifier discovered
above, and PCI_LATENCYTIMER is a constant representing the offset into
the PCI configuration space of that byte.

Resetting

 3-8

3.2 Resetting

Resetting ThunderLAN is required when conditions such as an incorrect pow-
er-up cause the register value in the device to deviate from that needed for
proper operation. To perform either a software or hardware reset, the program-
mer must complete the steps indicated.

3.2.1 Hardware Reset

The IEEE 802.3 specification defines a power-up routine which must be fol-
lowed to ensure that ThunderLAN’s internal 10Base-T PHY powers up correct-
ly. This routine also allows for the additional delay necessary when a crystal
is used to drive the FXTL1 and FXTL2 lines.

1) Sync all attached PHYs

2) Isolate all attached PHYs by writing the PDOWN, LOOPBK, and ISOLATE
bits into the control register (the GENen_ctl register in ThunderLAN)

3) Enable the internal PHY by writing 0x4000h (LOOPBK) in the GENen_ctl
register

4) Wait 500 ms for the crystal frequency to stabilize

5) Reset the PHY state machine by asserting the LOOPBK and RESET bits
in the GENen_ctl register

6) Resync the internal PHY

7) Read the control register until bit 15 (RESET) = 0 and the PHY comes out
of reset. This is the time needed to read the register.

8) Load the selected PHY options into the GENen_ctl register

9) If using the attachment unit interface (AUI) mode, set the AUI bit in the
TLPHY_ctl register

10) Wait one second for the clocks to start

 Resetting

3-9 Initializing and Resetting

3.2.2 Software Reset

The driver needs to reset ThunderLAN at startup when an adapter check inter-
rupt occurs or when an upper layer requires the driver to do so. ThunderLAN
may only need to be reinitialized when link is lost. To reset ThunderLAN the
driver must:

1) Clear the statistics by reading the statistics registers

2) Issue a reset command to ThunderLAN by asserting the Ad_Rst bit in the
HOST_CMD register

3) Disable interrupts by asserting the Ints_off bit in HOST_CMD

4) Setup the Areg and HASH registers for Rx address recognition

5) Setup the NetConfig register for the appropriate options

6) Setup the BSIZEreg register for the correct burst size

7) Setup the correct Tx commit level in the Acommit register

8) Load the appropriate interrupt pacing timer in Ld_Tmr in HOST_CMD

9) Load the appropriate Tx threshold value in Ld_Thr in HOST_CMD

10) Unreset the MII by asserting NMRST in NetSio

11) Initialize the PHY layer

12) Setup the network status mask register, NetMask

13) Reenable interrupts by asserting the Ints_on bit in HOST_CMD

 3-10

4-1

Interrupt Handling

ThunderLAN and its host device indicate communication with each other by
sending and receiving interrupts to the bus data stream. This chapter provides
information on setting up code which recognizes, prioritizes, and acknowl-
edges these interrupts. It defines specific interrupt codes and describes what
happens when these occur. This allows the user to diagnose and correct any
conditions which may cause failure.

Topic Page

4.1 Loading and Unloading an Interrupt Service Routine (ISR) 4-2.

4.2 Prioritizing Adapter Interrupts 4-5.

4.3 Acknowledging Interrupts (Acking) 4-6.

4.4 Interrupt Type Codes 4-7.

Chapter 4

Loading and Unloading an Interrupt Service Routine (ISR)

 4-2

4.1 Loading and Unloading an Interrupt Service Routine (ISR)

Before the ThunderLAN controller can be allowed to generate an interrupt to
the host, it is necessary to install code for the host to handle the interrupt. The
driver also relies on other host services that are interrupt-driven, like getting
notice of timer ticks for deadman timers. The driver calculates the pattern to
write to the interrupt controller to acknowledge the interrupt from the controller,
based on the actual hardware interrupt line assigned to the NIC’s slot.

This sample program hooks into the software vector table. The host PC timer
interrupt comes first, so that the program can time out operations that can hang
the PC and can also provide time stamp information for operations.

nic.OldTimer = HwSetIntVector((BYTE)0x1C, TimerIsr);

The driver points to the next code to execute when the timer interrupt goes off
and saves the value for program restart. nic.OldTimer is a storage place for this
information reserved in a routine called NICEVN, which is allocated for each
NIC; this instance is called nic. HwSetIntVector is a function that inserts the
address of a function into the interrupt table at a particular location:

// HwSetIntVector() – Set PC interrupt vector and return
previous one

//––

// Parameters:

// bIRQ BYTE Irq to set

// lpFunc void (ISR *)() interrupt function

//

// Return val:

// void (ISR *)() Returns previous contents of vector

//––

static void (ISR *HwSetIntVector(BYTE bIRQ, void (ISR
*lpFunc)()))()

{

BYTE bINT;

void (ISR *lpOld)();

if(bIRQ < 8)

bINT = 8 + bIRQ ;

else if (bIRQ < 15)

bINT = (0x70–8) + bIRQ;

else

bINT = bIRQ;

lpOld = _dos_getvect(bINT);

_dos_setvect(bINT,lpFunc);

return(lpOld);

}

 Loading and Unloading an Interrupt Service Routine (ISR)

4-3 Interrupt Handling

This routine converts either the eight low hardware interrupts, or the eight high
interrupts, or a software interrupt higher than 0xF to the vector table, then
makes an O/S call to get the old vector and slips in the new. It returns the pre-
vious contents of that table entry so that it can be restored later. The timer inter-
rupt is not connected to one of the 15 hardware interrupts, so its vector is high-
er than 0xF and is entered explicitly.

The code called is:

void interrupt far TimerIsr()

{

 if (timercount)

 if (––timercount == 0)

 IndicateEvent(EV_TIMEOUT);

 if (nic.OldTimer)

 (*nic.OldTimer)();

}

If a time-out value has been set, nic.OldTimer is decremented. If it reaches 0,
it sets an internal program flag that is checked in the main program loop. If the
OldTimer value is not 0 (there was a vector saved in this NIC’s instance of the
structure NICEVN), the routine branches to that code so that whatever else
needs to be done on the PC on a timer tick is done.

The next interrupt service routine to be intercepted is the abort routine. If the
user tries to kill this program with a control break, the sample program makes
an attempt to put back all of the interrupt vectors as they were found before
exiting the program. The call to insert code from the sample program is similar
to the timer intercept above:

nic.OldAbort = HwSetIntVector((BYTE)0x23, AbortIsr);

The code that gets executed is:

void interrupt far AbortIsr()

{

cleanup();

abort();

}

Loading and Unloading an Interrupt Service Routine (ISR)

 4-4

Cleanup uses the same HwSetIntVector routine to restore the old value. This
time, the parameter is the old value and the interim value returned by the func-
tion is ignored. Only the three interrupts that were asserted are restored, and
only if the structure for the NIC instance has had old values saved in it.

//––

// cleanup() – cleanup in preparation for exiting to dos

//––

static void cleanup(void)

{

if (nic.Irq)
HwSetIntMask((BYTE)nic.Irq,1);

if (nic.OldNic)
HwSetIntVector((BYTE)nic.Irq,nic.OldNic);

if (nic.OldTimer) HwSetIntVector(0x1C,nic.OldTimer);

if (nic.OldAbort) HwSetIntVector(0x23,nic.OldAbort);

}

The next interrupt to be intercepted corresponds to the actual hardware inter-
rupt. Since the original installation for a ThunderLAN controller is a PCI slot,
its interrupt in the PC is assigned by the PCI BIOS code. You must interrogate
the PCI configuration space to find it. This was done in the previous section
as part of GetPciConfig(). It uses the same function call as the two intercept
installs below:

nic.OldNic = HwSetIntVector((BYTE)nic.Irq, NicIsr);

Note that the actual interrupt request (IRQ) is passed as a variable, not a
constant as in the interrupts installed above. As in most interrupt service rou-
tines, make sure that stack space is available for calls and protect the informa-
tion currently in the registers.

 Prioritizing Adapter Interrupts

4-5 Interrupt Handling

4.2 Prioritizing Adapter Interrupts

All (non-PCI) adapter interrupts are governed by the interrupt pacing timer.
The interrupt pacing timer is started whenever the HOST_CMD register Ack
bit is written as a 1. When this timer expires and if any interrupt sources are
active, a PCI interrupt is asserted. When the host reads the HOST_INT regis-
ter, the value it reads indicates the highest priority interrupt that is active at that
time.

Interrupts are prioritized in the following order:

� Adapter check interrupts cause an internal ThunderLAN reset, clearing all
other interrupt sources. Adapter check interrupts can only be cleared by
a PCI hardware (PRST#) or software (Ad_Rst) reset.

� Network status interrupts

� Statistics interrupts

� List interrupts, which service transmit and receive interrupts in a round-
robin fashion.

� Receive end of frame (EOF) interrupts have higher priority than re-
ceive end of channel (EOC) interrupts (an Rx EOC cannot occur until
all EOFs have been acknowledged).

� Transmit interrupts are prioritized in channel order; channel 0 has low-
est priority. Transmit EOF interrupts have higher priority than transmit
EOC interrupts (a Tx EOC cannot occur until all EOFs have been ac-
knowledged).

Acknowledging Interrupts (Acking)

 4-6

4.3 Acknowledging Interrupts (Acking)

The ThunderLAN controllers have been designed to minimize the code neces-
sary to acknowledge interrupts. This is accomplished by matching the
HOST_INT register’s bits to the corresponding bits in the HOST_CMD regis-
ter. Also, the HOST_INT’s two LSBs are set to 0 so that it forms a table-offset
vector, which can be used in a jump table. This allows for quick branching to
the appropriate interrupt service routine.

To acknowledge interrupts:

� Disable all interrupts.

� Create a jump vector from the value read in HOST_INT.

� Use a jump table or a conditional branch structure to branch to the ISR.

� Execute the appropriate commands for the particular interrupt.

� Load the Ack_Count register with the number of interrupts to be acknowl-
edged. This is useful if several EOF interrupts are acknowledged at once.

� Write to HOST_CMD. You may assert the GO bit (Ack and GO com-
mands), if desired.

Interrupts can be disabled by writing to the HOST_INT register. One quick and
easy way of doing this is by writing the contents of HOST_INT back after read-
ing it at the start of the interrupt routine.

A jump table contains the starting address of the individual interrupt routines.
Offsets to this table can be easily created from the HOST_INT vector read. It
may be necessary to shift the vector read in order to factor out bits 1 and 0
(They are read as 0 always). Using this table or a conditional branching struc-
ture, the appropriate jump to the interrupt routine is easy to find.

The interrupt routine that is branched to performs the commands for the inter-
rupt call. In some cases, this involves loading Ack_Count with a value greater
than 1. This is particularly true when acknowledging Tx EOF with the Ld_Thr
register loaded.

To acknowledge the interrupt, write the HOST_INT vector into HOST_CMD.
The bit values in HOST_INT have a one-to-one correspondence with
HOST_CMD. This simplifies the driver code and saves programming time. In-
terrupts should be reenabled when exiting the interrupt routine. Acknowledg-
ing interrupts to HOST_INT achieves this goal.

 Interrupt Type Codes

4-7 Interrupt Handling

4.4 Interrupt Type Codes

The following subsections define specific interrupt codes which may occur
during ThunderLAN operation. It describes the conditions that result from the
occurrence of interrupts, and corrective actions to overcome these conditions.

4.4.1 No Interrupt (Invalid Code). Int_type = 000b

This condition occurs when the driver detects an interrupt, but ThunderLAN
did not cause this interrupt. This indicates a hardware error that is caused by
other hardware. The driver can be configured to ignore this interrupt and not
acknowledge it. An error counter may be used for such occurrences.

4.4.2 Tx EOF Interrupt. Int_type = 001b

Tx EOF and Tx EOC interrupt handling depends on the Tx interrupt threshold
used. The interrupt threshold counter is part of Texas Instruments Adaptive
Performance Optimization (APO) algorithm. More information on APO can
be found in the ThunderLAN Adaptive Performance Utilization Technical Brief
(TI literature number SPWT089). There are two main options described below.

In the first option, the interrupt threshold is set to a nonzero number. Thunder-
LAN does not interrupt until it has encountered the number of Tx EOFs given
to it by the Ack_Count register. In this way, the host is able to acknowledge mul-
tiple Tx EOFs in a single interrupt call. The host must count the number of
frames it has transmitted by counting the frames with the Frm_Cmp bit set in
the CSTAT field and must use this number in the Ack_Count field while ac-
knowledging.

A special case of this first option is when the interrupt threshold is set to a value
of 1. This gives an interrupt for each Tx EOF encountered (one frame = one
Tx EOF = one interrupt). In this case, ThunderLAN interrupts the host each
time it transmits a frame. The host must then acknowledge this interrupt by
writing an acknowledge count of 1 to HOST_CMD with the appropriate bits set.

Depending on the application, a continuous transmit channel may not be feasi-
ble. In other words, there may not be enough frames to create a continuous
transmit list, and the adapter issues a Tx EOF and a Tx EOC for every frame
transmitted (one frame = one Tx EOF + one Tx EOC = two interrupts). A Tx
GO command must be executed each time a frame is transmitted, as the Tx
channel has been stopped by ThunderLAN (as evidenced by the Tx EOC).

This condition can be avoided by loading the interrupt threshold with a 0. Doing
this disables all Tx EOFs. ThunderLAN only interrupts the host for Tx EOCs
(one frame = one Tx EOC = one interrupt). This simplifies the driver, since it
only has to acknowledge one interrupt per frame.

Interrupt Type Codes

 4-8

4.4.3 Statistics Overflow Interrupt. Int_type = 010b

This interrupt is given when one of the network statistics registers is halfway
filled. The driver:

� Reads all the statistics registers, thereby clearing them
� Acknowledges the interrupt, then exits

When reading the statistics registers, it is a good idea to use the Adr_Inc bit
in the DIO_ADR register. Using the Adr_Inc feature autoincrements the DIO
address by 4 on each DIO read. This feature saves on driver code and pro-
gramming time.

4.4.4 Rx EOF Interrupt. Int_type = 011b

An Rx EOF interrupt occurs when an Rx frame has been successfully re-
ceived. At this time there is no Rx interrupt threshold, so each frame immedi-
ately triggers an interrupt. On receiving an Rx EOF the driver:

� Reads the Data_Address and Data_Count pointers

� Determines how many bytes to copy to the Rx buffer, or whether there is
a buffer into which a frame can be copied

� Copies data into the Rx buffer pointed to by the fragments (Data_Count,
Data_Address field pairs)

� Passes control of the Rx buffer to the upper layer

� Relinks the lists

� Acknowledges the interrupts, then exits

4.4.5 Dummy Interrupt. Int_type = 100b

A dummy interrupt can be created by asserting the Req_Int bit in the
HOST_CMD register. This interrupt can be useful as a driver-definable inter-
rupt, as well as in hardware diagnostics. This interrupt ensures that the adapt-
er is open on the wire. The driver simply acknowledges this interrupt and exits.

 Interrupt Type Codes

4-9 Interrupt Handling

4.4.6 Tx EOC Interrupt. Int_type = 101b

A Tx EOC interrupt occurs when ThunderLAN encounters a forward pointer
of 0 in the Tx list structure or when the Ld_Thr bit is loaded with 0. In this routine
the driver:

� Gets the pointer to the Tx buffer queue

� Checks the list CSTAT to see if a frame has been transmitted

� If no, acknowledges the interrupt and exits

� If yes, writes a 0 to CSTAT to make the list invalid

4.4.7 Network Status Interrupt. Int_type = 110b and Int_Vec = 00h

A network status interrupt occurs when a PHY status change has been de-
tected and ThunderLAN has seen an interrupt on the MDIO line. This interrupt
type occurs only if a physical interface (PHY) with enhanced media indepen-
dent interface (MII) support is used.

Some other causes of a status interrupt occur when the Tx and Rx channels
are stopped using a STOP command. The following shows the flow for a status
interrupt routine:

� Reads the NetSts register

� Clears the NetSts register. NetSts can be easily cleared by writing what
has been read back into it.

� Reads the NetMask register

� Uses NetMask to ignore the NetSts bits, which are disabled

� Evaluates the following conditions:

� If the MIRQ bit is set, there was an MII interrupt from the PHY. For
voice grade (VG) operation, this is an indication that the PHY needs to
retrain.

� If the HBEAT bit is set, a heartbeat error was detected.

� If the TXSTOP bit is set, a Tx STOP command was given and the Tx
channel is stopped.

� If the RXSTOP bit is set, an Rx STOP command was given and the Rx
channel is stopped.

� Acknowledges interrupts and exits

Interrupt Type Codes

 4-10

4.4.8 Adapter Check Interrupt. Int_type = 110b and Int_Vec ≠ 00h

An adapter check interrupt occurs when ThunderLAN enters an unrecover-
able state and must be reset. This unrecoverable condition occurs when
ThunderLAN does not agree with the parameters given to it by the driver or
when it does not agree with the external hardware. On an adapter check, the
driver:

� Disables interrupts

� Reads the adapter check code from the CH_PARM register

� Clears any Tx queued transmissions. In an adapter check, ThunderLAN
is not on the network wire.

� Reads the statistics registers, since these are lost when ThunderLAN is
reset

� Performs a software reset by asserting the Ad_Rst bit in the HOST_CMD
register

� Exits the routine but does not acknowledge, since reset clears the interrupt

The adapter check error status is readable from the CH_PARM register loca-
tion whenever an adapter check interrupt is indicated. The status includes
fields to indicate the type of error and its source.

 Interrupt Type Codes

4-11 Interrupt Handling

Figure 4–1. Adapter Check Interrupt Fields

Failure code00000000

00R/WR/TL/DChannel000

Byte 0Byte 1

Byte 2Byte 3

0123456789101112131415

16171819202122232425262728293031

Table 4–1. Adapter Check Bit Definitions

Bit Name Function

28–21 Channel This field indicates the active PCI channel at the time of the failure.

20 L/D List not data: If this bit is set to 1, a PCI list operation was in progress at the time of the
failure. If this bit is set to 0, a PCI data transfer operation was in progress at the time
of the failure.

19 R/T Receive not transmit: If this bit is set to 1, a PCI receive channel operation was in prog-
ress at the time of the failure. If this bit is set to 0, a PCI transmit channel operation was
in progress at the time of the failure.

18 R/W Read not write: If this bit is set to 1, a PCI read operation was in progress at the time
of the failure. If this bit is set to 0, a PCI write operation was in progress at the time of
the failure.

This bit can be used to differentiate between list reads and CSTAT field writes, which
are both list operations.

7–0 Failure code This field indicates the type of failure that caused the adapter check.

Interrupt Type Codes

 4-12

Table 4–2. Adapter Check Failure Codes

Bit Name Function

00h

01h DataPar Data parity error: Indicates that during bus master operations, ThunderLAN has de-
tected a PCI bus data parity error, and parity error checking was enabled (the PAR_En
bit in the PCI command register is set).

02h AdrsPar Address parity error: Indicates that ThunderLAN has detected a PCI bus address parity
error, and that parity error checking is enabled (the PAR_En bit in the PCI command
register is set).

03h Mabort Master abort: When set, indicates ThunderLAN aborted a master cycle due to a master
abort. ThunderLAN master aborts a PCI data transfer if the target does not respond
with a PDEVSEL# signature within six clock cycles of the start of the transfer.

04h Tabort Target abort: When set, indicates a ThunderLAN master cycle was aborted due to a
target abort.

05h ListErr List error:

� The sum of a transmit list’s data count fields was not equal to the frame length indi-
cated in the list’s frame size field.

� The last nonzero fragment of a receive or transmit list did not have bit 31 of the data
count field set.

Please note that if you are in multifragment mode and are using less than ten frag-
ments, the fragment after the last fragment used in a receive list must have 0 in its data
count field.

06h AckErr Acknowledge error: An attempt to overservice Rx or Tx EOF interrupts has taken place.

07h IovErr Int overflow error: Rx or Tx EOF interrupts have been underserviced, resulting in an
overflow of the interrupt counter. The interrupt counter is ten bits wide and seven inter-
rupt bits can be acknowledged at one time.

Interrupt overflow also occurs when a Tx GO command has been given before a Tx
EOC has been acknowledged. The EOC interrupt counter is only one bit wide. The
same happens when an Rx GO command is given before an Rx EOC has been ac-
knowledged.

