

NI-VXI™

User Manual

July 1996 Edition
Part Number 371702A-01

© Copyright 1996 National Instruments Corporation.
All Rights Reserved.

Internet Support
GPIB: gpib.support@natinst.com

DAQ: daq.support@natinst.com

VXI: vxi.support@natinst.com

LabVIEW: lv.support@natinst.com

LabWindows: lw.support@natinst.com

HiQ: hiq.support@natinst.com

VISA: visa.support@natinst.com

Lookout: lookout.support@natinst.com

E-mail: info@natinst.com

FTP Site: ftp.natinst.com

Web Address: http://www.natinst.com

Bulletin Board Support
BBS United States: (512) 794-5422 or (800) 327-3077
BBS United Kingdom: 01635 551422
BBS France: 1 48 65 15 59

FaxBack Support
(512) 418-1111

Telephone Support (U.S.)
Tel: (512) 795-8248
Fax: (512) 794-5678

International Offices
Australia 03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 90 527 2321, France 1 48 14 24 24, Germany 089 741 31 30,
Hong Kong 2645 3186, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456,
Mexico 95 800 010 0793, Netherlands 0348 433466, Norway 32 84 84 00,
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70,
Switzerland 056 200 51 51, Taiwan 02 377 1200, U.K. 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by
receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not
execute programming instructions if National Instruments receives notice of such defects during the warranty period.
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of
the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of
returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages
arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR
IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR
NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT
THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the
liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues.
National Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The
warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to
follow the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other
events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without
the prior written consent of National Instruments Corporation.

Trademarks
LabVIEW®, NI-488.2™, NI-VISA™, NI-VXI ™, and VXIpc™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving medical or
clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part of the user
or application designer. Any use or application of National Instruments products for or involving medical or clinical
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should always
continue to be used when National Instruments products are being used. National Instruments products are NOT intended
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard human health
and safety in medical or clinical treatment.

© National Instruments Corporation v NI-VXI User Manual

Table
of
Contents

About This Manual
 Organization of This Manual...xiii
 Conventions Used in This Manual ..xiv
 Related Documentation ...xv
 Customer Communication...xv

Chapter 1
Overview of NI-VXI

 VXIbus Overview..1-1
 VXI Devices..1-1

 Register-Based Devices ...1-2
 Message-Based Devices ..1-3
 Word Serial Protocol ...1-3
 Commander/Servant Hierarchies...1-4
 Interrupts and Asynchronous Events...1-4
 MXIbus Overview ...1-5
 MXI-2 Overview ...1-5

Chapter 2
 Introduction to the NI-VXI Functions

 Function Groups ..2-1
 VXI/VME Function Groups..2-1
 VXI-Only Function Groups ..2-3

 Calling Syntax ...2-3
 LabWindows/CVI..2-4

 Type Definitions..2-4
 Input Versus Output Parameters..2-4
 Return Values and System Errors ...2-5

Table of Contents

NI-VXI User Manual vi © National Instruments Corporation

 Multiple Mainframe Support ...2-5
 Controllers...2-5
 The extender and controller Parameters..2-7

 Using NI-VXI..2-9
 Header Files...2-9

 The datasize.h File ..2-9
 The busacc.h File ..2-10
 The devinfo.h File...2-10

 The Beginning and End of an NI-VXI Program ...2-10
 System Configuration Tools..2-11
 Word Serial Communication...2-13
 Master Memory Access...2-14
 Slave Memory Access...2-16

 Interrupts and Signals ...2-17
 Triggers ...2-19

Chapter 3
Software Overview

 System Configuration Functions ...3-1
 CloseVXIlibrary ..3-2
 CreateDevInfo ...3-2
 FindDevLA ...3-2
 GetDevInfo..3-3
 GetDevInfoLong ...3-3
 GetDevInfoShort ...3-3
 GetDevInfoStr ...3-3
 InitVXIlibrary ...3-4
 SetDevInfo ..3-4
 SetDevInfoLong..3-4
 SetDevInfoShort..3-5
 SetDevInfoStr..3-5

 Commander Word Serial Protocol Functions..3-5
 Programming Considerations..3-7
 Interrupt Service Routine Support...3-7
 Single-Tasking Operating System Support ...3-8
 Cooperative Multitasking Support ..3-8
 Multitasking Support...3-8
 WSabort...3-10
 WSclr...3-10
 WScmd..3-10
 WSEcmd ...3-11
 WSgetTmo ..3-11

Table of Contents

© National Instruments Corporation vii NI-VXI User Manual

 WSLcmd ...3-11
 WSLresp..3-11
 WSrd ...3-12
 WSrdf ..3-12
 WSresp ..3-12
 WSsetTmo...3-13
 WStrg ..3-13
 WSwrt ...3-13
 WSwrtf ..3-14

 Servant Word Serial Protocol Functions ...3-14
 Programming Considerations..3-15
 DefaultWSScmdHandler ...3-17
 DefaultWSSEcmdHandler...3-17
 DefaultWSSLcmdHandler...3-17
 DefaultWSSrdHandler...3-18
 DefaultWSSwrtHandler...3-18
 GenProtError ...3-18
 GetWSScmdHandler ...3-18
 GetWSSEcmdHandler...3-19
 GetWSSLcmdHandler...3-19
 GetWSSrdHandler...3-19
 GetWSSwrtHandler...3-19
 RespProtError..3-19
 SetWSScmdHandler..3-19
 SetWSSEcmdHandler ...3-20
 SetWSSLcmdHandler ...3-20
 SetWSSrdHandler ...3-20
 SetWSSwrtHandler ...3-20
 WSSabort ..3-21
 WSSdisable ...3-21
 WSSenable ..3-21
 WSSLnoResp ..3-21
 WSSLsendResp...3-21
 WSSnoResp...3-22
 WSSrd ...3-22
 WSSsendResp ...3-22
 WSSwrt ...3-22

 High-Level VXI/VMEbus Access Functions ..3-23
 Programming Considerations..3-23
 VXIin...3-24
 VXIinReg ..3-24
 VXImove...3-24

Table of Contents

NI-VXI User Manual viii © National Instruments Corporation

 VXIout...3-25
 VXIoutReg ..3-25

 Low-Level VXI/VMEbus Access Functions...3-26
 Programming Considerations..3-27
 Multiple-Pointer Access for a Window...3-28

 Owner Privilege ..3-28
 Access-Only Privilege...3-29

 GetByteOrder ..3-30
 GetContext ..3-30
 GetPrivilege...3-30
 GetVXIbusStatus...3-30
 GetVXIbusStatusInd ...3-31
 GetWindowRange ...3-31
 MapVXIAddress ...3-31
 MapVXIAddressSize...3-32
 SetByteOrder...3-32
 SetContext ...3-32
 SetPrivilege ...3-33
 UnMapVXIAddress ..3-33
 VXIpeek ..3-33
 VXIpoke..3-33

 Local Resource Access Functions ...3-34
 GetMyLA ..3-34
 ReadMODID ...3-34
 SetMODID ..3-34
 VXIinLR ...3-35
 VXImemAlloc...3-35
 VXImemCopy ...3-35
 VXImemFree...3-35
 VXIoutLR ...3-36

 VXI Signal Functions ..3-36
 Programming Considerations..3-38
 WaitForSignal Considerations...3-39
 DefaultSignalHandler..3-40
 DisableSignalInt ..3-40
 EnableSignalInt ...3-40
 GetSignalHandler ..3-41
 RouteSignal ...3-41
 SetSignalHandler...3-41
 SignalDeq..3-42
 SignalEnq ..3-42
 SignalJam ..3-42
 WaitForSignal ...3-42