08h–FFh Reserved

 Interrupt Type Codes

4-13 Interrupt Handling

The error status bits are only relevant for some adapter check failure codes,
as indicated by the following table:

Table 4–3. Relevance of Error Status Bits for Adapter Check Failure Codes

Bit Name Channel List/Data Receive/Transmit Read/Write

01h DataPar Y Y Y Y

02h AdrsPar N N N N

03h Mabort Y Y Y Y

04h Tabort Y Y Y Y

05h ListErr Y N Y N

06h AckErr Y EOC/EOF Y N

07h IovErr Y EOC/EOF Y N

The first four adapter check codes (0x01 thru 0x04) are due to errors in the
hardware. They include parity errors and PCI cycles aborted. These adapter
checks reveal serious hardware errors; please verify that the attached hard-
ware is correct.

The next three adapter check codes (0x05 through 0x07) are due to inconsis-
tencies between ThunderLAN and the driver. These include errors in the lists
where the frame size given to ThunderLAN does not match the actual frame
size. They also include instances where the driver and ThunderLAN do not
agree on how many EOFs to acknowledge. This is a serious mistake, since
it means that frames have been lost. These adapter checks show faults in the
driver-hardware interaction that must be resolved.

4.4.9 Rx EOC Interrupt. Int_type = 111b

A Rx EOC occurs when ThunderLAN encounters a forward pointer of 0 in the
receive list chain. A 0 forward pointer is an indication that a receive buffer is
not available, and ThunderLAN shuts off the receive process. There is a poten-
tial for frame loss if an Rx EOC occurs when the receive channel is stopped,
so this condition must be avoided or the channel restarted as soon as possible
using the following steps:

� Move the pointer to the top of the Rx list and find it’s physical address.

� Write it to the CH_PARM register.

� In the HOST_CMD register, acknowledge the Rx EOC and give the Rx GO
command in the same 32-bit move.

 4-14

5-1

List Structures

ThunderLAN controllers use a list processing method to move data in and out
of the host’s memory. A list is a structure in host memory which is composed
of pointers to data. The list contains information telling ThunderLAN where in
the host memory to look for the data to be transmitted or where the receive
buffer is located. This chapter discusses the advantages of using a system of
linked list structures to support continuous network transmission and recep-
tion. It also discusses list format and how to effectively manage this system of
linked lists by the use of interrupts.

Topic Page

5.1 List Management 5-2.

5.2 CSTAT Field Bit Requirements 5-5.

5.3 One-Fragment Mode 5-6.

5.4 Receive List Format 5-7.

5.5 Transmit List Format 5-11.

Chapter 5

List Management

 5-2

5.1 List Management

Some of the more commonly used list management terms are defined here:

List A list is a structure in host memory which is composed of pointers to
data. The list includes information on the location of a frame, its size,
and its transmission/receive status. A list can represent only one
frame, but lists can be linked through the forward pointer. This way,
multiple frames can be represented by linked lists.

Figure 5–1. List Pointers and Buffers

To next list

Buffer

Buffer

etc.

+16
+14

+12
+8

+4

+0

Data count

Data address

Data address

Data count

CSTATFrame size

Forward pointer

Buffer A buffer is an allocated area in host memory where a frame fragment
is located. It is pointed to by the list structure. The buffer serves as a
location where ThunderLAN DMAs a received frame and from where
ThunderLAN DMAs a frame to be transmitted. A buffer can store a
whole frame or part of one. It may not hold more than one frame. A
list may point to one or more buffers for the frame associated with
those buffers.

Frame A frame is the data that is transmitted on the network. A frame can use
one or multiple buffers.

GO
Command

A GO command tells ThunderLAN to initiate frame transmission or re-
ception. ThunderLAN uses the list structure to determine which buff-
ers to use in this process.

Ack Acking is the process by which the host driver acknowledges to
ThunderLAN the number of frames it has processed.

A properly written ThunderLAN driver is able to work rapidly and use the CPU
infrequently, since the driver only needs to build and maintain a small list for
each frame. The actual data transfer to and from the host is handled by Thun-
derLAN in hardware. This frees the host CPU for other applications.

Lists can also be linked by putting the forward pointer in one list at the begin-
ning of the following list. Linking lists allows ThunderLAN to process more than
one frame without having the driver issue a separate transmit/receive (Tx/Rx)
open channel command (GO command) for each frame. Moreover, the driver

 List Management

5-3 List Structures

can keep the transmit and receive channels continuously open by freeing up
buffers and relinking lists faster than frames are transferred by ThunderLAN.
This is important in receive operations where the Rx channel must be open
continuously to avoid losing frames from the network.

All list processing and management operations are done in host memory. The
driver only needs to access ThunderLAN’s internal registers when opening
transmit or receive channels, when acknowledging the number of frames that
it has processed, or when reading the controller statistics.

Figure 5–2. Linked List Management Technique

Pointer to 1

00000000h

Pointer to 2

Pointer to 1

Pointer to 3

00000000h

00000000h

Pointer to 3

Pointer to 2

Figure 5–2 is an example of a typical three-list management technique, where
the pointers are relinked sequentially. The lists are linked by pointing the for-
ward pointer in the previous list to the address of the next list.

The first list structure is shown on the left where list 1’s forward pointer points
to the physical address of list 2, and list 2’s forward pointer points to the physi-
cal address of list 3. List 3 has a forward pointer equal to 0x00000000h.

When ThunderLAN uses list 1, it updates the CSTAT field to show frame
completion. The driver must look at the CSTAT to determine when to update
the pointers. When the Frm_Cmp bit is set in the CSTAT, the driver can free
up the list and the buffers. It does so by clearing the CSTAT, setting the forward
pointer to 0, and writing the physical address of the forward pointer of the last
list in the chain. If done quickly enough, the driver can continue to append the
lists and implement a continuous transmit or receive channel. Figure 5–2
shows how the list pointers look during this appending process.

List Management

 5-4

A driver is not limited in the number of lists it can manage as long as there is
memory to put them in. The question then arises as to how many lists are ap-
propriate for a certain application. The number of lists allocated should be just
enough to allow the driver to use the full wire bandwidth on Tx and to handle
the Rx data from the wire.

In a network client application where some data transfer may occur between
the Rx buffer pool and another location in the client, the data transfer routines
must be as efficient as possible. The data transfer time between the host and
ThunderLAN is the copy time. This copy time must be less than the time that
it takes for the network to fill up a buffer (network transmit time) plus the time
it takes to service the list (service time).

Copy time < Network transmit time + Service time

Service time includes the overhead time for copying the list header and servic-
ing the interrupts and the list. If the copy time does not meet this criterion it may
be necessary to add an additional Rx list and buffer to your driver application.

An efficient driver actually takes up significantly less memory space than a less
efficient driver, and it is able to use more network bandwidth and less CPU.
This is because a more efficient driver uses fewer memory-consuming lists
and buffers, while maintaining the same throughput. Ensuring that data trans-
fer operations are clean and efficient helps improve the throughput and size
of the driver.

A client driver can be optimized so that only one transmit list is required. Using
one transmit provides good performance and simplifies the driver design. A
server driver, where maximum performance is important, can be achieved with
about 11 transmit lists. A client driver operates well with three receive lists. A
server driver requires more to receive the network traffic. The specific number
of receive and transmit lists depends on the efficiency of the driver and the ma-
chine used.

 CSTAT Field Bit Requirements

5-5 List Structures

5.2 CSTAT Field Bit Requirements

Texas Instruments specifies that some bits in the CSTAT field should be set
to 1, but tells you to ignore them. This is because these bits are ignored by the
adapter. The ThunderLAN CSTAT is very much like that in TI380 products. Bit
12 in ThunderLAN corresponds to bit 3 in the TI380 CSTAT FRAME_END bit.
Bit 13 in ThunderLAN corresponds to bit 2 in the TI380 CSTAT
FRAME_START bit. We define bits 12 and 13 as 1, since that is the way that
they would appear on TI380 drivers where one list handles one frame only.
ThunderLAN was designed so that a TI380 driver could be easily modified to
become a ThunderLAN driver.

Texas Instruments has reserved the use of these bits for future applications.
Setting these bits to any other value than 1 may cause problems with later ver-
sions of ThunderLAN.

One-Fragment Mode

 5-6

5.3 One-Fragment Mode

When the GO command is given on either transmit or receive, ThunderLAN
DMAs the whole list, even though the driver only uses a limited number of frag-
ments on that list.

In the case of a receive list, the driver has the option to force ThunderLAN to
DMA a one-fragment list. This is accomplished by setting the One_Frag bit in
the NetConfig register to 1. In one-fragment mode, ThunderLAN only needs
to DMA a 16-byte list instead of an 88-byte list. This helps to cut down on PCI
bandwidth use. Currently, there is no one-fragment mode for transmit.

 Receive List Format

5-7 List Structures

5.4 Receive List Format

Figure 5–3. Receive List Format – One_Frag = 0

List offset

0x54

0x50

0x4C

0x48

0x44

0x40

0x3C

0x38

0x34

0x30

0x2C

0x28

0x24

0x20

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

Data count

Data address

Data count

Data count

Data address

Data address

Data count

Data address

Data count

Data count

Data address

Data address

Data count

Data count

Data address

Data address

Data count

Data address

Data address

Data count

Receive CSTATFrame size

Forward pointer

Byte 0Byte 1Byte 2Byte 3

Note: All receive lists must start on an eight-byte address boundary.

Figure 5–4. Receive List Format – One_Frag = 1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

List offset

0x0C

0x08

0x04

0x00

Data address

Data count

Receive CSTATFrame size

Forward pointer

Byte 0Byte 1Byte 2Byte 3

Receive List Format

 5-8

Table 5–1. Receive Parameter List Fields

Field Definition

Forward pointer This full 32-bit field contains a pointer to the next receive parameter list in the chain. The
three LSBs of this field are ignored, as lists must always be on an eight-byte address
boundary. When the pointer is 0, the current receive parameter list is the last in the chain.
The adapter processes receive parameter lists until it reads a list with a 0 forward pointer.
When a valid frame has been received into the data area pointed to by this list and the
receive CSTAT complete field is written, the receive channel stops. An Rx EOC interrupt
is raised for the channel, but this is seen by the host (because of interrupt prioritization)
until all outstanding Rx EOF interrupts have been acknowledged.

The system must update the forward pointer as a single 32-bit write operation to ensure
the adapter does not read it during update.

The adapter does not alter this field.

Receive CSTAT This 16-bit parameter is written to by the host when the receive parameter list is created.
It is overwritten by the adapter to report frame completion status. When initially written
to by the host, this field is referred to as the receive CSTAT request field.

After a frame finishes receiving, the adapter overwrites this field and it is referred to as
the receive CSTAT complete field. This indicates completion of frame reception, not
completion of the receive command.

The bit definitions for these two fields are contained in later tables.

Frame size This 16-bit field contains the number of bytes in the received frame. This field is written
by the adapter after frame reception. The frame size value does not include any frame
delimiters, preambles, postscripts, or CRC fields (except in pass_CRC mode). The
adapter ignores the initial value of this field.

Data count This 32-bit field indicates the maximum number of frame data bytes to be stored at the
address indicated by the following data address field. There can be up to ten data count/
data address parameters in a list.

A data count of 0 is necessary in the next data count field of the list if you are in multifrag-
ment mode and are using less than nine fragments.

Data address This 32-bit field contains a pointer to a fragment (or all) of the frame data storage in host
(PCI) address space. Data address is a full-byte address. Frame fragments can start
(and end) on any byte boundary.

 Receive List Format

5-9 List Structures

Figure 5–5. Receive CSTAT Request Fields

LSBMSB

0 0 0 0000 0 000011
0

Cmp
Frm

0

0123456789101112131415

Table 5–2. Receive CSTAT Request Bits

Bit Name Function

15 0 Ignored by adapter. Set to 0

14 Frm_Cmp 0 Frame complete: Ignored by adapter. Set to 0. Setting the Frm_Cmp bit to 0 is good
programming practice.

13 1 Ignored by adapter. Set to 1

12 1 Ignored by adapter. Set to 1

11 0 Ignored by adapter. Set to 0

10 0 Ignored by adapter. Set to 0

9 0 Ignored by adapter. Set to 0

8 0 Ignored by adapter. Set to 0

7–0 0 Ignored by adapter. Set to 0

Receive List Format

 5-10

Figure 5–6. Receive CSTAT Complete Fields

LSBMSB

DP0RxRX
EOC11

1
Cmp
Frm

0

0123456789101112131415

Error pr
Reserved

Table 5–3. Receive CSTAT Complete Bits

Bit Name Function

15 0 Same value as previously set by the host in CSTAT request field

14 Frm_Cmp 1 Frame complete: Set to 1 by the adapter to indicate the frame has been received

13 1 Same value as previously set by the host in CSTAT request field

12 1 Same value as previously set by the host in CSTAT request field

11 RX EOC RX EOC: If RX EOC is disabled by the Interrupt Disable register no interrupts will be
generated. This bit will serve as an indication of RX EOC in that case. This bit will
also be set when interrupts are enabled.

10 Rx_Error Error frame: Frames with CRC, alignment, or coding errors are passed to the host if the
CAF (Copy All Frames), and PEF (Pass Error Frames) option bits are set. Such frames
can be identified through the Rx_Error bit. These frames have this bit set to a 1, all good
frames have this bit set to a 0.

9 0 Same value as previously set by host in the CSTAT request field

8 DP_pr Demand priority frame priority: This bit indicates the transmission priority of received de-
mand priority frames. A value of 0 indicates normal transmission, a value of 1 priority
transmission. In CSMA/CD mode, this bit is always written as a 0.

7–0 0 Reserved

 Transmit List Format

5-11 List Structures

5.5 Transmit List Format

Figure 5–7. Transmit List Format

.

.

.

through
0x55

User-specific information

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

List offset

0x54

0x50

0x4C

0x48

0x44

0x40

0x3C

0x38

0x34

0x30

0x2C

0x28

0x24

0x20

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

Data count

Data address

Data count

Data count

Data address

Data address

Data count

Data address

Data count

Data count

Data address

Data address

Data count

Data count

Data address

Data address

Data count

Data address

Data address

Data count

Receive CSTATFrame size

Forward pointer

Byte 0Byte 1Byte 2Byte 3

Note: All transmit lists must start on an eight-byte address boundary.

Transmit List Format

 5-12

Table 5–4. Transmit Parameter List Fields

Field Definition

Forward pointer This 32-bit field contains a pointer to the next transmit parameter list in the chain. The
three LSBs of this field are ignored, as lists must always be on an eight-byte address
boundary. When the forward pointer is 0, the current transmit parameter list is the last
in the chain. The adapter processes transmit parameter lists until it reads a list with a
0 forward pointer. Once the frame pointed to by this list has been read into the adapter
and the transmit CSTAT complete field written, the transmit channel stops. A Tx EOC
interrupt is raised for the channel, but this is not seen by the host (because of interrupt
prioritization) until all outstanding Tx EOF interrupts have been acknowledged.

The system must update the forward pointer as a single 32-bit write operation to ensure
the adapter does not read the field while it is being updated. The forward pointer is read
at the same time as the rest of the list structure. The adapter does not alter this field.

Frame size This 16-bit field contains the total number of bytes in the transmit frame. This field must
be equal to the sum of the data count fields, or an adapter check occurs.

Transmit CSTAT This 16-bit parameter is written by the host when the transmit parameter list is created.
It is overwritten by the adapter to report frame transfer status. When initially written by
the host, this field is referred to as the transmit CSTAT request field.

After a frame is transferred into the adapter, the adapter overwrites this field and it is re-
ferred to as the transmit CSTAT complete field. This indicates completion of frame trans-
fer into the adapter FIFO, not frame transmission or completion of the transmit com-
mand.

The bit definitions for these two fields are defined in later tables.

Data count This 32-bit field indicates the number of frame data bytes to be found at the address indi-
cated by the following data address field. There can be a maximum of ten data count/
data address parameters in a list.

If bit 31 is set to a 1, then this is the last data count in the list. A data count of 0 is only
permitted when it follows the last fragment in multifragment mode. This is only necessary
when nine or less fragments are used.

Data address This 32-bit field contains a pointer to a fragment (or all) of the frame data in host (PCI)
address space. Data address is a byte address. Frame fragments can start and end on
any byte boundary.

 Transmit List Format

5-13 List Structures

Figure 5–8. Transmit CSTAT Request Fields

LSBMSB

Reserved Network
priority0

Pass
CRC0011

0
Cmp
Frm

0

0123456789101112131415

Table 5–5. Transmit CSTAT Request Bits

Bit Name Function

15 x Ignored by adapter. The value in this bit is a don’t care.

14 Frm_Cmp 0 Frame complete: Ignored by adapter. Should be set to 0. Setting the Frm_Cmp bit to
0 is good programming practice.

13 1 Ignored by adapter. Set to 1

12 1 Ignored by adapter. Set to 1

11 0 Ignored by adapter. Set to 0

10 0 Ignored by adapter. Set to 0

9 Pass_CRC Pass CRC: When this bit is set to a 1, the adapter uses the last four bytes of frame data
as the frames CRC. The integrity of this CRC is not checked and it is handled just like
the data payload. If this bit is set to a 0, CRC is generated by the adapter as normal.

8 0 Ignored by adapter. Should be set to 0

7–3 Reserved This field is Ignored by the adapter, but should be set to 0.

2–0 Network
priority

Network priority request: Indicates the network transmission priority to be used for the
frame when network protocol types 2 or 3 are selected. The value in this field is passed
to the external protocol engine across the 802.3u MII on the MTXD[3::1] signal lines dur-
ing transmission requests.

This field has no meaning if network protocol types other than 2 or 3 are selected.

Transmit List Format

 5-14

Figure 5–9. Transmit CSTAT Complete Fields

LSBMSB

0
PassTX

EOC11
1

Cmp
Frm

0

0123456789101112131415

CRC
Reserved0 Network

priority

Table 5–6. Transmit CSTAT Complete Bits

Bit Name Function

15 x Same value as previously set by the host in the CSTAT request field

14 Frm_Cmp 1 Frame complete: Set to 1 by the adapter to indicate the frame has been transmitted
into the controller’s internal FIFO

13 1 Same value as previously set by the host in CSTAT request field

12 1 Same value as previously set by the host in CSTAT request field

11 TX EOC TX EOC: If TX EOC is disabled by the Interrupt Disable register no interrupts will be
generated. This bit will serve as an indication of TX EOC in that case. This bit will
also be set when interrupts are enabled.

10 0 Same value as previously set by the host in CSTAT request field

9 Pass_CRC Same value as previously set by the host in CSTAT request field

8 0 Same value as previously set by the host in CSTAT request field

7–3 0 This field is ignored by the adapter, but should be set to 0.

2–0 Network
priority

Same value as previously set by the host in CSTAT request field

6-1

Transmitting and Receiving Frames

This chapter describes the structure and format for transmitting and receiving
frames using ThunderLAN. Frames are units of data that are transmitted on
a network. These must appear in a consistent, logical format to be recognized.
The chapter also describes the method you must use to create a linked list
structure, which is necessary to start frame reception and transmission.

Topic Page

6.1 Frame Format 6-2.

6.2 GO Command 6-4.

Chapter 6

Frame Format

 6-2

6.1 Frame Format

The following describes the configuration of the data units which ThunderLAN
transmits and receives. ThunderLAN looks for this format to create the linked
structures it uses in transmitting and receiving data (see subsection 6.2, GO
Command).

6.1.1 Receive (Rx) Frame Format

The adapter receive channels are used to receive frames from other nodes on
the network. The ThunderLAN adapter allows received frame data to be frag-
mented into up to ten pieces. However, the adapter provides the data in a con-
sistent, logical format as shown below. This logical format is different for token
ring and Ethernet frame formats.

Figure 6–1. Token Ring Logical Frame Format (Rx)

18 bytes (max)

6 bytes

6 bytes

1 byte

1 byte

Data

Routing field (optional)

Source address

Destination address

FC

AC

Figure 6–2. Ethernet Logical Frame Format (Rx)

3 to 4 bytes

2 bytes

6 bytes

6 bytes

Data

LLC_header (optional)

Length/ type

Source address

Destination address

 Frame Format

6-3 Transmitting and Receiving Frames

6.1.2 Transmit (Tx) Frame Format

The adapter transmit channels are used to transmit frames to other nodes on
the network. The ThunderLAN adapter allows transmitted frame data to be
fragmented into up to ten pieces. However, the adapter expects the conca-
tenation of these fragments to be in a consistent, logical format as shown be-
low. This logical format is different for token ring and Ethernet frame formats.

Figure 6–3. Token Ring Logical Frame Format (Tx)

18 bytes (max)

6 bytes

6 bytes

1 byte

1 byte

Data

Routing field (optional)

Source address

Destination address

FC

AC

Figure 6–4. Ethernet Logical Frame Format (Tx)

3 to 4 bytes

2 bytes

6 bytes

6 bytes

Data

LLC_header (optional)

Length/type

Source address

Destination address

GO Command

 6-4

6.2 GO Command

To transmit and receive data, the ThunderLAN driver must create a linked list
of frames. This subsection describes the steps to create such a linked list, and
the process for initiating transfer by using a GO command.