Table of Contents

© National Instruments Corporation ix NI-VXI User Manual

 VXI Interrupt Functions ..3-43
 Programming Considerations..3-45
 ROAK Versus RORA VXI/VME Interrupters ..3-46
 AcknowledgeVXIint ...3-46
 AssertVXIint ...3-47
 DeAssertVXIint...3-47
 DefaultVXIintHandler...3-47
 DisableVXIint ...3-48
 DisableVXItoSignalInt..3-48
 EnableVXIint ..3-48
 EnableVXItoSignalInt ...3-49
 GetVXIintHandler...3-49
 RouteVXIint ..3-49
 SetVXIintHandler..3-50
 VXIintAcknowledgeMode ..3-50

 VXI Trigger Functions ..3-51
 Capabilities of the National Instruments Triggering Hardware3-52

 External Controller/VXI-MXI-1 Trigger Capabilities3-53
 Embedded, External MXI-2, and Remote Controller Trigger
Capabilities ..3-54

 Acceptor Trigger Functions...3-54
 AcknowledgeTrig..3-55
 DefaultTrigHandler ...3-55
 DefaultTrigHandler2 ...3-55
 DisableTrigSense ..3-55
 EnableTrigSense..3-55
 GetTrigHandler ...3-56
 SetTrigHandler ..3-56
 WaitForTrig...3-56

 Map Trigger Functions ..3-56
 MapTrigToTrig ...3-56
 UnMapTrigToTrig ..3-57

 Source Trigger Functions ..3-57
 SrcTrig...3-57

 Trigger Configuration Functions ...3-58
 TrigAssertConfig...3-58
 TrigCntrConfig..3-58
 TrigExtConfig ...3-58
 TrigTickConfig ...3-59

 System Interrupt Handler Functions..3-59
 AssertSysreset ...3-60
 DefaultACfailHandler ...3-60
 DefaultBusErrorHandler ...3-60

Table of Contents

NI-VXI User Manual x © National Instruments Corporation

 DefaultSoftResetHandler...3-61
 DefaultSysfailHandler ...3-61
 DefaultSysresetHandler...3-62
 DisableACfail..3-62
 DisableSoftReset ...3-62
 DisableSysfail..3-62
 DisableSysreset ...3-63
 EnableACfail ...3-63
 EnableSoftReset ..3-63
 EnableSysfail...3-63
 EnableSysreset ..3-64
 GetACfailHandler ...3-64
 GetBusErrorHandler..3-64
 GetSoftResetHandler...3-65
 GetSysfailHandler ...3-65
 GetSysresetHandler ...3-65
 SetACfailHandler ..3-65
 SetBusErrorHandler ..3-65
 SetSoftResetHandler ...3-66
 SetSysfailHandler..3-66
 SetSysresetHandler..3-66

 VXI/VMEbus Extender Functions ..3-67
 MapECLtrig ..3-67
 MapTTLtrig...3-67
 MapUtilBus ...3-68
 MapVXIint ..3-68

Appendix A
Function Classification Reference

Appendix B
Customer Communication

Glossary

Index

Table of Contents

© National Instruments Corporation xi NI-VXI User Manual

Figures
Figure 1-1. VXI Configuration Registers ..1-2
Figure 1-2. VXI Software Protocols ..1-3

Figure 2-1. An Embedded Controller Connected to Other Frames via
Mainframe Extenders Using MXI-2 ...2-6

Figure 2-2. An External Controller Connected Using MXI-2 to a Number of
Remote Controllers ...2-7

Figure 3-1. Preemptive Word Serial Mutual Exclusion (Per Logical Address).......3-9
Figure 3-2. NI-VXI Servant Word Serial Model ...3-16
Figure 3-3. NI-VXI Interrupt and Signal Model..3-39
Figure 3-4. NI-VXI Interrupt and Signal Model..3-45

Tables
Table A-1. Function Listing by Group..A-1
Table A-2. Function Listing by Name...A-8

© National Instruments Corporation xiii NI-VXI User Manual

About
This
Manual

This manual describes in detail the features of the NI-VXI software and
the VXI/VME function calls in the C/C++ and BASIC languages.