6.2.1 Starting Frame Reception (Rx GO Command)

To create a linked receive list structure the driver:

1) Allocates memory for the list structures and receive buffers

2) Aligns the list to the nearest octet (byte) boundary

3) Links the lists as follows:

a) Determines the physical address of the next receive list and writes it
to this list’s forward pointer. This links the two lists together.

b) Initializes the CSTAT field for this list by setting bits 12 and 13 to 1.

c) Determines frame size for the Rx buffers (generally the maximum al-
lowable frame size) and writes it to the frame size field.

d) Sets the data count to the length of the receive buffer. This is a flag that
tells ThunderLAN that it is the last fragment.

e) Calculates the list’s receive buffer’s physical address and writes it to
the data address.

4) Sets up the next list

After all lists are complete, ThunderLAN goes to the last list’s forward pointer
and sets it to 0x00000000h. To begin frame reception the host:

1) Creates a linked list of receive lists pointing to the receive buffers

2) Writes the address of the first list to CH_PARM

3) Brings ThunderLAN out of reset, if necessary, by writing 0x0000h to the
least significant word (LSW) of HOST_CMD

4) Writes a 1 to the GO bit of HOST_CMD with the receive channel selected

This assumes the interrupt pacing timer has been initialized. If not, write to
HOST_CMD with the Ld_Tmr bit set and the pacing timer time-out value in the
Ack_Count field.

For frame reception, the driver must allocate enough memory for the receive
lists and buffers. The lists must be octet aligned. They are linked by having the

 GO Command

6-5 Transmitting and Receiving Frames

forward pointer point to the next available list. The last list should have a for-
ward pointer of 0. You must then initialize the CSTAT fields in the lists.

Opening a receive channel works in much the same way as opening a transmit
channel. You must first write the address of the beginning of the list chain to
CH_PARM and then give the receive open channel (Rx GO) command.
ThunderLAN DMAs the data from its internal FIFO to the receive buffer pointed
to in the list structure.

ThunderLAN writes the data count field with the data size when the frame is
complete. The Frm_Cmp bit in the receive CSTAT complete field is set when
the receive data is completely DMAed into the receive buffer. ThunderLAN
then gives the host an Rx EOF interrupt. The driver looks at the Frm_Cmp bit
to determine when the receive frame is complete and acknowledges the inter-
rupt. The driver frees up the buffer for a new frame.

The driver makes the old list’s forward pointer equal to 0. The previous list’s
forward pointer can be set up to point to this list. If done quickly, ThunderLAN
always has a receive buffer to place frames in and the receive channel remains
open. If ThunderLAN encounters the 0 forward pointer (meaning that it has
filled the last buffer available to it), it gives the host an Rx EOC interrupt and
stops the receive channel.

Implementing continuous receive reduces the possibility of losing frames due
to not having receive buffers. In continuous receive, the driver acknowledges
Rx EOF interrupts as each frame is delivered to the host. The driver manages
the receive lists and buffers so that ThunderLAN always has a free buffer to
place data in.

In case of an Rx EOC interrupt, the driver frees up buffers for the receive pro-
cess, creates a system of linked lists, and restarts the receive channel by issu-
ing an Rx GO command.

The Rx GO command is used to pass a receive list structure to ThunderLAN.
ThunderLAN uses the list structure to DMA the received data from the network.
There are two steps involved in issuing an Rx GO command:

� In the CH_PARM register, write the physical address of the beginning of
the list structure. ThunderLAN uses this physical address to DMA data to
host memory.

� In the HOST_CMD register, write the appropriate bits to start the channel.
The Rx GO command writes to the GO bit and selects the transmit channel
by writing to the Ch_Sel field. Set R/T to 1, indicating a receive command.

GO Command

 6-6

The HOST_CMD register can be written in a single, 32-bit operation. This im-
plies that several commands can be combined in one operation. An Rx EOC
interrupt can be acknowledged and Rx GO commands can be reissued in a
single operation.

6.2.2 Starting Frame Transmission (Tx GO Command)

To create a linked transmit list structure the driver:

1) Allocates enough memory for the list structures and transmit buffers

2) Aligns the list to the nearest octet (byte) boundary. This ensures that the
PCI bus does not insert any wait cycles to align the list with its internal
64-bit architecture.

3) Starts linking lists as follows:

a) Determines the physical address of the next transmit list and writes it
to this list’s forward pointer. This links the two lists together.

b) Initializes the CSTAT field for this list by setting bits 12 and 13 to 1

c) Initializes the frame_size to the transmit frame’s size

d) Sets the data count to 0x80000000h. This is a flag that tells Thunder-
LAN that it is the last fragment. ThunderLAN, however, DMAs the en-
tire ten fragments even though it may only use one fragment.

e) Calculates the list’s transmit buffer’s physical address and writes it to
the data address

4) Sets the next transmit list

After all lists are complete, go to the last list’s forward pointer and set it to
0x00000000h. To begin frame transmission, the host:

1) Creates a linked list of transmit lists pointing to the transmit frames

2) Gets the addresses of the next available Tx list

3) Clears the CSTAT field in the list

4) Ensures that the frame is padded to 60 bytes for a minimum IEEE 802.3
standard frame length of 64 bytes (60 bytes + 4-byte CRC)

5) Copies the media header to the Tx list transmit data buffer

6) Moves the frame length and the data buffer pointer to the transmit list

7) Disables interrupts

 GO Command

6-7 Transmitting and Receiving Frames

8) Gives the TX GO command by writing the address of the first available list
to the CH_PARM register

9) Writes a 1 to the GO bit of the HOST_CMD register, with the transmit chan-
nel selected

This assumes the transmit interrupt threshold has been initialized. If not, write
to HOST_CMD with the Ld_Thr bit set and the threshold value in the
Ack_Count field.

For frame transmission, the driver first allocates memory for the transmit lists
and buffers and octet (byte) aligns the transmit lists. Next, the driver links the
list by having the forward pointer point to next available list. The forward pointer
must be 0 in the last list used. Next, the driver initialize the CSTAT fields in the
lists.

After this system of linked lists is created, the driver writes the address of the
first list to the CH_PARM register. This tells ThunderLAN where the first linked
list is. After this, a Tx GO command is given. ThunderLAN initiates the DMA
of data into its internal FIFO and then ThunderLAN transfers at least 64-bytes,
or the value given in the Acommit register, into its internal FIFO before starting
frame transmission.

When ThunderLAN finishes transferring data into its internal FIFO, it sets the
Frm_Cmp bit in the CSTAT field. (ThunderLAN sets the bit when the frame is
transmitted to the FIFO, not when network transmission is complete). The driv-
er looks into the Frm_Cmp bit to verify frame transfer. Depending on the value
loaded into the Ld_Thr bit in HOST_CMD, a Tx EOF interrupt is given to the
host. The driver then needs to acknowledge the number of frames it has sent
to ThunderLAN. This is important, as ThunderLAN and the driver have to
agree on the number of frames sent. If there is a discrepancy, and the host ac-
knowledges more frames than ThunderLAN has sent, ThunderLAN assumes
that a serious hardware error has occurred and an adapter check 06h AckErr
will follow.

When the driver determines the Frm_Cmp bit is set, it frees up the list and buff-
er for the next transmit list. When the driver wishes to transmit a frame, it sets
up the Tx list to point to the buffer that holds the frame. It writes a forward point-
er of 0 to make this the last list in the chain. Finally, the previous list’s forward
pointer must be changed to write to the beginning of this list. ThunderLAN then
transmits this frame as it goes down the linked lists. There are situations when
ThunderLAN has completed transmitting the previous list and has seen the 0
forward pointer, in which case it closes the Tx channel and gives a Tx EOC
interrupt. The driver then acknowledges the EOC and resumes transmitting by
issuing another Tx GO command.

GO Command

 6-8

Depending on the value loaded into the Ld_Thr bit in the HOST_CMD register,
ThunderLAN gives a Tx EOF interrupt after processing the number of frames
specified. In this case, the driver acknowledges the number of frames that it
has processed. Again, the driver has to look into the Frm_Cmp bit of the
CSTAT field to determine the number of frames that have been processed.

The transmit open channel command (Tx GO) initializes frame transmission
into ThunderLAN’s internal transmit FIFO and subsequently to the network.
There are two steps involved in issuing a Tx GO command:

1) In the CH_PARM register, write the physical address of the beginning of
the list structure. ThunderLAN uses this physical address to DMA data
from host memory.

2) In the HOST_CMD register, write the appropriate bits to start the channel.
The Tx GO command writes to the GO bit, and selects the transmit chan-
nel by writing to Ch_Sel. R/T must be set to 0, indicating a transmit com-
mand.

The HOST_CMD register can be written in a single, 32-bit operation. This im-
plies that several commands can be combined in one operation. Ack and Tx
GO commands can be issued in a single operation.

7-1

Physical Interface (PHY)

This chapter describes ThunderLAN support for all IEEE 802.3-compliant de-
vices through its media independent interface (MII). These include the internal
10Base-T physical interface (PHY) and any MII-compliant networking PHYs.
It also discusses IEEE 802.12-compliant devices which are supported when
ThunderLAN is used in conjunction with Texas Instruments TNETE211
100VG-AnyLAN physical media independent (PMI) device. The TNETE211
implements 802.12 media access controller (MAC) state machines for 100VG-
AnyLAN operation, and provides an 802.12-compatible MII.

In addition, interrupt-driven PHYs can be implemented through the use of the
enhanced MII. ThunderLAN can use nonmanaged (no serial management in-
terface) MII devices. ThunderLAN also supports bit-level PHYs.

Topic Page

7.1 MII-Enhanced Interrupt Event Feature 7-2.

7.2 Nonmanaged MII Devices 7-7.

7.3 Bit-Rate Devices 7-8.

7.4 PHY Initialization 7-9.

Chapter 7

MII-Enhanced Interrupt Event Feature

 7-2

7.1 MII-Enhanced Interrupt Event Feature

ThunderLAN can connect to an external PMI device through its industry stan-
dard MII interface. A full description of the MII can be found in the 802.3u stan-
dard. The ThunderLAN MII is enhanced in two ways:

� The ThunderLAN MII can be shifted through software into a mode that
supports a connection to the TNETE211. The TNETE211 device provides
full 802.12 functionality and a 802.12 MII, which allows connection to a
PHY for 100VG-AnyLAN. The MII mode can be selected using the
MAC_Select field in the NetConfig register.

Figure 7–1. 100VG-AnyLAN Support Through ThunderLAN’s Enhanced 802.3u MII

802.12 MII
TNETE211

PCI MII
TLANTLAN

802.3u MIIPCI

� ThunderLAN’s MII passes interrupts from the attached PHY to the control-
ler. This enables the PHYs to interrupt the host only when needed.

 MII-Enhanced Interrupt Event Feature

7-3 Physical Interface (PHY)

ThunderLAN implements the 19-signal MII shown in Table 7–1:

Table 7–1. ThunderLAN MII Pins (100M-bps CSMA/CD)

Name Type Function

MTCLK In Transmit clock: Transmit clock source from the attached PHY device

MTXD0
MTXD1
MTXD2
MTXD3

Out Transmit data: Nibble transmit data from ThunderLAN. When MTXEN is asserted,
these pins carry transmit data. Data on these pins is always synchronous with
MTCLK.

MTXEN Out Transmit enable: Indicates valid transmit data on MTXD[3::0]

MTXER Out Transmit error: Allows coding errors to be propagated across the MII

MCOL In Collision sense: Indicates a network collision

MCRS In Carrier sense: Indicates a frame carrier signal is being received.

MRCLK In Receive clock: Receive clock source from the attached PHY

MRXD0
MRXD1
MRXD2
MRXD3

In Receive data: Nibble receive data from the PHY. Data on these pins is always
synchronous to MRCLK.

MRXDV In Receive data valid: Indicates data on MRXD[3::0] is valid

MRXER In Receive error: Indicates reception of a coding error on received data

MDCLK Out Management data clock: Serial management interface to PHY chip

MDIO I/O Management data I/O: Serial management interface to PHY chip

MRST# Out MII reset: Reset signal to the PHY front end (active low)

Communication with these devices is via the two MII pins MDIO and MDCLK.
The MDCLK signal is sourced from the host and is used to latch the MDIO pin
on the rising edge.

An MII frame consists of 32 bits, as shown in Figure 7–2 and Figure 7–3:

Figure 7–2. MII Frame Format: Read

Start
delimiter

Operation
code

PHY
address

Register
address

Turn-
around Data

01 10 AAAAA RRRRR Z0 DDDD DDDD DDDD DDDD

MII-Enhanced Interrupt Event Feature

 7-4

Figure 7–3. MII Frame Format: Write

Start
delimiter

Operation
code

PHY
address

Register
address

Turn-
around Data

01 01 AAAAA RRRRR 10 DDDD DDDD DDDD DDDD

The clock cycle at the end of a transaction is used to disable the PMI from driv-
ing the MDIO pin after a register read (the quiescent cycle). ThunderLAN sup-
ports an extra feature on the serial management interface whereby the PHY
can interrupt the host. The interrupt is signaled to the host on the MDIO pin one
clock cycle later, during the half of the MDCLK cycle which is high.

MII-managed devices use this serial interface to access the internal register
space as defined in the 802.3 or 802.12. A driver recognizes these devices by
successfully reading the register space. A specific PHY can be found by read-
ing the PHY identifier registers (locations 0x02h and 0x03h) and matching
them to a known code.

For Texas Instruments PHYs and PMIs, these codes are shown below, where
the xx denotes a revision:

� 0x4000501xx for the internal 10Base-T PHY
� 0x4000502xx for the TNETE211 100VG-AnyLAN PMI

One performance enhancement that ThunderLAN architecture supports is the
ability to be interrupted by the PHY. This is accomplished through Thunder-
LAN’s enhanced MII. The MII-enhanced interface allows the PHY to interrupt
the host system to indicate that the PHY needs some type of service, rather
than requiring the host to constantly poll the MII registers.

The interrupt mechanism described here is an extension of the 802.3u stan-
dard and does not affect MII compatibility with the existing 802.3u standard.

Servicing an interrupt typically requires the host to read the PHY generic status
register followed by a read of the PHY specific status register. According to the
802.3u, the PHY-specific register is a user-defined register and is normally lo-
cated between the MII registers 0x10 and 0x1f. Texas Instruments has chosen
0x12 as the location for the TLPHY_sts register.

The MII interrupt bit of this register, MINT, is bit 15, the MSB. This bit indicates
that an interrupt is pending or has been cleared by the current read. The PHY-
specific control register is located at 0x11 and contains two bits of importance,
TINT (test interrupt) and INTEN (interrupt enable). The TINT bit is used to test
the interrupt function; setting this bit forces the PHY to generate an interrupt.
Clearing this bit disables this function. The function of the TINT bit is to test the

 MII-Enhanced Interrupt Event Feature

7-5 Physical Interface (PHY)

PHY interrupt function. The INTEN bit is used to enable and disable the PHY
interrupt function. Setting the INTEN bit enables the PHY internal event sys-
tem to generate interrupts; clearing the INTEN bit disables the PHY from gen-
erating interrupts. Interrupts from the PHY are usually generated upon a
change in status that requires an interrupt indication.

Typical interrupt-generating events are shown in Table 7–2:

Table 7–2. Possible Sources of MII Event Interrupts

Name Function

Link Interrupt generated when the last read value is different from
the current state of the link, or different from the latched link
fail value if the link went OK-FAIL-OK with no register read in
between.

TxJabber Interrupt generated when the JABBER bit is changed from a
0 to a 1.

Remote fault Interrupt generated when the remote fault (RFLT) bit is
changed from a 0 to a 1.

Autonegotiation
complete

Interrupt generated when the autonegotiation complete
(AUTOCMPLT) bit is changed from a 0 to a 1.

Other event Other events that may require the management information
base (MIB) statistics updated if a counter has reached its half-
way point. These counters should clear when read. This ac-
tion also disables the counter event function.

The design of the interrupt-generating logic in the PHY should minimize the
number of interrupts generated so that overall system performance is not im-
pacted. To achieve this, the events that cause an interrupt are detected by
change and not by absolute value. The host, when interrupted, reads the PHY
generic status register, followed by the PHY specific status register. This clears
the interrupt, as well as clearing the bits that needs to be counted in the MIB.

There is only one deviation from this behavior associated with the LINK bit.
This bit needs to inform the host of a change in link status if the last read value
was different than the current value. With the exception of LINK=FALSE dur-
ing a LINK=TRUE condition, this condition is latched by the PHY and held until
the host reads the link fail condition. Since the TxJabber, RemoteFault, and
XtalOk conditions are either counted or start a host recovery process, they
need only cause an event when they are first set. The JABBER bit should be
cleared on the read that reads this bit as a 1, otherwise the next interrupt will
count this set bit, corrupting the MIB statistics.

The 802.3u standard provides for communication with the PMI via the two
management interface MII pins: MDIO and MDCLK. The MDCLK signal is

MII-Enhanced Interrupt Event Feature

 7-6

generated under host software control and is used to latch the MDIO pin on
the rising edge.

The ThunderLAN architecture expands the use of these two pins to allow the
attached PHY to interrupt the host using ThunderLAN. The clock cycle at the
end of a transaction on the MDIO signal is used to disable the PMI from driving
MDIO after a register read (the quiescent cycle). The interrupt is signaled to
the host on MDIO one clock cycle after this, for the half of the cycle when
MDCLK is high.

Figure 7–4. Assertion of Interrupt Waveform on the MDIO Line

MDCLK

Cycle

MDIO

D15 D16 QCYC MINT
QCYC = Quiescent

Since the Interrupt from the PHY is an open drain function, the PMI drives the
MDIO low prior to the falling edge that starts the start of frame (SOF) portion
of the management interface frame. During sync cycles the PHY releases the
interrupt on the MDIO to allow the management entity to pull the MDIO high
so a sync cycle is seen. In the diagram below, only one sync cycle is displayed,
but all 32 bits of the sync cycle are the same. On the ThunderLAN side of the
MII, a pullup is used to pull the MDIO signal high (no interrupt pending). The
value is such that the rising edge is less than 200 ns.

Figure 7–5. Waveform Showing Interrupt Between MII Frames

MDCLK

MDIO

Bit 1 Bit 0

End of transaction
Clear IntInHibit

Interrupt detected
Open collector off due to MDCLK seen low

New management transaction

Sync
SOF

R/W

 Nonmanaged Mll Devices

7-7 Physical Interface (PHY)

7.2 Nonmanaged MII Devices

Nonmanaged MII devices do not have a management interface (MDIO and
MDCLK). As such, they do not have any registers. The driver must have a key-
word that denotes that the PHY used is nonmanaged.

Bit-Rate Devices

 7-8

7.3 Bit-Rate Devices

ThunderLAN supports bit-rate devices by asserting the BITrate bit in the Net-
Config register. The MII is then converted into an Ethernet serial network inter-
face (SNI). The pin conversion for this mode is:

� MRXD0 → RXD (receive data)
� MRCLK → RXC (receive clock)
� MRCLK → RXC (receive clock)
� MCRS → CRS (carrier sense)
� MTCLK → TXC (transmit clock)
� MTXD0 → TXD (transmit data)
� MTXEN → TXE (transmit enable)
� MCOL → COL (collision detect)

MTXD3, MTXD2, MTXD1, and MTXER are driven with the values in the low
nibble (bits 0–3) of the Acommit register. These signals can be used to drive
PHY option pins, such as loopback or unshielded twisted pair/attachment unit
interface (UTP/AUI) select.

 PHY Initialization

7-9 Physical Interface (PHY)

7.4 PHY Initialization

The driver initializes each MII-attached PHY. Since there may be more than
one PHY attached to the MII, proper initialization ensures that one and only
one PHY is active and driving the MII. (The condition where more than one
PHY drives the MII at the same time is termed contention.)

Each MII-equipped PHY device has a control register at offset 0x00h. In
ThunderLAN, this register is called GEN_ctl. The effect of asserting the isolate
bit in this register is that the PHY does not drive any wire, port, or magnetics
it is connected to, and it Hi-Zs the interface to the MII data bus. The PHY still
pays attention and responds to requests from the MII management interface,
consisting of the MDIO/MDCLK lines.

Nominal treatment of the attached PHY requires 32 clock cycles be applied to
the PHY to synchronize the serial management interfaces. This is required on
each access, unless it responds to a fast start delimiter. If a PHY has this fea-
ture, synchronization is only required on the first access. The clock cycles are
generated through the NetSio register.