 Organization of This Manual
The NI-VXI User Manual for C/C++ and BASIC is organized as
follows:

• Chapter 1, Overview of NI-VXI, introduces you to the concepts of
VXI (VME eXtensions for Instrumentation), VME, MXI
(Multisystem eXtension Interface), and their relationship to the
NI-VXI application programmer’s interface (API).

• Chapter 2, Introduction to the NI-VXI Functions, introduces you to
the NI-VXI functions and their capabilities. Additional discussion
is provided for each function’s parameters and includes descriptions
of the application development environment. This chapter
concludes with an overview on using the NI-VXI application
programming interface.

• Chapter 3, Software Overview, describes the C/C++ and BASIC
usage of VXI and VME functions and briefly describes each
function. Functions are listed alphabetically in each functional
group.

• Appendix A, Function Classification Reference, contains two tables
you can use as a quick reference. Table A-1, Function Listing by
Group, lists the NI-VXI functions by their group association. This
arrangement can help you determine easily which functions are
available within each group. Table A-2, Function Listing by Name,
lists each function alphabetically. You can refer to this table if you
don't remember the group association of a particular function. Both
tables use checkmarks to denote whether a VXI function also
applies to VME and also whether it is associated with C/C++ and/or
BASIC.

About This Manual

NI-VXI User Manual xiv © National Instruments Corporation

• Appendix B, Customer Communication, contains forms you can use
to request help from National Instruments or to comment on our
manuals.

• The Glossary contains an alphabetical list and description of terms
used in this manual, including abbreviations, acronyms, and metric
prefixes.

• The Index contains an alphabetical list of key terms and topics used
in this manual, including the page where each one can be found.

 Conventions Used in This Manual
The following conventions are used in this manual:

bold Bold text denotes parameters, menus, menu items, dialog box buttons
or options, or error messages.

bold italic Bold italic text denotes a note, caution, or warning.

bold Bold text in this font denotes the messages and responses that the
monospace computer automatically prints to the screen. This font also emphasizes

lines of example code that are different from the other examples.

italic Italic text denotes emphasis, a cross reference, or an introduction to a
key concept.

monospace Text in this font denotes the names of all VXI function calls, source
code, sections of code, function syntax, console responses, variable
names, and syntax examples.

In this manual numbers are decimal unless noted as follows:

• Binary numbers are indicated by a -b suffix (for example,
11010101b).

• Octal numbers are indicated by an -o suffix (for example, 325o).

• Hexadecimal numbers are indicated by an -h suffix (for example,
D5h).

• ASCII character and string values are indicated by double quotation
marks (for example, "This is a string").

• Long values are indicated by an -L suffix (for example, 0x1111L).

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and
terms are listed in the Glossary.

About This Manual

© National Instruments Corporation xv NI-VXI User Manual

 Related Documentation
The following documents contain information that you may find
helpful as you read this manual:

• IEEE Standard for a Versatile Backplane Bus: VMEbus,
ANSI/IEEE Standard 1014-1987

• Multisystem Extension Interface Bus Specification, Version 2.0

• VXI-1, VXIbus System Specification, Revision 1.4, VXIbus
Consortium

• VXI-6, VXIbus Mainframe Extender Specification, Revision 1.0,
VXIbus Consortium

 Customer Communication
National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with
our products, and we want to help if you have problems with them. To
make it easy for you to contact us, this manual contains comment and
configuration forms for you to complete. These forms are in
Appendix B, Customer Communication, at the end of this manual.

© National Instruments Corporation 1-1 NI-VXI User Manual

Overview of NI-VXI

Chapter

1
This chapter introduces you to the concepts of VXI (VME eXtensions
for Instrumentation), VME, MXI (Multisystem eXtension Interface),
and their relationship to the NI-VXI application programmer’s
interface (API).