 7-10

A-1

Appendix A

Register Definitions

This appendix contains register definitions for the TNETE100A, TNETE110A,
and TNETE211 ThunderLAN implementations. ThunderLAN uses these reg-
isters to store information on its internal status and its communication with the
host. This appendix describes the purpose and function of each register and
provides bitmaps and descriptions of individual bits.

Topic Page

A.1 PCI Configuration Registers A-2.

A.2 Adapter Host Registers A-12.

A.3 Adapter Internal Registers A-21.

A.4 10Base-T PHY Registers A-39.

Appendix A

PCI Configuration Registers

A-2

A.1 PCI Configuration Registers

The PCI specification requires all PCI devices to support a configuration regis-
ter space to allow jumperless autoconfiguration. The configuration space is
256 bytes in length, of which the first 64-byte header region is explicitly defined
by the PCI standard. Registers in this address space are accessed by a com-
bination of signals. The IDSEL pin acts as a classical chip-select signal, indi-
cating there are configuration accesses to this device. Special configuration
read or write cycles are used for the accesses and individual registers are ad-
dressed using AD[7::2] and PCI bus-byte enables.

The adapter only implements mandatory or applicable configuration registers
in the standard PCI header region. No adapter-specific configuration registers
are defined. The adapter’s PCI configuration register address map is shown
in the diagram below. All reserved registers are read as 0. The registers shown
shaded in the diagram can be autoloaded from an external serial EEPROM.

 PCI Configuration Registers

A-3 Register Definitions

Figure A–1. PCI Configuration Register Address Map

read only

read/write
read/write

read/write

read/write
read/write

read/write

read only
read/write
read only

Byte 0Byte 1Byte 2Byte 3
031

FFh

44h
40h
3Ch
38h
34h
30h

2Ch

18h
14h
10h

0Ch

08h
04h
00h

Reset control
Interrupt lineInterrupt Pin(01h)Min_GntMax_Lat

Reserved (00h)

Reserved (00h)
Reserved (00h)

BIOS ROM base address

Memory base address
I/O base address

size
Cache line

timer
LatencyReserved

(00h)(00h)
Reserved

Revision
(00h)

Program interfaceSubclass
(02h)

Base Class

Vendor IDDevice ID
Status Command

Cardbus CIS Pointer
Reserved (00h)

Reserved (00h)
Reserved (00h)

Reserved (00h)

PCI NVRAMReserved (00h)

Reserved (00h)

IntDis

28h read only

48h

B4h

read only

Reserved (00h)

A.1.1 PCI Autoconfiguration from External 24C02 Serial EEPROM

ThunderLAN allows some of the PCI configuration space registers to be
loaded from an external serial EEPROM. These registers contain fixed vendor
and device information. Autoconfiguration allows builders of ThunderLAN sys-
tems to customize the contents of these registers to identify their own systems,
rather than using the Texas Instruments defaults.

The state of the EDIO pin during PCI reset (PRST#), enables (high) or disables
(low) autoconfiguration. In order to use a 24C02 EEPROM, the EDIO line re-
quires an external pullup. ThunderLAN enables autoconfiguration if it detects
this pullup (EDIO high) during PCI reset. If autoconfiguration is not required
or no EEPROM is present, the EDIO pin must be tied to ground.

PCI Configuration Registers

A-4

The first bit written to or read from the EEPROM is the most significant bit of
the byte, such as data(7). Therefore, writing the address C0h is accomplished
by writing a 1 and six 0s.

ThunderLAN expects data to be stored in the EEPROM in a specific format.
Nine bytes in the EEPROM are reserved for use by the adapter, starting with
C0h, as shown below. The contents of the remaining 247 bytes are undefined.
The EEPROM can also be read from or written to by driver software through
the NetSio register. The shaded registers in Figure A–1 can be autoloaded
from an external serial EEPROM.

Figure A–2. Configuration EEPROM Data Format

Address

C8h

C7h

C6h

C5h

C4h

C3h

C2h

C1h

C0h

Checksum

Max_Lat

Min_Gnt

Subclass

Revision

Device ID MSByte

Device ID LSByte

Vendor ID MSByte

Vendor ID LSByte

Any accesses to the adapter’s configuration space during autoload are re-
jected with a target retry. The checksum byte is an 8-bit cumulative XOR of
the eight shaded bytes, starting with an initial value of AAh. The adapter uses
this checksum to validate the EEPROM data. If the checksum fails, the config-
uration registers are set to their default (hardwired) values instead.

Checksum = AAh

XOR Data(0) XOR Data(1) XOR Data(2) XOR Data(3)

XOR Data(4) XOR Data(5) XOR Data(6) XOR Data(7);

Where XOR is a bitwise exclusive OR of the bytes.

A.1.2 PCI Vendor ID Register (@ 00h) Default = 104Ch

This register holds the adapter vendor ID. This register is loaded from an exter-
nal serial EEPROM on the falling edge of PCI reset, during autoconfiguration.
Should autoconfiguration fail (bad checksum), then this register is loaded with
the TI vendor ID of 104Ch instead.

A.1.3 PCI Device ID Register (@ 02h) Default = 0500h

This register holds the adapter device ID. The register is loaded from an exter-
nal serial EEPROM on the falling edge of PCI reset, during autoconfiguration.

 PCI Configuration Registers

A-5 Register Definitions

Should autoconfiguration fail (bad checksum), this register is loaded with the
ThunderLAN device ID of 0500h.

A.1.4 PCI Command Register (@ 04h)

En
I/O

En
Mem

En
BM

ReservedEn
Par

En
SER

Reserved

0123456789101112131415

Res

Table A–1. PCI Command Register Bits

Bit Name Function

15–9 Reserved Writes to these bits are ignored; bits are always read as 0.

8 SER_En PSERR# driver enable: A value of 1 enables the adapter PSERR# driver. A value of
0 disables the driver.

7 Reserved Writes to this bit are ignored; bit is always read as 0.

6 PAR_En Parity enable: Enables the adapter PCI parity checking. A value of 1 allows the adapter
to check PCI parity, a value of 0 causes PCI parity errors to be ignored.

5–3 Reserved Writes to these bits are ignored; bits are always read as 0.

2 BM_En Bus master enable: Enables the adapter as a PCI bus master. A value of 1 enables bus
master operations, a value of 0 disables them.

1 Mem_En Memory enable: Enables memory-mapped accesses to the adapter. A value of 0 dis-
ables response to memory-mapped accesses. A value of 1 enables response to
memory-mapped accesses.

0 I/O_En I/O Enable: Enables I/O mapped accesses to the adapter. A value of 0 disables re-
sponse to I/O accesses. A value of 1 enables response to I/O accesses.

PCI Configuration Registers

A-6

A.1.5 PCI Status Register (@ 06h)

cap
FBB

det
DP

(01b)
DEVSELRes

ab
RT

ab
RM

err
SS

err
DP Reserved

0123456789101112131415

Table A–2. PCI Status Register Bits

Bit Name Function

15 DP_err Detected parity error: Indicates that the adapter has detected a parity error. This bit is
set even if the parity error response bit is not set. This bit can only be set by the adapter,
and only cleared by the host’s writing a 1 to this bit position.

14 SS_err Signaled system error: When set, indicates ThunderLAN has asserted PSERR# due
to an adapter failure. This bit can only be set by the adapter and only be cleared by the
host’s writing a 1 to this bit position.

13 RM_ab Received master abort: When set, indicates ThunderLAN aborted a master cycle with
a master abort. This bit can only be set by the adapter and only be cleared by the host’s
writing a 1 to this bit position.

12 RT_ab Received target abort: When set, indicates a ThunderLAN master cycle was aborted
due to a target abort. This bit can only be set by the adapter, and only be cleared by
the host’s writing a 1 to this bit position.

11 Reserved

10–9 Devsel PDevSel timing: These bits indicate the PDEVSEL# timing supported by ThunderLAN.
These bits are hardwired to 01b, indicating medium speed (2 cycles) decoding of
PDEVSEL#.

8 DP_det Data parity detect: When set, indicates PPERR# is asserted for a cycle for which the
adapter was the bus master and the parity error response bit is set. (This bit is set if
the target signals PPERR# on an adapter master cycle.) This bit can only be set by the
adapter and can only be cleared by the host’s writing a 1 to this bit position.

7 FBB_cap Fast back-to-back capable: This bit is hardwired to a 1 to indicate that ThunderLAN can
receive fast back-to-back cycles to different agents.

6 – 0 Reserved Writes to these bits are ignored, bits are always read as zero.

 PCI Configuration Registers

A-7 Register Definitions

A.1.6 PCI Base Class Register (@ 0Bh)

This register is hardwired with the network controller code of 0x02h.

A.1.7 PCI Subclass Register (@ 0Ah)

This register holds the adapter PCI subclass. This register is loaded from an
external serial EEPROM on the falling edge of PCI reset, during autoconfi-
guration. Should autoconfiguration fail (bad checksum), then this register is
loaded with the other network controller code of 0x80h (there are no codes al-
located to multiprotocol adapters).

A.1.8 PCI Program Interface Register (@ 09h)

This register is hardwired to 0 (no defined interface).

A.1.9 PCI Revision Register (@ 08h)

This register holds the adapter’s revision. This register is loaded from an exter-
nal serial EEPROM on the falling edge of PCI reset, during autoconfiguration.
Should autoconfiguration fail (bad checksum), this register is loaded with
0x20h to indicate pattern generation 2.0 (PG 2.0) ThunderLAN.

A.1.10 PCI Cache Line Size Register (@ 0Ch)

This register informs the adapter of the memory system cache line size. This
is used to determine the type of memory command used by ThunderLAN in
PCI bus master reads.

� Memory read line is used for data reads of less than four cache lines.
� Memory read multiple is used for data reads of four or more cache lines.

A cache line size of 0 (default register state after reset) is interpreted as a
cache line size of 16 bytes. Cache line sizes must be powers of 2 (0, 1, 2, 4,
8, 6, 32, 64, 128); values that are not powers of 2 are rounded down to the near-
est power of 2. This register is loaded with 0 at reset.

A.1.11 PCI Latency Timer Register (@ 0Dh)

This register specifies in units of PCI bus clock cycles, the value of the adapter
latency timer. This register is loaded with 0 at reset.

A.1.12 PCI I/O Base Address Register (@ 10h)

16171819202122232425262728293031

I/O base address 16 MSBs

1000I/O base address 12 LSBs

0123456789101112131415

PCI Configuration Registers

A-8

This register holds the base address for ThunderLAN’s register set in I/O
space. Bit 0 of this register is hardwired to a 1 to indicate that this is a memory-
mapped base address. Bits 1 through 3 are hardwired to 0 to indicate that the
register set occupies four 32-bit words.

A.1.13 PCI Memory Base Address Register (@ 14h)

16171819202122232425262728293031
Memory Base Address 16 MSBs

000Memory Base Address 12 LSBs

0123456789101112131415

16171819202122232425262728293031

0000

0123456789101112131415

This register holds the base address for ThunderLAN’s register set in memory
space. Bit 0 of this register is hardwired to a 0 to indicate that this is a memory-
mapped base address. Bits 1 and 2 are hardwired to 0 to indicate that the regis-
ter set can be located anywhere in 32-bit address space. Bit 3 of this register
(prefetchable bit) is hardwired to a 0, indicating that prefetching is not allowed.

A.1.14 PCI BIOS ROM Base Address Register (@ 30h)

Reserved

16171819202122232425262728293031

BIOS ROM Base Address 16 MSBs

BRE

0123456789101112131415

This register holds the base address for ThunderLAN’s BIOS ROM in memory
space. Bit 0, BRE, is an enable bit for BIOS ROM accesses. When set to a 1,
BIOS ROM accesses are enabled; when set to a 0 they are disabled. (The
Mem_En in the PCI command register must also be set to allow BIOS ROM
accesses.)

A.1.15 PCI NVRAM Register (@ 34h)

This register allows configuration space access to the external EEPROM, in
addition to the normal DIO space access through the NetSio register. Control
of the EEPROM interface swaps between these two control registers on a
most-recently-written basis. Whenever the PCI NVRAM register is written to,
it takes control of the EEPROM interface pins. Whenever the DIO_DATA regis-
ter is written to, the NetSio register takes control of the EEPROM interface

 PCI Configuration Registers

A-9 Register Definitions

pins. On reset (software or hardware), control of the interface is given to the
PCI NVRAM register.

01234567

CLOCKCDIRReservedReservedDATADDIRReservedNVPR

Byte 0

Table A–3. PCI NVRAM Register Bits

Bit Name Function

7 NVPR Nonvolatile RAM present: When this bit is set to a 1, it indicates that an external
EEPROM is present. When set to a 0, no EEPROM is present.

6 Reserved This bit is always be read as 0. Writes to this bit are ignored.

5 DDIR Data direction: When set to a 1, the EDIO pin is driven with the value of the DATA bit.
When set to a 0, the value read from the DATA bit reflects the value on the EDIO pin.

4 DATA This bit is used to read or write the state of the EDIO pin. When DDIR is set to a 1, EDIO
is driven with the value in this bit. When DDIR is set to a 0, this bit reflects the value on
the EDIO pin.

3 Reserved This bit is always be read as 0. Writes to this bit are ignored.

2 Reserved This bit is always be read as 0. Writes to this bit are ignored.

1 CDIR Clock direction: When set to a 1, the EDCLK pin is driven with the value of the CLOCK
bit. When set to a 0, EDCLK pin is not driven† and the value read from the CLOCK bit
reflects the incoming value on the EDCLK pin.

0 CLOCK Clock bit: This bit is used to read or write the state of the EDCLK pin. When CDIR is set
to a 1, EDCLK is driven with the value in this bit. When CDIR is set to a 0, this bit reflects
the value on the EDCLK pin.

† The EDCLK pin is not driven when the PCI NVRAM register has control of the interface and the CDIR bit is 0 (default after PCI
reset).

A.1.16 PCI Interrupt Line Register (@ 3Ch)

This read/writable byte register is used by POST software to communicate in-
terrupt routing information. The contents of this byte have no direct effect on
the adapter operation.

A.1.17 PCI Interrupt Pin Register (@ 3Dh)

The interrupt pin register is a read-only byte register that indicates which PCI
interrupt pin the adapter uses. As the adapter is a single function device, it is
connected to PINTA#. Therefore, the register is hardwired with a value of 01h.

PCI Configuration Registers

A-10

A.1.18 PCI Min_Gnt (@ 3Eh) and Max_Lat (@ 3Fh) Registers

These byte registers are used to specify the adapter’s desired settings for la-
tency timers. For both registers, the value specifies a period of time in units of
250 ns (quarter microsecond).

These registers are loaded from an external serial EEPROM on the falling
edge of PCI reset, during autoconfiguration. Should autoconfiguration fail (bad
checksum), then these registers are loaded with the default values, which are
currently 0x00h.

The Min_Gnt register is used for specifying how long a burst period the device
needs (assuming a 33-MHz clock). The Max_Lat register is used for specifying
how often the device needs to gain access to the PCI bus.

A.1.19 PCI Reset Control Register (@ 40h)

This register is used to disable automatic software resets. The automatic soft-
ware reset feature is for machines that do not assert the PCI bus PRST# line
during soft (Ctrl-Alt-Del) resets, but still performs diagnostics on PCI bus de-
vices. The automatic software reset feature ensures the adapter is reset (and
therefore not performing PCI bus master operations) before diagnostics are
started.

Soft resets are detected as the deassertion of the BM_En, Mem_En, and
IO_En bits in the PCI command register. This differentiates soft resets from
bus master disables, which may take place in some systems.

When a soft reset is disabled and the host machine is rebooted, ThunderLAN
must be reconfigured without resetting the adapter.

01234567

SRDIS

Byte 0

Reserved (0)

Table A–4. PCI Reset Control Register Bits

Bit Name Function

7–1 Reserved These bits are always read as 0. Writes to these bits are ignored.

0 SRDIS Soft reset disable: This bit is used to disable automatic software adapter resets. When
this bit is set to a 1, an adapter software reset (equivalent to writing a 1 to the Ad_Rst
bit) takes place whenever the BM_En, Mem_En, and IO_En bits in the PCI command
register are 0. When SRDIS is set to a 1, 0s in these bits do not cause a software reset.

 PCI Configuration Registers

A-11 Register Definitions

A.1.20 CardBus CIS Pointer (@ 28h)

This register is used by those devices that want to share silicon between Card-
Bus and PCI. The field is used to point to the Card Information Structure (CIS)
for the CardBus card. On ThunderLAN this register is hardwired to a value of
10000107h which indicates that the CIS information is in expansion ROM at
image1 and offset 20.

For a detailed explanation of the CIS Pointer, refer to the 1995 PC Card Stan-
dard Electrical Specification. The subject is covered under the heading CIS
Pointer and describes the types of information provided and the organization
of this information.

0

Address Space Offset

123272831

ROM Image Address Space Indicator

CIS POINTER Layout

Adapter Host Registers

A-12

A.2 Adapter Host Registers

Host command registers contain bits which are toggled to tell the channel to
use receive or transmit FIFOs. ThunderLAN’s adapter host registers include
the adapter internal registers (see section A.3, Adapter Internal Registers).
The following subsections describe the functions of each host register accord-
ing to protocol.

Figure A–3. Host Interface Address Map

offset
Base address

+12

+8

+4

+0

DIO_DATA

DIO_ADRHOST_INT

CH_PARM

HOST_CMD

0151631

A.2.1 Host Command Register–HOST_CMD @ Base_Address + 0 (Host)

Ack CountReserved
on
Ints

off
Ints

Int
Req

Thr
Id

Tmr
Ld

Rst
Ad

00NesR/TEOCCh_SelAckStopGo

Byte 0Byte 1

Byte 2Byte 3

16171819202122232425262728293031

0123456789101112131415

Table A–5. Host_CMD Register Bits

Bit Name Function

31 Go Channel go: This command bit only affects the network channels.

if R/T = 0 (Tx GO):

Writing a 1 to this bit starts frame transmission on a stopped or inactive channel.
Ch_Parm contains the address of the first transmit list.

if R/T = 1 (Rx GO):

Writing a 1 to this bit starts frame reception on a stopped1 or inactive channel. Ch_Parm
contains the address of the first receive list.

Writing a 0 to this bit has no effect. This bit is always read as a 0.

1) Frame transmission and reception are always placed in the stopped (reset) state after reset. therefore, no
frames are received into the Rx FIFO and no statistics are logged until the receiver has been started with
a GO command.

 Adapter Host Registers

A-13 Register Definitions

Table A–5. Host_CMD Register Bits (Continued)

Bit FunctionName

30 Stop Channel stop: This command bit only affects the network channels.

if R/T = 0 (Tx Stop):

Writing a 1 to this bit stops frame transmission on all transmit channels immediately.
All transmit FIFO control logic and the network transmission state machines are placed
in a reset state as soon as any ongoing PCI bus transfers are complete (end of current
data fragment, list, or CSTAT DMA).

� The TXSTOP2 bit in the NetSts register is set to indicate that the transmitter has
been halted.

� If a STOP is requested during the completion of the DMA of a transmit frame, that
frame’s interrupts are posted as normal. If that frame was in the last list on the chan-
nel, then an EOC interrupt is posted as normal.

if R/T = 1 (Rx Stop):

Writing a 1 to this bit stops frame reception on the receive channels immediately. All
receive FIFO control logic and the network reception state machines are placed in a
reset state as soon as any ongoing PCI bus transfers are complete (end of current data
fragment, list, or CSTAT DMA).

� The RXSTOP3 bit in the NetSts register is set to indicate that the receiver has been
halted. While the receiver is stopped, no network Rx statistics are gathered, as the
Rx state machines are in reset.

� If a STOP is requested during the completion of the DMA of a transfer frame, that
frame’s interrupts are posted as normal. If that frame was in the last list on the chan-
nel, then an EOC interrupt is posted as normal.

Writing a 0 to this bit has no effect. This bit is always read as 0.

2) The TXSTOP bit is not set if both transmit channels are already idle. The transmitter will, however, be reset.
Because of this, the host must check for EOC or STOP interrupts, in case the transmitter EOCed just as the
STOP command was issued. This window is not desirable, and should be fixed on PG2.0

3) The RXSTOP bit is not set if the receive channel is already idle. The receive is, however, reset. Because
of this, the host must check for EOC or STOP interrupts, in case the receiver EOCed just as the STOP com-
mand was issued. This is not desirable and should be fixed at PG 2.0

Adapter Host Registers

A-14

Table A–5. Host_CMD Register Bits (Continued)

Bit FunctionName

29 Ack Interrupt acknowledge: Writing a 1 to this bit acknowledges the interrupt indicated by
the Nes, EOC, Ch_Sel, and R/T fields.

if Nes = 0, EOC = 1, and R/T = 1 (Status Ack):

Writing a 1 to this bit acknowledges and clears the status interrupt.

if Nes = 0, EOC = 0, and R/T = 1 (Statistics Ack):

Writing a 1 to this bit acknowledges and clears the statistics interrupt.

if Nes = 1, EOC = 1, and R/T = 0 (Tx EOC Ack):

Writing a 1 to this bit acknowledges and clears a Tx EOC interrupt for the channel indi-
cated in Ch_Sel.

if Nes = 1, EOC = 1, and R/T = 1 (Rx EOC Ack):

Writing a 1 to this bit acknowledges and clears a Rx EOC interrupt for the channel indi-
cated in Ch_Sel.

if Nes = 1, EOC = 0, and R/T = 0 (Tx EOF Ack):

Writing a 1 to this bit acknowledges and clears 1 or more Tx EOF interrupts for the chan-
nel indicated in Ch_Sel, as indicated in the Ack Count field. If an attempt is made to ac-
knowledge more EOFs than the adapter has outstanding, an AckErr adapter check is
raised.

if Nes = 1, EOC = 0, and R/T = 1 (Rx EOF Ack):

Writing a 1 to this bit acknowledges and clears 1 or more Rx EOF interrupts for the chan-
nel indicated in Ch_Sel, as indicated in the Ack Count field. If an attempt is made to ac-
knowledge more EOFs than the adapter has outstanding, an AckErr adapter check is
raised.

Because of the internal calculations required in Tx EOF and Rx EOF acknowledges,
the HOST_INT register is not updated immediately. A short delay (six PCI cycles) is re-
quired before reading HOST_INT for such acknowledges to take effect.

Writing a 0 to this bit has no effect. This bit is always read as 0.

28–21 Ch_Sel Channel select: This read/write field is used to select between channels on a multi-
channel adapter. This 8-bit field encodes the channel number (0 through 255). As this
adapter supports two channels, only the LSBs are implemented. All the MSBs (28
through 22) are hardwired to 0. This field is written in the same cycle as the command
bits and allows a command to be issued in a single write cycle.

 Adapter Host Registers

A-15 Register Definitions

Table A–5. Host_CMD Register Bits (Continued)

Bit FunctionName

20 EOC End of channel select: This read/write bit is used to select between the EOC, EOF, and
command bit operations. If this bit is set to a 1, then end of channel operations are se-
lected. If set to a 0, EOF operations are selected.

This bit is also used to select between status and statistics commands when the Nes
bit is set to a 0. When Nes is set to 0 and this bit is set to 1, status commands are se-
lected; otherwise statistics commands are selected.

This field is written in the same cycle as the command bits, and allows a command to
be issued in a single write cycle.

19 R/T Rx/Tx select: This read/write bit is used to select between receive and transmit com-
mand bit operations. If this bit is set to a 1, then receive command operations are se-
lected. if set to a 0, then transmit operations are selected.

This field is written to in the same cycle as the command bits, and allows a command
to be issued in a single write cycle.

18 Nes Not error/statistics: This read/write bit is used to select between status (error) /statistics
operations and channel operations. If this bit is set to a 0, then status/statistics opera-
tions are selected. If set to a 1, channel operations are selected. This field can be written
in the same cycle as the command bits, and allows a command to be issued in a single
write cycle.

17 0 This bit is always read as 0. Writes to this bit are ignored.

16 0 This bit is always read as 0. Writes to this bit are ignored.

15 Ad_Rst Adapter reset: Writing a 1 to this bit position causes the adapter to be reset. All channels
are cleared and initialized, the ThunderLAN controller is reset, and any network opera-
tions are terminated. The receiver and transmitter are placed in their stopped states.
The ThunderLAN controller’s own (sticky) reset bit is also set.

This bit is always read as a 0. There is no need to clear this bit.

If this bit is written as a 1 and and the Ints_on and Ints_off bits are also set to 1s, then
autoconfiguration of the configuration space registers from the configuration EEPROM
takes place.

Adapter Host Registers

A-16

Table A–5. Host_CMD Register Bits (Continued)

Bit FunctionName

14 Ld_Tmr Load interrupt timer4: Writing a 1 to this bit causes the interrupt holdoff timer to be loaded
from the Ack Count field. Ack Count indicates the time-out period in 4-µs units (based
on a 33-MHz PCI clock). The interrupt holdoff timer is used to pace interrupts to the host.
Host interrupts are disabled (PCI interrupt request line deasserted) for the time-out peri-
od of the timer after an Ack bit write. The timer is restarted on every Ack bit write.

13 Ld_Thr Load Tx interrupt threshold5: Writing a 1 to this bit causes selected transmit channel
interrupt threshold to be loaded from the Ack count field. For this operation to be valid
(take effect), the following parameters must be set: Nes = 0, EOC = 0, R/T = 0, and
Ch_Sel must indicate the selected transmit channel.

Set Ack count to indicate the Tx interrupt threshold in number of EOF interrupts. This
threshold determines the number of Tx EOF interrupts that must occur before a Tx EOF
interrupt is posted. If the threshold is set to 0, no Tx EOF interrupts are posted.

12 Req_Int Request host interrupt: Writing a 1 to this bit creates a dummy ThunderLAN interrupt.
Writing a 0 to this bit has no effect. This bit is always read as 0.

11 Ints_off Turn PCI interrupts off: Writing a 1 to this bit disables ThunderLAN interrupts to the host
(PINTA# will never be asserted). Writing a 0 to this bit has no effect. This bit is always
read as 0.

10 Ints_on Turn PCI interrupts on: Writing a 1 to this bit reenables ThunderLAN interrupts after an
Ints_off command bit write. Writing a 0 to this bit has no effect. This bit is always read
as 0.

9–8 0 These bits are reserved and are always written as 0s.

7–0 Ack count EOF acknowledge count: This field is primarily used to acknowledge Rx or Tx EOF in-
terrupts in conjunction with the Ack command bit. It is set with the number of frames
(lists) serviced by the host interrupt routine in response to the interrupt. The adapter
then uses this parameter to determine if the host has serviced all outstanding frame in-
terrupts, and therefore, whether to generate a further EOF interrupt.

This field is also used to pass interrupt threshold and timer values in conjunction with
the Ld_Tmr and Ld_Thr command bits.

4) The interrupt timer value may be reloaded at any time. If the timer had already timed out, it remains that way.
If it has not yet timed out, it does so when the new timer value is reached or surpassed.

5) The threshold value may be reloaded at any time. Increasing the threshold value causes a current interrupt
to be deasserted if the old threshold value has been reached and the new threshold hasn’t.

 Adapter Host Registers

A-17 Register Definitions

A.2.2 Channel Parameter Register–CH_PARM @ Base_Address + 4 (Host)

This is used to pass parameter information for HOST_CMD register com-
mands as follows:

� GO (Tx GO): Load CH_PARM with the address of the first transmit list be-
fore issuing the command. The list must be located on an 8-byte address
boundary (three LSBs must be 0).

� GO (Rx GO): Load CH_PARM with the address of the first receive list be-
fore issuing the command. The list must be located on an 8-byte address
boundary (three LSBs must be 0).

Load CH_PARM and write the GO bit with no intervening DIO accesses, as the
DIO_DATA and CH_PARM registers share a common holding register. Driver
writers must ensure that the code that loads CH_PARM and writes the GO bit
is noninterruptable. Otherwise, an intervening DIO could occur, corrupting the
list address and resulting in unpredictable operation.

When read, the LSB of the CH_PARM register indicates the operating mode
of the PCI output buffers (5 V or 3 V) for diagnostic purposes. A value of 1 indi-
cates 5-V operation, a value 0 indicates 3-V operation.

In an adapter check, CH_PARM contains the cause of the adapter check (refer
to Adapter Check Interrupt. Int_type = 110b and Int_Vec � 00h, subsection
4.4.8).

Adapter Host Registers

A-18

A.2.3 Host Interrupt Register–HOST_INT @ Base_Address + 10 (Host)

00Int TypeInt Vec000

0123456789101112131415

Table A–6. HOST_INT Register Bits

Bit Name Function

15–13 0 These bits are always read as 0s.

12–5 Int_Vec Interrupt vector: This field indicates the highest active interrupt flag for a particular inter-
rupt type. Its format depends on the value read in the Int_type bit. This field is read only.

4–2 Int_Type Interrupt type: This field indicates the type of interrupt, and therefore, the format of the
Int_Vec field. The three bits are coded as follows:

000: No interrupt (invalid code)

001: Tx EOF

010: Statistics overflow

011: Rx EOF

100: Dummy interrupt (created by Req_Int command bit)

101: Tx EOC

110: Adapter check/network status

If Int_Vec is 0, this is a network status interrupt.

If Int_Vec is not 0, this is an adapter-check interrupt.

111: Rx EOC

This field is read only, but writing a nonzero value to it causes the adapter PCI interrupt
to be disabled (deasserted) until after a 1 is written to the Ack command bit (in
HOST_CMD).

If this register is not written to, it maintains the highest priority interrupt that is available,
even if the driver is currently servicing a lower priority interrupt.

1 0 This bit is always read as 0.

0 0 This bit is always read as 0.

The HOST_ INT register indicates the reason for a ThunderLAN PCI interrupt.
The bit positions in this register are arranged so that its contents may be used
as a table offset in a jump table to allow a quick jump to the appropriate interrupt
service routine.

The 16 MSB positions in the HOST_CMD register have a one-for-one corre-
spondence with those in the HOST_INT register. The Int_Vec field corre-
sponds to the Ch_Sel field, and the Int_type field corresponds to the EOC, R/T,

 Adapter Host Registers

A-19 Register Definitions

and Nes bits. This allows the value read from the interrupt register to be written
to the HOST_CMD register to directly select the appropriate channel. If no in-
terrupts are active, the interrupt pacing timer is running, or the PCI interrupt
has been disabled (by writing a nonzero value to this register), the HOST_INT
register is read as all 0s. If this value (0) is written to HOST_CMD (with the Ack
bit set) no interrupts are acknowledged but the interrupt pacing timer is re-
started.

A.2.4 DIO Address Register–DIO_ADR @ Base_Address + 8 (Host)

ADR
INC

0123456789101112131415

ADR_SELRAM
ADR

Table A–7. DIO_ADR Register Bits

Bit Name Function

15 ADR_INC Address increment: When this bit is set to a 1, the DIO address in ADR_SEL autoincre-
ments by 4 on each DIO_DATA access. When this bit is set to 0, the DIO address is not
affected by accesses to DIO_DATA.

14 RAM_ADR RAM address select: When this bit is set to 1, DIO accesses are to the muxed SRAM.
If this bit is set to 0, DIO accesses are to internal ThunderLAN registers. The internal
muxed SRAM can only be accessed while the adapter is in reset (NRESET bit in the
NetCmd register is set to a 0). Accesses to the SRAM while the adapter is not in reset
are undefined; they are ignored and return unknown data.

13–0 ADR_SEL† This field contains the DIO address, the SRAM or the internal register address to be used
on subsequent accesses to the DIO_DATA register. If the ADR_INC bit is set, this field
autoincrements by 4 on accesses to the DIO_DATA register.

� For register accesses, the seven MSBs [13::7] of ADR_SEL are ignored. The seven
LSBs [6::0] indicate the byte address of the register, but the two LSBs are not used
since byte control is through the PCI bus byte enables.

� For RAM, accesses to the three MSBs [13::11] of ADR_SEL are ignored. The 11
LSBs [10::0] indicate the RAM row address [10::2] and RAM word address [1::0].

† This is a byte address.

RAM Addressing

The RAM is composed of 431, 68-bit words. Bits [10::2] of ADR_SEL indicate
the ROW address. Bits [1::0] are used to indicate which part of the 68-bit word
is to be accessed.

Adapter Host Registers

A-20

� If ADR_SEL[1::0] = 00, the 32 LSBs of the 68-bit word are accessed.

� If ADR_SEL[1::0] = 01, the middle 32 bits of the 68-bit word are accessed.

� If ADR_SEL[1::0] = 1X, the four MSBs of the 68-bit word are accessed (in
the four LSBs of DIO_DATA).

PCI bus-byte enables are honored in writes to the internal RAM; individual byte
writes are allowed. If autoincrement mode is enabled, only the row address in-
crements; the word address is not affected.

A.2.5 DIO Data Register–DIO_DATA @ Base_Address + 12 (Host)

The DIO_DATA register address allows indirect access to internal
ThunderLAN registers and SRAM. There is no actual DIO_DATA register; ac-
cesses to this address are mapped to an internal bus access at the address
specified in the DIO_ADR register.

The DIO_DATA location uses 32-bit PCI data transfers with full-byte control,
following the normal PCI Local Bus Specification conventions. ThunderLAN
uses the target-ready (PTRDY#) signal to insert PCI wait states and to ensure
correct data transfers.

Writes to this register cause control of the EEPROM interface pins to go to the
NetSio register. Control of the EEPROM interface swaps between the PCI
NVRAM register and the NetSio register on a most-recently-written basis.
Whenever the PCI NVRAM register is written to, it takes control of the
EEPROM interface pins. Whenever the DIO_DATA register is written to, the
NetSio register takes control of the EEPROM interface pins.

 Adapter Internal Registers

A-21 Register Definitions

A.3 Adapter Internal Registers

The adapter’s internal registers are indirectly accessible from the PCI bus
through the DIO_ADR and DIO_DATA registers. These are usually referred to
as DIO. ThunderLAN has an internal 32-bit bus that is used for DIO accesses
to the registers and the SRAM. PCI bus byte enables are maintained on this
internal bus, allowing arbitrary byte transfers.

DIO accesses are primarily used to initialize and control the ThunderLAN con-
troller. Normally, only ThunderLAN controller registers are accessible by DIO.
In adapter test mode (PCI configuration option), the SRAM, FIFO control regis-
ters, and some PCI controller registers are also accessible.

The content and meaning of some registers vary with the network protocol in
use. The following subsections describe the functions of each register accord-
ing to the protocol.

Adapter Internal Registers

A-22

Figure A–4. ADAPTER Internal Register Map

DIO Address

Byte 3 Byte 2 Byte 1 Byte 0

NetMask NetSts NetSio NetCmd 0x00

ManTest NetConfig 0x04

Default
device ID
MSbyte

Default
device ID
LSbyte

Default
vendor ID
MSbyte

Default
vendor ID

LSbyte

0x08

Default
Max_Lat

Default
Min_Gnt

Default
subclass

Default
revision reg

0x0C

Areg_0
(23 to 16)

Areg_0
(31 to 24)

Areg_0
(39 to 32)

Areg_0
(47 to 40)

0x10

Areg_1
(39 to 32)

Areg_1
(47 to 40)

Areg_0
(7 to 0)

Areg_0
(15 to 8)

0x14

Areg_1
(7 to 0)

Areg_1
(15 to 8)

Areg_1
(23 to 16)

Areg_1
(31 to 24)

0x18

Areg_2
(23 to 16)

Areg_2
(31 to 24)

Areg_2
(39 to 32)

Areg_2
(47 to 40)

0x1C

Areg_3
(39 to 32)

Areg_3
(47 to 40)

Areg_2
(7 to 0)

Areg_2
(15 to 8)

0x20

Areg_3
(7 to 0)

Areg_3
(15 to 8)

Areg_3
(23 to 16)

Areg_3
(31 to 24)

0x24

HASH2 0x28

HASH1 0x2C

Tx underrun Good Tx frames 0x30

Rx overrun Good Rx frames 0x34

Code error
frames

CRC error
frames

Deferred Tx
frames

0x38

Single collision Tx frame Multicollision Tx frames 0x3C

Acommit Carrier loss
errors

Late
collisions

Excessive
collisions

0x40

MaxRx BSIZEreg LEDreg 0x44

 Adapter Internal Registers

A-23 Register Definitions

A.3.1 Network Command Register–NetCmd @ 0x00 (DIO)

All bits in this register are set to 0 on an Ad_Rst or when PRST# is asserted.

01234567

TXPACETRFRAMDUPLEXNOBRXCAFCSFNWRAPNRESET

Byte 0

Table A–8. Network Command Register Bits

Bit Name Function

7 NRESET ThunderLAN controller not reset: This bit is set to a 1 or a 0 by DIO. This bit is set to a
0 (active) by an Ad_Rst or a PCI reset. When this bit is set to a 0, the ThunderLAN con-
troller is kept in a reset state. Network configuration in the NetConfig register can only
be altered while this bit is set to a 0.

6 NWRAP Not wrap: This bit determines the flow of data to and from the adapter. This bit is set to
a 0 (active) by an Ad_Rst or by a PCI reset. If this bit is set to a 0, data is internally
wrapped by the adapter and does not pass through the MII or internal PHY. If this bit is
set to 1, network Rx and Tx data pass the selected network PHY.

In internal wrap mode, the adapter media access control (MAC) logic is clocked by the
PCI bus clock. All network clocks are ignored, and all MII pins, except MDCLK/MDIO,
are placed in the high-impedance state.†

5 CSF Copy short frames/copy routed frames: The function of this bit depends on the MAC pro-
tocol in use:

� CSMA/CD mode: If this bit is set, the receiver does not discard frames that are
shorter than a slottime (64 bytes).

� Demand priority/token ring mode: This bit has no function.

4 CAF Copy all frames: When this bit is set to 1, the ThunderLAN controller receives frames
indiscriminantly, without regard to destination address. CAF does not copy error frames
unless the PEF bit in the NetConfig register is set.

3 NOBRX No broadcast Rx: When this bit is set to 1, the ThunderLAN controller does not receive
frames with broadcast addresses (such as 0xffff.ffff.ffff, the all nodes broadcast address;
or 0xC000.ffff.ffff, the token ring all nodes for this ring broadcast address). When this bit
is set to 0, broadcast frames are received by the adapter.

2 DUPLEX Full duplex: When this bit is set to 1‡, the ThunderLAN controller transmits and receives
frames simultaneously in full duplex. When this bit is set to 0, the ThunderLAN controller
transmits and receives frames in half duplex.

1 TRFRAM Token ring frame format: When this bit is set to 1, the ThunderLAN controller uses the
token ring frame format for all frames transmitted or received. When this bit is set to 0,
the ThunderLAN controller uses the Ethernet frame format for all frames transmitted or
received.

† Because this bit directly switches the network logic clocks, it should only be changed while NRESET is active.
‡ Collision statistics are disabled in full duplex.

Adapter Internal Registers

A-24

Table A–8. Network Command Register Bits (Continued)

Bit Name Function

0 TXPACE Transmit pacing (CSMA/CD): This bit allows pacing of transmitted CSMA/CD frames to
improve network utilization of network file servers. When this bit is set, the pacing algo-
rithm is enabled. When this bit is cleared, the pacing algorithm is disabled.

The pacing algorithm automatically delays new adapter frame transmissions in conten-
tion situations. If a transmitted frame either collides with another frame or has to defer
to another transmission, a pacing delay of four interframe gaps (4*96 bit-times) is in-
serted between new frame transmissions. This pacing delay continues to be inserted
until 31 sequential frames are transmitted without collision or deference.

A.3.2 Network Serial I/O Register–NetSio @ 0x00 (DIO)

This register shares control of the external EEPROM interface with the PCI
NVRAM register. Control of the EEPROM interface swaps between these two
control registers on a most-recently-written basis. Whenever the PCI NVRAM
register is written to, it takes control of the EEPROM interface pins. Whenever
the DIO_DATA register is written to, the NetSio register takes control of the
EEPROM interface pins. On reset (software or hardware), control of the inter-
face is given to the PCI NVRAM register. All bits in this register are set to 0 on
an Ad_Rst or when PRST# is asserted.

89101112131415

MDATAMTXENMCLKNMRSTEDATAETXENECLOKMINTEN

Byte 1

Table A–9. Network Serial I/O Register Bits

Bit Name Function

15 MINTEN MII Interrupt enable: When this bit is set to 1, the MIRQ interrupt bit is set if the MDIO
pin is asserted low.

14 ECLOK EEPROM SIO clock: This bit controls the state of the EDCLK pin. When this bit is set
to 1, EDCLK is asserted. When this bit is set to 0, EDCLK is deasserted.

This bit is also used to determine the state of the EEPROM interface. If the EEPROM
port is disabled, this bit is always read as 0, even if a value of 1 is written to the bit.
ThunderLAN detects that the EEPROM port is disabled by sensing the state of the
EDCLK pin during reset. If the EDCLK pin is read as 0 during reset (due to an external
pulldown resistor), then the EEPROM interface is disabled and no attempt is made to
read configuration information.

13 ETXEN EEPROM SIO transmit enable: This bit controls the direction of the EDIO pin. When this
bit is set to 1, EDIO is driven with the value in the EDATA bit. When this bit is set to 0,
the EDATA bit is loaded with the value on the EDIO pin.