Comprehensive functions for programming the VXIbus/VMEbus are
included with the NI-VXI software. They are available for a variety of
controller platforms and operating systems. Among the compatible
platforms are the National Instruments line of embedded controllers
and external computers that have a MXIbus interface.

Note: The following chapter discusses features unique to VXI as well as
common VXI/VME features. VME users can skip to the section entitled
Interrupts and Asynchronous Events.

 VXIbus Overview
Concepts of the VXIbus specification include the VXI device,
message-based devices, the World Serial Protocol, the
Commander/Servant hierarchy, and hardware interrupts and
asynchronous events.

 VXI Devices
A VXI device has a unique logical address, which serves as a means of
referencing the device in the VXI system. This logical address is
analogous to a GPIB device address. VXI uses an 8-bit logical address,
allowing for up to 256 VXI devices in a VXI system.

Each VXI device must have a specific set of registers, called
configuration registers (Figure 1-1) .These registers are located in the
upper 16 KB of the 64 KB A16 VME address space. The logical
address of a VXI device determines the location of the device’s
configuration registers in the 16 KB area reserved by VXI.

Chapter 1 Overview of NI-VXI

NI-VXI User Manual 1-2 © National Instruments Corporation

Reserved

Reserved
Reserved

Reserved

Data Low

Data High

Response/Data
Extended

Protocol/Signal

Offset
Status/Control

Device Type

ID Register

VXI Configuration
Space

Offset

3F

20

IE

1C

1A

18

0E

0C

0A

08

06

04
02

00

• Upper 16 KB of A16
 space reserved for
 VXI configuration space

• 64 bytes per device

• 8-bit logical
 address specifies
 base address for
 each device

• 256 devices per
 VXI system

Device
Dependent
Registers

Reserved
by VXIbus
Specification

A32 Pointer Low
A32 Pointer High

A24 Pointer Low

A32 Pointer High

16

14

12

10

Shared Memory
Protocol
Registers

Communication
Registers
Required for VXI
Message-Based
Devices

Configuration
Registers
Required for all
VXI Devices

Figure 1-1. VXI Configuration Registers

 Register-Based Devices
Through the use of the VXI configuration registers, which are required
for all VXI devices, the system can identify each VXI device, its type,
model and manufacturer, address space, and memory requirements.
VXIbus devices with only this minimum level of capability are called
register-based devices. With this common set of configuration
registers, the centralized Resource Manager (RM), a software module,
can perform automatic system configuration when the system is
initialized.

Chapter 1 Overview of NI-VXI

© National Instruments Corporation 1-3 NI-VXI User Manual

 Message-Based Devices
In addition to register-based devices, the VXIbus specification also
defines message-based devices, which are required to have
communication registers in addition to configuration registers. All
message-based VXIbus devices, regardless of the manufacturer, can
communicate at a minimum level using the VXI-specified Word Serial
Protocol. In addition, you can establish higher-performance
communication channels, such as shared-memory channels, to take
advantage of the VXIbus bandwidth capabilities.

Device-
Specific

Protocols

Device-
Specific

Protocols

Shared-
Memory
Protocol

488-VXIbus
Protocol

Device-
Specific

Protocols

488.2
Syntax

Word Serial Protocol

Communication Registers

Configuration Registers

Device-
Specific

Protocols

Figure 1-2. VXI Software Protocols

 Word Serial Protocol
The VXIbus Word Serial Protocol is a standardized message-passing
protocol. This protocol is functionally very similar to the IEEE 488
protocol, which transfers data messages to and from devices one byte
(or word) at a time. Thus, VXI message-based devices communicate in

Chapter 1 Overview of NI-VXI

NI-VXI User Manual 1-4 © National Instruments Corporation

a fashion very similar to IEEE 488 instruments. In general,
message-based devices typically contain some level of local
intelligence that uses or requires a high level of communication. In
addition, the Word Serial Protocol has messages for configuring
message-based devices and system resources.