 Adapter Internal Registers

A-25 Register Definitions

Table A–9. Network Serial I/O Register Bits (Continued)

Bit Name Function

12 EDATA EEPROM SIO data: This bit is used to read or write the state of the EDIO pin. When
ETXEN is set to 1, EDIO is driven with the value in this bit. When ETXEN is set to 0, this
bit is loaded with the value on the EDIO pin.

11 NMRST MII not reset: This bit can be set to 1 or 0 by the DIO. This bit is set to 0 (active) by an
Ad_Rst or a PCI reset. The state of this bit directly controls the state of the MRST# (MII
reset) pin. If this bit is set to 0, the MRST# pin is asserted. If this bit is set to 1, the MRST#
pin is deasserted. This bit is not self-clearing and must be manually deasserted. It can
be set low and then immediately set high. Note that since every PHY attached to the MII
may not have a reset pin, you need to both do NMRST and individually reset each PHY.

10 MCLK MII SIO clock: This bit controls the state of the MDCLK pin. When this bit is set to 1,
MDCLK is asserted. When this bit is set to 0, MDCLK is deasserted.

9 MTXEN MII SIO transmit enable: This bit controls the direction of the MDIO pin. When this bit is
set to 1, MDIO is driven with the value in the MDATA bit. When this bit is set to 0, the
MDATA bit is loaded with the value on the MDIO pin.

8 MDATA MII SIO data: This bit is used to read or write the state of the MDIO pin. When MTXEN
is set to 1, MDIO is driven with the value in this bit. When MTXEN is set to 0, this bit is
loaded with the value on the MDIO pin.

A.3.3 Network Status Register–NetSts @ 0x00 (DIO)

All bits in this register are set to 0 on an Ad_Rst or when PRST# is asserted.

1617181920212223

ReservedRXSTOPTXSTOPHBEATMIRQ

Byte 2

Table A–10. Network Status Register Bits

Bit Name Function

23 MIRQ MII interrupt request: This bit is set whenever ThunderLAN detects that the MDIO pin
is asserted low and the MINTEN bit in the NetSio register is set. Assertion low of the
MDIO line between MII control frames is an indication from the PMI/PHY of an error or
a line status change.

This bit is cleared by writing a 1 to its bit position. Writing a 0 has no effect.

22 HBEAT Heartbeat error: In CSMA/CD mode, a heartbeat interrupt is posted if MCOL is not as-
serted during the interframe gap following frame transmission. This bit is cleared by writ-
ing a 1 to its bit position. Writing a 0 has no effect.

21 TXSTOP Transmitter stopped: This bit indicates the completion of a transmit STOP command.

This bit is cleared by writing a 1 to its bit position. Writing a 0 has no effect.

Adapter Internal Registers

A-26

Table A–10. Network Status Register Bits (Continued)

Bit Name Function

20 RXSTOP Receiver stopped: This bit indicates the completion of a receive STOP command.

This bit is cleared by writing a 1 to its bit position. Writing a 0 has no effect.

19–16 Reserved

A.3.4 Network Status Mask Register–NetMask @ 0x00 (DIO)

This register determines whether network status flags in the NetSts register
cause interrupts or not. Each bit in this register acts as a mask on the corre-
sponding NetSts register bit. If the mask bit is set, then an interrupt is raised
if the corresponding status flag is set. All bits in this register are set to 0 on an
Ad_Rst or when PRST# is asserted.

2425262728293031

ReservedMASK4MASK5MASK6MASK7

Byte 3

Table A–11. Network Status Mask Register Bits

Bit Name Function

31 MASK7 MII interrupt mask: When this bit is set, a network status interrupt is posted if the MIRQ
bit in the NetSts register is set.

30 MASK6 Heartbeat error mask: When this bit is set, a network status interrupt is posted if the
HBEAT bit in the NetSts register is set.

29 MASK5 Transmit stop mask: When this bit is set, a network status interrupt is posted if the
TXSTOP bit in the NetSts register is set.

28 MASK4 Receive stop mask: When this bit is set, a network status interrupt is posted if the
RXSTOP bit in the NetSts register is set.

27–24 Reserved

 Adapter Internal Registers

A-27 Register Definitions

A.3.5 Network Configuration Register–NetConfig @ 0x04 (DIO)

This 16-bit register is used for ThunderLAN’s controller configuration. This
register is only writable while the ThunderLAN controller is in reset. (NRESET
= 0). All bits in this register are set to 0 on an Ad_Rst or when PRST# is as-
serted.

Byte 0Byte 1

MAC select
En

PHY
test
Man

chn
One

fragment
OnePEF

CRC
Rx

rate
BIT

test
Tclk

test
Rclk

0123456789101112131415

Table A–12. Network Configuration Register Bits

Bit Name Function

15 Rclk test Test MRCLK: This test/sense bit allows the host to verify the presence of a clock on the
MRCLK pin. This bit can only be written as a 1. Writing a 0 to this bit has no effect. This
bit is cleared to 0 by a rising edge on MRCLK. Host software verifies a minimum clock
frequency by setting this bit, waiting for the maximum clock period, and then verifying
the bit has been cleared.

14 Tclk test Test MTCLK: This test/sense bit allows the host to verify presence of a clock on the
MTCLK pin. This bit can only be written as a 1. Writing a 0 to this bit has no effect. This
bit is cleared to 0 by a rising edge on MTCLK. Host software verifies a minimum clock
frequency by setting this bit, waiting for the maximum clock period, and then verifying
the bit has been cleared.

13 BITrate Bit rate MII: When this bit is set to 1, ThunderLAN supports a bit-level (rather than nibble-
level) CSMA/CD MII. This mode is only valid for 10M-bps operation. The MII pins can
be tied to a standard Ethernet SNI that follows the NS8391 interface. In this mode, the
MII pins should be connected as follows:

� MRXD0 to RXD (receive data)

� MRCLK to RXC (receive clock)

� MCRS to CRS (carrier sense)

� MTCLK to TXC (transmit clock)

� MTXD0 to TXD (transmit data)

� MTXEN to TXE (transmit enable)

� MCOL to COL (collision detect)

� MTXD3, MTXD2, MTXD1, and MTXER are driven with values contained in the low
nibble (bits 0–3) of the Acommit register. These signals can be used to drive PHY
option pins, such as loopback or UTP/AUI select.

Adapter Internal Registers

A-28

Table A–12. Network Configuration Register Bits (Continued)

Bit Name Function

12 RxCRC Receive CRC: When this bit is set to 1, the ThunderLAN controller transfers frame CRC
to the host for received frames and includes it in the reported frame length. The value
in the MaxRx register must be large enough to accommodate the data field plus this
transferred CRC. Failure to do so may result in an Rx overrun

11 PEF Pass error frames: When this bit is set to 1 and the CAF bit is set in NetCmd (copy all
frames mode), frames that would otherwise be rejected by the adapter due to CRC,
alignment, or coding errors are passed to the host. Such frames have the Rx_Error bit
in the list receive CSTAT set to differentiate them from good frames. This mode does not
affect adapter frame statistics.

10 One
fragment

One fragment mode: When this bit is set to 1, the adapter only reads a single fragment
(data count/data address pair) on the receive channel (rather than ten). When this bit
is set to 0, the adapter reads and uses up to ten fragments.

If multifragment mode is selected and less than ten fragments are used, the host must
write a 0 to the data count field of the fragment immediately after the last fragment used.

Generally, receive frames are not fragmented because they must be examined by host
software first. One fragment mode can be used in such cases, where it improves adapt-
er performance by reducing the number of PCI cycles needed to read the receive list.

9 One chn One channel mode: When this bit is set to 1, the adapter only supports a single transmit
channel (rather than two). When this bit is set to 0, the adapter supports two transmit
channels.

The adapter has 3K bytes of FIFO RAM for frame buffering. In normal two-channel
mode, 1.5K is allocated to Rx (one Rx channel), and 1.5K to transmit (0.75K per Tx
channel). In one-channel mode, all 1.5K of Tx FIFO RAM is allocated to channel 0, the
only channel. In one-channel mode, the HOST_CMD bit operations on channel 1 are
ignored.

8 MTEST Manufacturing test: When this bit is set to 1, the adapter is placed into manufacturing
test mode. Manufacturing test mode is reserved for Texas Instruments manufacturing
test. Operation of the adapter with this bit set is undefined.

7 PHY_En On-chip PHY enable: This bit is used to enable/disable the adapter’s on-chip 10Base-T
PHY. When this bit is set to 0, the on-chip PHY is disabled and placed in a powered-down
state. When this bit is set to a 1, the on-chip PHY is enabled as a potential PHY on the
shared MII (it still needs to be selected/configured using MDCLK/MDIO).†

6–0 MAC select MAC protocol select: This field is used to select the network MAC protocol required. The
seven-bit code allows for 128 unique network configurations. This version of
ThunderLAN supports four protocol modes: CSMA/CD and three types of data stream
interfaces (supporting external demand priority and token ring implementations). Bits 6
through 2 are, therefore, hardwired to 0.

† If the on-chip PHY is selected as the active MII PHY, all MII pins except MDCLK and MDIO are disabled.

 Adapter Internal Registers

A-29 Register Definitions

Table A–13. MAC Protocol Selection Codes

Code MAC Protocol Selected

0xb0000000b CSMA/CD (802.3 -10/100M bps)

0b0000001b External protocol: Enhanced 802.3u interface for 802.12 – 100M bps

� 100VG-AnyLAN interface, with decreased priority determined by channel
� Tx start-up timing hardwired at 50 cycles

0xb0000010b External protocol: Enhanced 802.3u interface for 802.12 – 100M bps

� 100VG-AnyLAN interface, with DP priority determined by frame CSTAT
� Tx start-up timing hardwired at 50 cycles

0xb0000011b External protocol: Enhanced 802.3u interface for any network

� Priority determined by frame CSTAT
� Tx timing controlled by external device

0xb0000100b
 –
0xb1111111b

Reserved

A.3.6 Manufacturing Test Register–ManTest @ 0x04 (DIO)

This 16-bit register is used for manufacturing test. The options controlled by
this register only take effect while the MTEST bit in the NetConfig register is
set. The functions controlled by this register are for Texas Instruments
manufacturing test only.

A.3.7 Default PCI Parameter Registers–@ 0x08–0x0C (DIO)

These eight read-only bytes indicate the default contents of the autoloadable
PCI configuration registers. These default values are loaded into the respec-
tive PCI configuration registers if autoload fails (bad checksum).

Figure A–5. Default PCI Parameter Register

DIO Address Byte 3 Byte 2 Byte 1 Byte 0

0x08 Default
device ID

(0x50) MSbyte

Default
device ID

(0x00) LSbyte

Default
vendor ID

(0X10)MSbyte

Default
vendor ID

(0x4c) Msbyte

0x0C Default
Max_Lat
(0x00)

Default
Min_Gnt
(0x00)

Default
subclass
(0x08)

Default
revision�

(0x30)

† The value of the Default revision register has changed from 23h for PG2.3 to 30h for PG3.03.

Adapter Internal Registers

A-30

A.3.8 General Address Registers–Areg_0-3 @ 0x10–0x24 (DIO)

The four general-purpose address registers, Areg_0 through Areg_3, are
used to hold the adapter’s specific and group addresses. Each of the four reg-
isters can be used to hold any 48-bit IEEE 802 address (specific or group, local
or universal).

Each register holds a 48-bit address, and all four registers are directly
compared against the destination address field of incoming frames. If any of
the four address registers match the incoming address, the frame is copied.

Addresses should be written to the registers in the native data format of the
protocol in use; that is, in the same format in which the address field of the re-
ceived frame appears in memory. As an example, the group/specific bit of an
Ethernet-style frame appears in the Areg bit 40 (LSB of MSbyte). In contrast,
the same bit in a token ring style frame appears in bit 47 (MSB bit of
MSbyte).This is because the Ethernet frame format uses LSB first transmis-
sion while the token ring frame format uses MSB first (the specific/group bit is
always the first address bit on the wire).

The general address registers have an addressing lockout function that pre-
vents use of any register for address comparison while being written or when
it is uninitialized. Addressing lockout is enabled at NRESET or whenever the
first (Areg[47::40]) register byte is written and it is disabled whenever the last
(Areg[7::0]) register byte is written.

A.3.8.1 The All-Nodes Broadcast Address

In addition to the general address matching of specific or group addresses, the
adapter also responds to the all nodes broadcast address of
0xFFFF FFFF FFFF if the NOBRX (no broadcast Rx) bit in NetCmd is not set.

A.3.8.2 Token Ring Frame Format Addressing Extensions

There are a number of extensions to the basic 802 addressing that is used in
token ring networks. Token ring provides functional addresses as a subset of
the local-group addresses and an all nodes (this ring) broadcast address.

Functional addresses provide bit position-based addressing of common net-
work functions. Bit positions 30 through 0 of the incoming destination address
are compared with 31 functional address bits (stored in a register). If any in-
coming functional bit has its corresponding register bit set, the frame is copied
due to a functional address match. Functional addresses are identified from
normal local group addresses by having the MSB of the third address byte (the
group/functional bit) set to a 0.

The ThunderLAN adapter supports functional addressing, when token ring
frame format is selected over the demand priority access method. In this

 Adapter Internal Registers

A-31 Register Definitions

mode, functional addressing is supported through the general address regis-
ters. If any address register contains a functional address (group/specific = 1;
local/universal = 1; group/functional = 0), that register’s two MSbytes are
compared normally, but its 31 LSBs are compared on a functional bit-match
basis. Any of the registers can be used to hold functional addresses; all the
registers are identical.

In token ring frame format mode, the adapter responds to an additional broad-
cast address: The all-nodes (this ring) broadcast address of
0xC000 FFFF FFFF (but only if the NOBRX bit in the NetCmd register is not
set).

A.3.9 Hash Address Registers–HASH1/HASH2 @ 0x28–0x2C (DIO)

The hash registers allow group-addressed frames to be accepted on the basis
of a hash function of the address. The hash function calculates a six bit data
value from the 48-bit destination address, as follows:

Hash_fun(0) = DA(0) xor DA(6) xor DA(12) xor DA(18) xor
DA(24) xor DA(30) xor DA(36) xor DA(42);

Hash_fun(1) = DA(1) xor DA(7) xor DA(13) xor DA(19) xor
DA(25) xor DA(31) xor DA(37) xor DA(43);

Hash_fun(2) = DA(2) xor DA(8)m xor DA(14) xor DA(20) xor
DA(26) xor DA(32) xor DA(38) xor DA(44);

Hash_fun(3) = DA(3) xor DA(9) xor DA(15) xor DA(21) xor
DA(27) xor DA(33) xor DA(39) xor DA(45);

Hash_fun(4) = DA(4) xor DA(10) xor DA(16) xor DA(22)
xorm DA(28) xor DA(34) xor DA(40) xor DA(46);

Hash_fun(5) = DA(5) xor DA(11) xor DA(17) xor DA(23) xor
DA(29) xor DA(35) xor DA(41) xor DA(47);

These bits are used as an offset to a 64-bit table, which indicates whether to
copy a given frame or not. This table is stored in the two HASH registers, a bit
value of 1 indicating a frame should be matched, a bit value of 0 that it should
not.

HASH1 contains the 32 LSBs of the hash table with entries 0 through 31
mapped to the corresponding register bits, 0 through 31. HASH2 contains the
32 MSBs of the hash table with hash table entries 32 through 63 mapped to
register bits 0 through 31.

Adapter Internal Registers

A-32

A.3.10 Network Statistics Registers–@ 0x30–0x40 (DIO)

The network statistics registers gather frame error information. Registers vary
in size, depending on the frequency with which they increment, and may be
8, 16, or 24 bits wide. Reading a statistics register clears its contents after the
read. Byte reads to a multibyte register clear the contents of the bytes read
only. As long as such registers are read in natural order (LSbyte first), no statis-
tics will be lost, even when registers are read a byte at a time. Writing to a statis-
tics register has no effect.

The MSBs of all the error counters are ORed together to create the statistics
overflow interrupt vector (Int_type = 010) in the HOST_INT register. As more
than one counter may have overflowed, all statistics registers must be read
(cleared) on a statistics overflow interrupt.

Figure A–6. Ethernet Error Counters

DIO Address Byte 3 Byte 2 Byte 1 Byte 0

0x30 Tx underrun Good Tx frames

0x34 Rx overrun Good Rx frames

0x38 Code error
frames

CRC error
frames

Deferred Tx
frames

0x3C Single collision Tx frames Multicollision Tx frames

0x40 Carrier loss
errors

Late
collisions

Excessive
collisions

 Adapter Internal Registers

A-33 Register Definitions

Table A–14. Ethernet Error Counters

Counter Definition

Good Tx frames are without errors. This is a 24-bit counter. Good frames are transmitted more
frequently than errored frames.

Tx frames are aborted during transmission, due to frame data not being available (due to
host bus latencies). This is a byte-wide counter.

Good Rx frame underruns are received without errors. This is a 24-bit counter. Good frames are received
more frequently than errored frames.

Rx overrun frames are address-matched and could not be received due to inadequate resources
(Rx FIFO full) or because their frame size exceeded MaxRx. This is a byte-wide
counter.

Deferred Tx frames were deferred to prior network traffic on their initial attempt at transmission.
This is a 16-bit counter.

CRC error frames are received with CRC errors, but without alignment or coding errors. This is
a byte-wide counter.

Code error frames are received with alignment (not an even number of nibbles) or code errors
(MRXER signaled from PHY). This is a byte-wide counter.

Multicollision Tx frames have encountered 2 to 15 collisions before being transmitted on the network.
This is a 16-bit counter.

Single collision frames have encountered one collision before being transmitted on the network. This
is a 16-bit counter.

Excessive collisions have failed to gain access to the network in 16 attempts (frames that experi-
enced 16 collisions). This is a byte-wide counter.

Late collisions have been interrupted by a collision after the network slottime. This is a byte-
wide counter.

Carrier loss errors are sent by the adapter and for which a receive carrier was not detected after
a slottime from the start of transmission. The carrier must be present continu-
ously from this point until the end of transmission to prevent an error being
logged.† This is a byte-wide counter.

† Carrier loss errors are not logged in full-duplex mode.

Adapter Internal Registers

A-34

Figure A–7. Demand Priority Error Counters

DIO Address Byte 3 Byte 2 Byte 1 Byte 0

0x30 Rx overrun Good Rx frames

0x34 Tx underrun Good Tx frames

0x38 Code error
frames

CRC error
frames

Deferred Tx
frames

0x3C

0x40

Table A–15. Demand Priority Error Counters

Counter Definition

Good Tx frames are transmitted without errors. This is a 24-bit counter. Good frames are transmitted
more frequently than errored frames.

Tx underrun frames are aborted during transmission, due to frame data not being available (due to host
bus latencies). This is a byte-wide counter.

Good Rx frames are received without errors. This is a 24-bit counter. Good frames are received more
frequently than errored frames.

Rx overrun frames are address-matched and could not be received due to inadequate resources (Rx
FIFO full). This is a byte-wide counter.

CRC error frames are received with CRC errors, but without alignment or coding errors. This is a byte-
wide counter.

Code error frames are received with alignment (not an even number of nibbles) or code errors (MRXER
signaled from PMI). This is a byte-wide counter.

A.3.11 Adapter Commit Register–Acommit @ 0x40 (DIO) (Byte 3)

The adapter commit register indicates the PCI commit size of the adapter.

Byte 3 31 30 29 28 27 26 25 24

Tx commit level PHY options

 Adapter Internal Registers

A-35 Register Definitions

Table A–16. Adapter Commit Register Bits

Bit Name Function

31–28 Tx commit
level

Transmit commit level: This nibble code indicates the commit size in use by the adapter
transmitter. The code indicates the number of bytes that must be in a channel’s FIFO
before network transmission is started. At reset, the commit level is set to 0, giving mini-
mum latency. It is incremented every time a frame is aborted due to a FIFO underrun.
The adapter, therefore, automatically adapts itself to the latency available on the host
bus. Every increment in level corresponds to a doubling of latency size.

The commit levels are:

� 0: 64 bytes
� 1: 128 bytes
� 2: 256 bytes
� 3: 512 bytes
� 4: 1024 bytes
� 5–7: whole frame

When the transmit commit level is 3 or greater (512 bytes or more), transmission begins
if a FIFO deadlock condition occurs. If the transmitter is waiting for required data in the
FIFO and the next PCI data transfer is waiting for room to be freed up in the FIFO before
it starts, a deadlock situation exists and transmission never starts. The deadlock is bro-
ken by detecting this condition and allowing network transmission to proceed before the
full commit level is reached. This situation only occurs where large commit levels are
combined with large fragment, burst, and frame sizes.

27–24 PHY options When ThunderLAN is configured for a bit-rate CSMA/CD MII (BITrate option bit in the
NetConfig register), the contents of these bits are presented on the MTXD[3::1] and
MTXER pins to allow selection of PHY options. Pin mapping is as follows:

� Bit 27 – MTXD3 (full duplex disable)
� Bit 26 – MTXD2 (loopback enable)
� Bit 25 – MTXD1 (10Base-T (0) /AUI-ThinNet (1) select)
� Bit 24 – MTXER (reserved (0))

All bits in this register are set to 0 on an Ad_Rst or when PRST# is asserted.
The MSnibble of this register can be written to only when the adapter is in reset
(NRESET bit is set to 0).

A.3.12 LED Register–LEDreg @ 0x44 (DIO) (Byte 0)

This byte register contains the value that is driven on the EAD pins whenever
BIOS ROM accesses are not taking place (when EXLE, EALE and EOE# are
all inactive). Light emitting diodes (LEDs) connected to the EAD pins (directly
or buffered) can be controlled by software through this register. All bits in this
register are set to 0 on an Ad_Rst or when PRST# is asserted. The values that
are output on the EAD pins are the inverse of those which are written to LEDreg.

Adapter Internal Registers

A-36

A.3.13 Burst Size Register–BSIZEreg @ 0x44 (DIO) (Byte 1)

This register is used to set the receive and transmit burst sizes to be used by
the adapter. This register is only writable while the ThunderLAN controller is
in reset. (NRESET = 0). This register is set to 0x22 on an Ad_Rst or when
PRST# is asserted.

89101112131415

Rx Burst SizeTx Burst Size

Byte 1

Table A–17. Burst Size Register Bits

Bit Name Function

15–12 Tx burst size Transmit burst size: This nibble code indicates the burst size to be used in data transfers
for transmit operations (Tx list or data transfers). The code indicates the maximum num-
ber of bytes to be transferred in any one transmit DMA data burst. At reset, the burst
size is set to a default level of 64 bytes (code = 2).

The burst size codes are:

� 0: 16 bytes
� 1: 32 bytes
� 2: 64 bytes (default)
� 3: 128 bytes
� 4: 256 bytes
� 5–7: 512 bytes
� 8–F: reserved

11–8 Rx burst size Receive burst size: This nibble code indicates the burst size to be used in data transfers
for receive operations (Rx list or data transfers). The code indicates the maximum num-
ber of bytes to be transferred in any one receive DMA data burst. At reset, the burst size
is set to a default level of 64 bytes (code = 2).

The burst size codes are:

� 0: 16 bytes
� 1: 32 bytes
� 2: 64 bytes (default)
� 3: 128 bytes
� 4: 256 bytes
� 5–7: 512 bytes
� 8–F: reserved

 Adapter Internal Registers

A-37 Register Definitions

A.3.14 Maximum Rx Frame Size Register–MaxRx @ 0x44 (DIO) (Bytes 2+3)

Byte 3 Byte 2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Maximum Rx frame size (in units of 8 bits)

This register is used to set the maximum size of received network frames.
Frames larger than this size are not copied and are counted as Rx-overrun er-
ror frames. Setting this parameter prevents an oversize frame from overrun-
ning the buffer space allocated in its receive list and, thereby, causing an
adapter check.

If you chose to pass the four-byte CRC field along with your data by asserting
the RxCRC in the NetConfig register, MaxRx should be large enough to ac-
commodate this additional field. In this case, the CRC is treated exactly as the
data, and failure to accommodate this field could result in frames not being co-
pied and an Rx overrun.

The register holds the maximum frame size in bytes. The value in the register
indicates the maximum frame size that can be accommodated in the host buff-
ers. Frames larger than this value are discarded, except in PEF mode. A value
of 0 in this register (default) is equivalent to a maximum frame size of 64K by-
tes; the adapter attempts to receive all frames.

In pass-errored-frame mode, oversize frames are written to the host. The
frame size reported in the list CSTAT field is the size of the buffer, not the size
of the frame received. The last eight bytes written are corrupt and should be
ignored.

For example:

If a 133-byte frame is received in PEF mode with MaxRx set to 128, then:

� The CSTAT frame length indicates 128 bytes
� The first 120 bytes in the buffer contain the first 120 bytes of the frame
� The contents of the last eight bytes is not important

It should be noted that frames that exceed MaxRx are always counted as Rx
overrun errors, regardless of PEF mode.

Adapter Internal Registers

A-38

A.3.15 Interrupt Disable Register - INTDIS @ 0x48 (DIO) (BYTE 0)

This register is used to disable RX EOC, RX EOF and TX EOC interrupts. TX
EOF can be disabled by setting to Tx interrupt threshold value to a zero. This
register is only written to while the ThunderLAN Controller is reset. (NRE-
SET=0)

01234567

 Reserved TX EOC RX EOF RX EOC

Byte 0

Table A–18. Demand Priority Error Counters

Bit Name Function

7 – 3 Reserved

2 TX EOC� Disable Transmit End of Channel Select: When this bit is set to 1, all transmit channels
of TX EOC interrupts are disabled. Default value is 0.

1 RX EOF Disable Receive End of Frame Select: When this bit is set to 1, RX EOF interrupts are
disabled. Default value is 0.

0 RX EOC� Disable Receive End of Channel Select: When this bit is set to 1, the receive channel
of RX EOC interrupts are disabled. Default value is 0.

† Refer to Chapter 5 List Structures to determine how transmit and receive channels can be checked to insure they are disabled.

 10Base-T PHY Registers

A-39 Register Definitions

A.4 10Base-T PHY Registers

The 10Base-T PHY registers are indirectly accessible through the MII. This is
a low-speed serial interface which is supported on ThunderLAN through the
NetSio register in adapter DIO space. A host software program uses the
MCLK, MTXEN, and MDATA bits in this register to implement the MII serial pro-
tocol for the management interface.

The 802.3u MII serial protocol allows for up to 32 different PMDs, with up to
32 (16-bit wide) internal registers in each device. The 10Base-T PHY imple-
ments seven internal registers, three of which are hardwired. The diagram be-
low shows the devices register map. The registers shown in gray are the ge-
neric registers mandated by the MII specification. The registers shown in white
are TI-specific registers.

Figure A–8. 10Base-T PHY Registers

GEN_id_lo

GEN_id_hi

GEN_sts

GEN_ctl

Reserved

Reserved

Reserved

AN expansion

AN link-partner ability

AN advertisement

TLPHY_sts

TLPHY_ctl

TLPHY_id

ThunderLAN PHY status register

ThunderLAN PHY identifier

Register

ThunderLAN PHY control register

Reserved by 802.3

Autonegotiation expansion

Autonegotiation link-partner ability

Autonegotiation advertisement

PHY generic identifier (low)

PHY generic identifier (high)

PHY generic status register

PHY generic control register

0x12

0x11

0x10

0x0F

through

0x07

0x06

0x05

0x04

0x03

0x02

0x01

0x00

Description

10Base-T PHY Registers

A-40

A.4.1 PHY Generic Control Register–GEN_ctl @ 0x0

Byte 0Byte 1

ReservedCOL
TESTDUPLEXAUTO

RSRTISOLATEPDOWN0LOOPBKRESET

0123456789101112131415

AUTO
ENB

Table A–19. PHY Generic Control Register Bits

Bit Name Function

15 RESET PHY reset: Writing a 1 to this bit causes the PHY to be reset. This bit is self-clearing. The
bit returns a value of 1 when read until the internal reset is complete.

14 LOOPBK Loopback: This bit enables/disables internal loopback within the PHY device. When this
bit is set to a 1 (default), data is internally wrapped within the PHY and does not appear
on the network. When this bit is set to 0, data is transmitted to and received from the net-
work. While the PHY is in the loopback state, all network lines are placed in a nonconten-
tious state.

13 0 Speed selection bit: Not implemented

12 AUTOENB Autonegotiation enable: This bit enables/disables the autonegotiation process. If this bit
is clear, the link shall be configured via the DUPLEX bit and the PHY will implement the
standard 10Base-T link integrity test. The default value of this bit is enabled.

If this bit is set to one, the PHY engages in autonegotiation when a link-fail condition is
detected. The link will not be valid until the AUTOCMPLT bit is set to one. The PHY does
not automatically configure itself after autonegotiation has completed. Driver software
must determine from the contents of the AN_adv, AN_lpa, and AN_exp registers what
the correct setting for DUPLEX should be, or whether the link partner does not imple-
ment 10Base-T.

11 PDOWN Power-down: When this bit is set (default), the PHY is placed in a low-power consump-
tion state. The time required for the PHY to power up after this bit is cleared can vary
considerably, primarily based on whether a crystal or crystal oscillator is connected to
FXTL1/FXTL2 (around 50 ms for the former, and less than 2 ms for the latter). It is good
practice to set the RESET bit after this time to ensure the PHY is in a valid state (this is
not necessary when a crystal oscillator is used).

 10Base-T PHY Registers

A-41 Register Definitions

Table A–19. PHY Generic Control Register Bits (Continued)

Bit Name Function

10 ISOLATE Isolate: When this bit is set (default), the PHY electrically isolates its data paths from the
MII. In this state, it does not respond to the MTXD0–3, MTXEN, and MTXER pin inputs,
and presents a high impedance on its MTCLK, MRCLK, MRXDV, MRXER, MRXD0–3,
and MCOL pin outputs. It, however, still responds to management frames on the MDIO
and MDC pins. Due the the embedded nature of the PHY, the isolate function has no
visible effect on the MII pin interface.

9 AUTORSRT Restart autonegotiation: The autonegotiation process is restarted by setting this bit to
1. This bit is self-clearing, and the PHY returns a value of 1 in this bit until the autonegoti-
ation process is initiated.

8 DUPLEX Duplex mode: Setting this bit to a 1 configures the PHY for full-duplex 10Base-T opera-
tion, whereas setting this bit to 0 (default) configures the PHY for half-duplex operation.
In AUI mode, the PHY is capable of full-duplex operation. The mode is determined by
the external device to which the PHY is interfaced, rather than this bit (which has no ef-
fect on PHY operation).

7 COLTEST Collision test mode: Setting this bit to 1 causes the PHY to assert the collision sense sig-
nal MCOL whenever the transmit enable MTXEN pin is asserted.

6–0 Reserved Read as 0

10Base-T PHY Registers

A-42

A.4.2 PHY Generic Status Register–GEN_sts @ 0x1

1JABBERLINK1RFLTAUTOCOMPLT11000

Byte 0Byte 1

Reserved

0123456789101112131415

Table A–20. PHY Generic Status Register Bits

Bit Name Function

15 0 100Base-T4 capable: Not supported

14 0 100Base-Tx full-duplex capable: Not supported

13 0 100Base-Tx half-duplex capable: Not supported

12 1 10Base-T full-duplex capable: This bit is hardwired to 1 to indicate that 10Base-T full
duplex is supported.

11 1 10Base-T half-duplex capable: This bit is hardwired to 1 to indicate 10Base-T half du-
plex is supported.

10–6 Reserved Read as 0

5 AUTOCMPLT Autoconfiguration complete: When this bit is set, it indicates that the autonegotiation
process has finished or was not enabled. If autonegotiation is enabled, this bit also indi-
cates that the contents of registers AN_adv, AN_lpa and AN_exp are valid. This bit is
0 only during an actual negotiation process.

4 RFLT Remote fault: This bit mirrors the LPRFLT bit received in the most recent autonegotiation
link code word. When set to 1, this bit indicates that the link partner is in a fault condition.

3 1 Autonegotiation ability: The PHY supports autonegotiation.

2 LINK Link status: When this bit is read as 1, it indicates that the PHY has determined that a
valid 10Base-T link has been established. When read as 0, it indicates that the link is
not valid. A link invalid state is latched (held) until the register is read. This bit has no
meaning if the AUI interface is selected.

The PHY implements the standard 10Base-T link integrity test state machine. Link
pulses are expected to be seen every 8–24 ms to maintain a good link. If no link pulses
are seen for over 100 ms, the link-fail state is entered and this bit is cleared. If AUTOENB
is not set, the bit is set again after seven consecutive, correctly timed link pulses are re-
ceived. If AUTOENB is set, the link fail causes the autonegotiation process to restart.

 10Base-T PHY Registers

A-43 Register Definitions

Table A–20. PHY Generic Status Register Bits (Continued)

Bit Name Function

1 JABBER Jabber detect: When read as 1 this bit indicates a 10Base-T jabber condition has been
detected. A jabber condition is latched (held) until the register is read. This bit has no
meaning if the AUI interface is selected.

The jabber condition occurs when a single packet transmission exceeds 20 ms (this
cannot happen through normal TLAN operation). In the jabber condition, all transmit re-
quests are ignored and collision detection is disabled, as is the internal loopback of
transmit data (when in half-duplex mode). The jabber condition persists for 28–576 ms
after the deassertion of the MTXEN pin.

0 1 Extended capability: This bit is hardwired to 1 to indicate that the extended register set
is supported.

10Base-T PHY Registers

A-44

A.4.3 PHY Generic Identifier–GEN_id_hi/GEN_id_lo @ 0x2/0x3

Revision numberManufacturer’s model numberOUI cont.

Organizationally unique identifier (OUI)

Byte 0Byte 1

0123456789101112131415

These two hardwired 16-bit registers contain an identifier code for the TLAN
10Base-T PHY. GEN_id_hi contains 0x4000, GEN_id_lo contains 0x50xx,
where the xx denotes the revision.

The revision number value - xx has changed from 14 to 15 for the GEN_id_lo
register.

 10Base-T PHY Registers

A-45 Register Definitions

A.4.4 Autonegotiation Advertisement Register–AN_adv @ 0x4

Selector fieldTechnology ability fieldTLRFLTReserved0

Byte 0Byte 1

0123456789101112131415

Table A–21. Autonegotiation Advertisement Register Bits

Bit Name Function

15 0 Autonegotiation next page: Reception/ transmission of autonegotiation next pages is
optional and not supported by this PHY.

14 Reserved For internal use of the autonegotiation process.

13 TLRFLT TLAN remote fault: This bit enables TLAN to indicate a remote fault condition to the link
partner.

12–5 Technology
ability field

Autonegotiation advertised technology ability: This 8-bit value is sent to the link-partner
to indicate the abilities of the TLAN PHY. Unsupported abilities cannot be advertised,
which for this PHY means only two bits have meaning when set:

� Bit 6: PHY supports full-duplex 10Base-T
� Bit 5: PHY supports half-duplex 10Base-T
� Bits 12 through 7 are read only, and set to 0.

4–0 Selector field Autonegotiation selector field code: This field has a hardwired value of 0001, meaning
the PHY only supports 802.3 format link code words.

10Base-T PHY Registers

A-46

A.4.5 Autonegotiation Link Partner Ability Register–AN_lpa @ 0x5

selector field
Link partner

technology ability field
Link partnerLPRFLTReservedLPNXTPAGE

Byte 0Byte 1

0123456789101112131415

Table A–22. Autonegotiation Link Partner Ability Register Bits

Bit Name Function

15 LPNXTPAGE Link partner next page: When this bit, is set, the link partner indicates that it has another
page to send. Reception of autonegotiation next pages is optional and is not supported
by this PHY.

14 Reserved For internal use of the autonegotiation process

13 LPRFLT Link partner remote fault: When this bit is set to a 1, the link partner reports a remote
fault condition.

12–10 Reserved: For future IEEE-defined abilities

9 100Base-T4: Set to 1 if supported by the link partner

8 100Base-Tx full duplex: Set to 1 if supported by the link partner

7 100Base-Tx: Set to 1 if supported by the link partner

6 10Base-T full duplex: Set to 1 if supported by the link partner

5 10Base-T: Set to 1 if supported by the link partner

4–0 Link partner
selector field

This five-bit field encodes the format of this register. ThunderLAN only supports IEEE
802.3 format fields (as detailed in bits 12 through 5 above), code 00001. (The only other
currently specified value is 00010, for 802.9a multimedia frames).

 10Base-T PHY Registers

A-47 Register Definitions

A.4.6 Autonegotiation Expansion Register–AN_exp @ 0x6

LPANABLEPAGERX0LPNPABLEPARDETFLTReserved

Byte 0Byte 1

0123456789101112131415

Table A–23. Autonegotiation Expansion Register Bits

Bit Name Function

15–5 Reserved Read as 0

4 PARDETFLT Parallel detection fault: For multi-technology PHYs, this bit indicates multiple valid links.
This PHY only supports a single technology (10Base-T) and so this bit should be
ignored.

3 LPNPABLE Link partner next page able: When this bit is set to 1, the link partner indicates that it
implements autonegotiation next page abilities.

2 0 Next page able: ThunderLAN does not support next page transmission or reception.

1 PAGERX Page received: This bit is set after three identical and consecutive link code words have
been received from the link partner and the link partner has indicated that it has received
three identical and consecutive link code words from ThunderLAN. This bit is cleared
when read.

0 LPANABLE Link-Partner Autonegotiation Able: When this bit is set to a one, the PHY is receiving
autonegotiation fast link pulse bursts from the link partner. This bit is reset to zero if the
Link-Partner is not autonegotiation able.

10Base-T PHY Registers

A-48

A.4.7 ThunderLAN PHY Identifier High/Low–TLPHY_id @ 0x10

This hardwired 16-bit register contains a TI assigned identifier code for the
ThunderLAN PHY/PMIs. An additional identifier is required to identify
non-802.3 PHY/PMIs, which are not otherwise supported by the 802.3u MII
specification. The identifier code for the internal 10Base-T/AUI PHY is 0x0001.

 10Base-T PHY Registers

A-49 Register Definitions

A.4.8 ThunderLAN PHY Control Register–TLPHY_ctl @ 0x11

TINTINTENNFEWMTESTSQEENAUISELSWAPOLIGLINK Reserved

Byte 0Byte 1

0123456789101112131415

Table A–24. ThunderLAN PHY Control Register Bits

Bit Name Function

15 IGLINK Ignore link: When this bit is set to 0, the 10Base-T PHY expects to receive link pulses
from the link partner (hub, switch, etc.), and sets the LINK bit in the GEN_sts register
to 0 if they are not present. When this bit is set to 1, the internal link integrity test state
machine is forced to stay in the link-good state, even when no link pulses are received.
The LINK bit is set to 1.

14 SWAPOL Swap polarity: Writing a 1 to this bit causes the PHY to reverse the polarity of the
10Base-T receiver input pair. This is used to compensate for a cable in which the receive
pair has been incorrectly wired.

13 AUISEL AUI select: Writing a 1 to this bit causes the PHY to use the AUI network interface; writ-
ing 0 (default) causes the PHY to use the 10Base-T network interface. The transmitters
and receivers on the PHY are multiplexed between AUI and 10Base-T, so both cannot
operate simultaneously.

12 SQEEN SQE (signal quality error) enable: Writing a 1 to this bit causes the 10Base-T PHY to
perform the SQE test function at the end of packet transmission. The SQE function is
only performed in 10Base-T mode.

The SQE test provides an internal simulated collision to test the collision detect circuitry.
It asserts the MCOL bit between 600–1600 ns after the last positive edge of a frame
is transmitted, with the collision lasting between 500 and 1500 ns.

11 MTEST Manufacturing test: When this bit is set to a 1, the PHY is placed into manufacturing test
mode. Manufacturing test mode is reserved for Texas Instruments manufacturing test
only. Operation of the PHY and this register is undefined when this bit is set.

10–3 Reserved Read and write as 0

2 NFEW Not far end wrap: This bit only has meaning when the LOOPBK bit of the GEN_ctl is a
1. Writing a 1 to this bit causes the PHY to wrap the Tx data to the Rx data at the MII.
Writing a 0 to this bit causes the PMI to wrap the Tx data to the Rx data at the furthest
point possible. When NFEW is set to a 1, the preamble wraps without degradation; when
it is set to a 0, the PHY needs only to wrap back the start of frame delimiter (SFD).

10Base-T PHY Registers

A-50

Table A–24. ThunderLAN PHY Control Register Bits (Continued)

Bit Name Function

1 INTEN Interrupt enable: Writing a 1 to this bit allows the PHY to generate interrupts on the MII
if the MINT bit is set. Writing a 0 to this bit prevents the PHY from generating any MII
interrupts. This bit does not disable test interrupts.

0 TINT Test interrupt: Writing a 1 to this bit causes the PHY to generate an interrupt on the MII.
Writing a 0 to this bit causes the PHY to stop generating an interrupt on the MII. This
test function is totally independent of the INTEN and MINT bits. This bit is used for diag-
nostic testing of the MII interrupt function.

A.4.9 ThunderLAN PHY Status Register–TLPHY_sts @ 0x12

POLOKPHOKMINT Reserved

Byte 0Byte 1

0123456789101112131415

Table A–25. ThunderLAN PHY Status Register Bits

Bit Name Function

15 MINT MII interrupt: This bit indicates an MII interrupt condition. The MII interrupt request is
activated (and latched) until the register is read. Writing to this bit has no effect. This
bit is set to a 1 when:

� PHOK is set to 1

� LINK changes state or is different from either the last read value or the current
state of the link

� RFLT is set to 1

� JABBER is set to 1

� PLOK is set to 1

� PAGERX is set to 1

� AUTOCMPLT is set to 1

� TPENERGY is set to 1

14 PHOK Power high OK: This bit indicates that the internal crystal oscillator circuit has per-
formed 75 oscillations (cycles). PHY-sourced clocks (MRCLK and MTCLK) are not
valid until this bit is asserted. If a crystal is connected to FXTL1/FXTL2 rather than a
crystal oscillator, the clocks may take up to 50 ms to become stable and the PHY re-
quires the RESET bit be set to ensure it is in a valid state. When the state of this bit
changes, the PSTATE bit in the TLPHY_sts register is set.

 10Base-T PHY Registers

A-51 Register Definitions

Table A–25. ThunderLAN PHY Status Register Bits (Continued)

Bit Name Function

13 POLOK† Polarity OK: When this bit is high (default), the 10Base-T PHY receives valid (nonin-
verted) link pulses. If this bit goes low, it indicates that a sequence of seven consecutive
inverted link pulses has been detected.

12 TPENERGY Twisted-pair energy detect: This bit only has meaning in AUI mode. When set to a 1, it
indicates that the PHY receives of impulses on the FRCVP/FRCVN pins. Energy is de-
tected in the form of link pulses, the sense of which is determined by the POLREV bit.
Note that if the POLREV bit is set incorrectly, link pulses are not seen and this bit is not
set.†

11–0 Reserved Read as 0

† This function is provisional. It is possible for a link pulse with gross undershoot to appear as an inverted link pulse.

A-52

B-1

Appendix A

TNETE211 100VG-AnyLAN
Demand Priority Physical Media Independent

(PMI) Interface

This appendix contains register definitions for the TNETE211 100VG-AnyLAN
PMI interface. ThunderLAN uses these registers to store information on its in-
ternal status and its communication with the host. This appendix describes the
purpose and function of each register and provides many bitmaps and descrip-
tions of individual bits. The appendix also describes the sequence of steps
used for IEEE 802.12 100VG-AnyLAN training, which is used in opening
ThunderLAN to the network.

Topic Page

B.1 100VG-AnyLAN Training B-2.

B.2 TNETE211 Register Descriptions B-6.

Appendix B

100VG-AnyLAN Training

B-2

B.1 100VG-AnyLAN Training

The algorithm used to open ThunderLAN to the network depends on the net-
work protocol in use. The demand priority protocol specified in IEEE 802.12
goes through a training process to open onto the wire. To open the controller
the driver must:

� Enter VG training; the network protocol is demand priority.

� Issue a dummy interrupt by asserting Req_Int in the HOST_CMD register.
Wait one second for this interrupt to process. If the interrupt is handled,
then ThunderLAN is open on the wire. Otherwise, it is not.

Training between the client and hub is accomplished by exchanging 24 con-
secutive frames (training frames) between the client and hub. These 24
frames must be exchanged within a window consisting of 48 frames. If training
is not accomplished within this window, it can continue after a suitable delay
in another 48-frame window.

The following shows the format of an 802.12 training frame:

Figure B–1. 802.12 Training Frame Format

Data = null

Private protocol information

Allow config

Req config

Source address

Destination address = 0x000000000000h

bytes
539–620

55 bytes

2 bytes

2 bytes

6 bytes

6 bytes

 100VG-AnyLAN Training

B-3 TNETE211 100VG-AnyLAN Demand Priority Physical Media Independent (PMI) Interface

The following describes what the driver must do to successfully train:

1) Assert the INTEN bit in the TLPHY_ctl register to enable MII interrupts to
ThunderLAN from the voice grade (VG) PHY

2) Ensure that ThunderLAN is not in copy all frames mode, copy short frames
mode, or broadcast mode (CAF, CSF, and NOBRX bits in the NetCmd reg-
ister)

3) Disable the multicast addresses contained in the HASH registers

4) Set the general purpose address register AREG0 to 0x000000000000h
so that ThunderLAN may receive the training frames. Note that the training
frame contains a destination address of 0.

5) Determine if ThunderLAN is currently transmitting as it enters the training
procedure. If so, stop the transmitter.

a) If transmitting:

i) Set up a deadman timer before halting the transmitter (10 s)

ii) Assert the Tx STOP interrupt by asserting the MASK5 bit in the
NetMask register

iii) Issue a Tx STOP command by setting the STOP bit in the
HOST_CMD register with the appropriate channel set

iv) Exit the routine and the service interrupt when the transmitter
stops

b) If not transmitting, do not use STOP

6) At this point, use the following steps to build the training frame in a buffer:

� Read all the statistics registers to clear them

� Move the pointer to the training frame buffer

� Set the destination address to NULL as specified in 802.12

� Set the source address to your adapter’s source address

� Set the Req config field to the appropriate options

� Fill in the rest of the training frame (two bytes in the Allow config field +
675 bytes of data) with NULLs

� Setup the Tx list with the training buffer’s pointer and size in prepara-
tion for a Tx GO command

7) Request the beginning of the training period by clearing the TRFAIL bit and
asserting the TRIDL bit in the TLPHY_ctl register.

100VG-AnyLAN Training

B-4

8) The driver now waits for a status interrupt. The MASK7 bit in the NetMask
register must be set for the status interrupt to reach ThunderLAN.

9) When this interrupt arrives, perform frame exchange

Training involves the exchange of 24 consecutive training frames between the
client and the hub. The client begins by sending a training frame. The hub an-
swers with the same frame, except in the Allow config field. The client verifies
that the received frame is a valid training frame. This process continues until
24 successful consecutive frames are exchanged.

The 802.12 standard states that these 24 frames must be exchanged within
a training window of 48 frames. If this fails, training may or may not be possible
within this window. The client must ensure that there are enough frames left
in the window for successful training. If this is not possible, the client must re-
quest a new training window and try again. The process is shown below:

Figure B–2. Training Flowchart

Yes

No

No

YesNo

Yes

training
Restart

Training successfulTraining failed

?
window
training

24 more in
we send

Can

?
frames

consecutive
24

?
frame OK

Is

Receive frame

Send frame

To determine whether the training frame received from the hub is correct the
driver should:

� Check that the destination address is a null

� Check that the training frame has the adapter’s address for the source ad-
dress. This is not required, but is good practice.

� Check the first 55 bytes of the data field (optional private protocol informa-
tion area as defined in 802.12). They should be null.

 100VG-AnyLAN Training

B-5 TNETE211 100VG-AnyLAN Demand Priority Physical Media Independent (PMI) Interface

If the training frame passes these criteria, it is valid. The driver updates a
counter showing the number of consecutive valid training frames passed. The
driver also keeps a separate counter showing how many frames are left in the
training window.

If the training frame does not pass the criteria, it is invalid. The driver must use
the counter which shows how many frames are left in the training window, and
if it is equal to or greater than 24, it restarts the exchange of frames.

If the training window does not allow the exchange of 24 frames, the driver
must request a new training window. This can be accomplished by:

� Setting the TRFAIL bit and clearing the TRIDLE bit in the TLPHY_ctl register

� Waiting for a status interrupt. A deadman timer (10 s) may be necessary
to ensure that the driver does not sit indefinitely in this state

� Checking the RETRAIN bit in TLPHY_sts when status interrupt arrives

� Requesting the beginning of the training period by clearing the TRFAIL bit
and asserting the TRIDL bit in the TLPHY_ctl register

If the driver has successfully trained, the driver clears the TRIDLE bit in
TLPHY_ctl and exits the training routine. You must reinitialize the AREG0 reg-
ister to this adapter’s address, the HASH registers, and the CAF, CSF, and
NOBRX in the NetCmd register to their chosen values.

TNETE211 Register Descriptions

B-6

B.2 TNETE211 Register Descriptions

This document is a specification for ThunderLAN’s TNETE211 PMI device,
which interfaces the ThunderLAN MII and the PMD device. It is responsible
for converting the nibble stream of data from the MII to the four-pair category-3
cabling, and from the four-pair category-3 cabling to the MII.

The TNETE211 connects to ThunderLAN’s IEEE 802.3u-compliant MII and
converts the data and control signals into a fully compliant 802.12 MII for
100VG-AnyLAN operation. The TNETE211 is responsible for implementing
much of the 100VG’s functionality, including data channeling, ciphering/deci-
phering, and encoding/decoding. It also implements the 802.12 media access
controller (MAC) state machines.

The 100VG-AnyLAN demand priority PHY registers are indirectly accessible
through the MII management interface present in ThunderLAN. This is a low-
speed serial interface which is supported on ThunderLAN through the NetSio
register in adapter DIO space. A host software program uses the MCLK,
MTXEN, and MDATA bits in this register to implement the MII serial protocol
for the management interface.

The 802.3u MII serial protocol allows for up to 32 different PMDs, with up to
32 (16 bit wide) internal registers in each device. The 100VG-AnyLAN demand
priority PHY implements seven internal registers, three of which are hard-
wired. The diagram below shows the devices’ register map. The registers
shown in gray are the generic registers as mandated by 802.3u. The registers
shown in white are Texas Instruments specific registers. All other registers are
read as 0s.

 TNETE211 Register Descriptions

B-7 TNETE211 100VG-AnyLAN Demand Priority Physical Media Independent (PMI) Interface

Figure B–3. TNETE211 Registers

TLPHY_sts

TLPHY_ctl

TLPHY_id

GEN_id_lo

GEN_id_hi

GEN_sts

GEN_ctl

Reserved

Reserved

Reserved

AN reserved

AN far end ability

AN advertisement

Not implemented

Not implemented

ThunderLAN PHY status register

ThunderLAN PHY identifier

Register

ThunderLAN PHY control register

Reserved by 802.3

Not implemented

PHY generic identifier (low)

PHY generic identifier (high)

PHY generic status register

PHY generic control register

0x12

0x11

0x10

0x0F

through

0x07

0x06

0x05

0x04

0x03

0x02

0x01

0x00

Description

B.2.1 PHY Generic Control Register–GEN_ctl @ 0x0

Byte 0Byte 1

ReservedCOL
TESTISOLATEPDOWN0LOOPBKRESET

0123456789101112131415

0 0 0

Table B–1. PHY Generic Control Register Bits

Bit Name Function

15 RESET PHY reset: Writing a 1 to this bit causes the PHY and its internal registers to reset. This
bit is self-clearing; the bit returns a value of 1 when read until the internal reset is com-
plete. This bit also serves to reset the 802.12 MAC state machine to MAC0.

14 LOOPBK Loopback: This bit enables/disables internal loopback within the PHY device. When this
bit is set to 1 (default), data is internally wrapped within the PHY and does not appear on
the network. When this bit is set to 0, data is transmitted to and received from the network.

While the PHY is in the loopback state, all network lines are placed in a noncontentious
state. This bit also resets the 802.12 MAC state machine to MAC0.

13 0 Speed selection bit: Not implemented

12 0 Autoconfiguration enable: Not implemented

TNETE211 Register Descriptions

B-8

Table B–1. PHY Generic Control Register Bits (Continued)

Bit Name Function

11 PDOWN Power down: When this bit is set (default), the PHY is placed in a low-power consump-
tion state. This bit resets the 802.12 MAC state machine to MAC0. It stops the Tx and
Rx functions and disables the oscillator by deasserting POSCEN†. In power-down
mode, PDOWN is the only bit that can be written to.

10 ISOLATE Isolate: When this bit is set (default), the PHY electrically isolates its data paths from the
MII. In this state it does not respond to MTKD[3::0], MTXEN, and MTXER inputs, and
presents a high impedance on its MTCLK, MRCLK, MRXDV, MRXER, MRXD0–3, and
MCOL outputs. It will, however, still respond to management frames on MDIO and
MDCLK.

9 0 Autoconfiguration enable: Not implemented

8 0 Duplex mode: VG currently does not support a full-duplex mode

7 COLTEST Collision test mode: Setting this bit to 1 causes the PHY to assert the collision sense
signal MCOL whenever transmit enable (MTXEN) is asserted.

6–0 Reserved Read as 0

† Oscillator enable from the TNETE211

B.2.2 PHY Generic Status Register –GEN_sts @ 0x1

1JABBERLINK0RFLT00000

Byte 0Byte 1

Reserved

0123456789101112131415

0

Table B–2. PHY Generic Status Register Bits

Bit Name Function

15 0 100Base-T4 capable: Not supported

14 0 100Base-Tx full-duplex capable: Not supported

13 0 100Base-Tx half-duplex capable: Not supported

12 0 10Base-T full-duplex capable: Not supported

11 0 10Base-T half-duplex capable: Not supported

10–6 Reserved Read as 0

5 0 Autoconfiguration complete: Not implemented

 TNETE211 Register Descriptions

B-9 TNETE211 100VG-AnyLAN Demand Priority Physical Media Independent (PMI) Interface

Table B–2. PHY Generic Status Register Bits (Continued)

Bit Name Function

4 RFLT Remote fault: When this bit is set, it indicates that a remote fault condition has been
detected. This bit is autoclearing, and a remote fault condition is latched (held) until
the register is read.

3 0 Autoconfiguration capable: Not supported

2 LINK Link status: When this bit is read as 1, it indicates that the PHY has determined that
a valid link has been established. When read as 0, it indicates that the link is not valid.
This bit is autoclearing, and a link invalid state is latched (even if the link returns) until
the register is read. This is to ensure that the driver can determine the type of MII inter-
rupt.

1 JABBER Jabber detect: When read as 1, this bit indicates a jabber condition has been detected.
This bit is autoclearing, and a jabber condition is latched (held) until the register is read.

0 1 Extended capability: This bit is hardwired to 1 to indicate that the extended register set
is supported.

B.2.3 PHY Generic Identifier–GEN_id_hi/GEN_id_lo @ 0x2/0x3

These two hardwired 16-bit registers contain an identifier code for the
ThunderLAN 100VG-AnyLAN demand priority PHY. The actual value is
0x4000/ 0x502x for this PMI device, where x denotes the PHY revision.

B.2.4 ThunderLAN PHY Identifier High/Low–TLPHY_id @ 0x10

This hardwired 16-bit register contains a Texas Instruments-assigned identifi-
er code for the ThunderLAN PHY/PMIs. An additional identifier is required to
identify non-802.3 PHY/PMIs, which are not otherwise supported by the
802.3u MII specification. The value for the 100VG-AnyLAN demand priority is
0x0002.

B.2.5 ThunderLAN PHY Control Register–TLPHY_ctl @ 0x11

TINTINTENNFEWNPMDWTRIDLETRFAILPRLSRENPTLSWENMCRSIGLINK

Byte 0Byte 1

Reserved

0123456789101112131415

TNETE211 Register Descriptions

B-10

Table B–3. ThunderLAN PHY Control Register Bits

Bit Name Function

15 IGLINK Ignore link: When this bit is set to 0, the 100VG-AnyLAN Demand Priority PHY expects
to receive link pulses from the hub, and sets the LINK bit in the GEN_sts register to
0 if they are not present. When this bit is set to 1, link pulses are ignored and the LINK
bit is always set to 1.

14 MCRS MCRS output value: The MCRS pin of the PMI is deasserted when the transmit/
receive medium is idle. Once the transmit/receive medium is nonidle, the pin is as-
serted.

13 PTLSWEN PMD TLS write control value: The PTLSWEN pin of the PMI is used to control the PMD
TLS write control. It should be set to 0 for all normal operations.

12 PRLSREN PMD RLS read control value: The PRLSREN pin of the PMI is used to control the PMD
RLS read control. It should be set to 0 for all normal operations.

11–6 Reserved Read as 0s

5 TRFAIL Training fail indicator: Writing a 1 to this bit causes the PMI to restart training when the
next window is reached. This bit forces the PMI to interrupt the driver with a retrain
event when retraining occurs.

4 TRIDLE Training idle request: Writing a 1 to this bit causes the PMI to indicate training idle to
the PMD whenever there is no transmit request pending. Writing a 0 to this bit causes
the PMI to send idle up whenever there is no transmit request pending.

3 NPMDW Not physical media dependant wrap: This bit only has meaning when the LOOPBK bit
of the GEN_ctl is a 1. Writing a 1 to this bit causes the PMI to wrap the Tx data to the
Rx data at the far side of the PMI. Writing a 0 to this bit causes the PMI to wrap the
Tx data to the Rx data in the analog device attached to the PMI.

2 NFEW Not far end wrap: This bit only has meaning when the LOOPBK bit of the GEN_ctl is
a 1. Writing a 1 to this bit causes the PMI to wrap the Tx data to the Rx data at the MII
interface. Writing a 0 to this bit causes the PMI to wrap the Tx data to the Rx data based
on the value of the NPMDW bit.

1 INTEN Interrupt enable: Writing a 1 to this bit causes the PMI to generate interrupts to the MII
if any one of the event conditions occur. Writing a 0 to this bit causes the PMI to not
generate an MII interrupt even though an event condition has occurred.

0 TINT Test interrupt: Writing a 1 to this bit causes the PMI to generate an interrupt to the MII.
Writing a 0 to this bit causes the PMI to not generate an MII interrupt. This bit is used
to test the interrupts from the PHY prior to requiring them.

 TNETE211 Register Descriptions

B-11 TNETE211 100VG-AnyLAN Demand Priority Physical Media Independent (PMI) Interface

B.2.6 ThunderLAN PHY Status Register–TLPHY_sts @ 0x12

LSILLRCVRTRIDLTRFRTOLSTATERETRAIN000PHOKMINT

Byte 0Byte 1

CONFIG

0123456789101112131415

Table B–4. ThunderLAN PHY Status Register Bits

Bit Name Function

15 MINT MII interrupt: This bit indicates an MII interrupt condition. The MII interrupt request is
activated whenever this bit is set to 1. The bit may be cleared and the interrupt deas-
serted by writing a 1 to this bit position. Writing a 0 to this bit has no effect.

This bit is set to 1 when:

� The state of the PHOK, LINK, JABBER, RETRAIN TRFRTO, RTRIDL, or LSIL
changes

� RFLT is set to 1

The condition for the interrupt can be determined by examining these bits. In the case
of LINK, which could change before the interrupt type can be determined,
ThunderLAN keeps this bit as 0 until it is read, even if the link is restored. This is to
ensure that the condition change is not lost.

14 PHOK Power high OK: This bit is reserved for future use.

13–12 Reserved Read as 0s

11–8 CONFIG Configuration bits: These bits indicate the type of PMD attached to the PMI device.

7 Reserved Read as 0

6 RETRAIN Retrain link: This bit, when set, indicates that the link must be retrained. It is set if the
link has been silent too long, bad RLS codes have been detected, training idles have
been received from the hub, or Rx or Tx jabber has been detected. If the INTEN bit is
also set, this causes an MII interrupt.

5–4 LSTATE Link state: This field returns the PMD current link state bits. It is used for informational
purposes only.

� 00: Link is silent
� 01: Data on link
� 10: Control on link
� 11: Bad RLS code on link

TNETE211 Register Descriptions

B-12

Table B–4. ThunderLAN PHY Status Register Bits (Continued)

Bit Name Function

3 TRFRTO Training frame time out: This bit indicates that the PMI is in training, the training frame
has not been received in 273 µs, and that another training frame should be sent. If the
INTEN bit is also set, this causes an MII interrupt.

2 RTRIDL Receive training idles: This bit indicates that the the PMI is receiving training idles from
the repeater, indicating that the station should enter training. This bit is autoclearing,
and is latched until read. If the INTEN bit is also set, this causes an MII interrupt.

1 LRCV Long receive: This bit indicates that the PMI has detected a long receive (receive jab-
ber) condition from the PMA. This bit is autoclearing, and is latched until read. If the
INTEN bit is also set, this causes an MII interrupt.

0 LSIL Long silence: This bit indicates that the PMI has detected a long silence condition from
the PMA. This bit is autoclearing and is latched until read. If the INTEN bit is also set,
this causes an MII interrupt.

C-1

Appendix A

TNETE100PM/TNETE110PM

For information on the TNETE100PM and TNETE110PM implementations of
ThunderLAN, please contact TLANHOT@micro.ti.com, which is listed on
page v of this document.

Appendix C

C-2