All VXI message-based devices are required to use the Word Serial
Protocol and communicate in a standard way. The protocol is called
word serial, because if you want to communicate with a message-based
device, you do so by writing and reading 16-bit words one at a time to
and from the Data In (write Data Low) and Data Out (read Data Low)
hardware registers located on the device itself. Word serial
communication is paced by bits in the device’s response register that
indicate whether the Data In register is empty and whether the Data
Out register is full. This operation is very similar to the operation of a
Universal Asynchronous Receiver Transmitter (UART) on a serial port.

 Commander/Servant Hierarchies
The VXIbus specification defines a Commander/Servant
communication protocol you can use to construct hierarchical systems
using conceptual layers of VXI devices. The resulting structure is like a
tree. A Commander is any device in the hierarchy with one or more
associated lower-level devices, or Servants. A Servant is any device in
the subtree of a Commander. A device can be both a Commander and a
Servant in a multiple-level hierarchy.

A Commander has exclusive control of its immediate Servants’ (one or
more) communication and configuration registers. Any VXI module
has one and only one Commander. Commanders use the Word Serial
Protocol to communicate with Servants through the Servants’
communication registers. Servants communicate with their
Commander, responding to the Word Serial commands and queries
from their Commander. Servants can also communicate asynchronous
status and events to their Commander through hardware interrupts, or
by writing specific messages directly to their Commander’s Signal
register.

 Interrupts and Asynchronous Events
Servants can communicate asynchronous status and events to their
Commander through hardware interrupts or by writing specific
messages (signals) directly to their Commander’s hardware Signal

Chapter 1 Overview of NI-VXI

© National Instruments Corporation 1-5 NI-VXI User Manual

register. Devices that do not have bus master capability always transmit
such information via interrupts, whereas devices that do have bus
master capability can either use interrupts or send signals. Some
devices can receive only signals, some only interrupts, while some
others can receive both signals and interrupts.

The VXIbus specification defines Word Serial commands so that a
Commander can understand the capabilities of its Servants and
configure them to generate interrupts or signals in a particular way. For
example, a Commander can instruct its Servants to use a particular
interrupt line, to send signals rather than generate interrupts, or
configure the reporting of only certain status or error conditions.

Although the Word Serial Protocol is reserved for Commander/Servant
communications, you can establish peer-to-peer communication
between two VXI/VME devices through a specified shared-memory
protocol or simply by writing specific messages directly to the device’s
Signal register, in addition to the VXI/VME interrupt lines.

 MXIbus Overview
The MXIbus is a high-performance communication link that
interconnects devices with a cabled communication link for very
high-speed communication between physically separate devices. The
emergence of the VXIbus inspired MXI. National Instruments, a
member of the VXIbus Consortium and the VITA organization,
recognized that VXI requires a new generation of connectivity for the
instrumentation systems. Additionally, National Instruments realized
that the same technology could be used also for the VMEbus, which is
the foundation technology under VXI. National Instruments developed
the MXIbus specification over a period of two years and announced it
in April 1989 as an open industry standard.

 MXI-2 Overview
MXI-2 is the second generation of the National Instruments MXIbus
product line. The MXIbus is a general-purpose, 32-bit, multimaster
system bus on a cable. MXI-2 expands the number of signals on a
standard MXI cable by including VXI triggers, all VXI/VME
interrupts, CLK10, and all of the utility bus signals (SYSFAIL*,
SYSRESET*, and ACFAIL*).

Chapter 1 Overview of NI-VXI

NI-VXI User Manual 1-6 © National Instruments Corporation

Because MXI-2 incorporates all of these new signals into a single
connector, the triggers, interrupts, and utility signals can be extended
not only to other mainframes but also to the local CPU in all MXI-2
products using a single cable. Thus, MXI-2 lets CPU interface boards
such as the PCI-MXI-2 perform as though they were plugged directly
into the VXI/VME backplane.

In addition, MXI-2 boosts data throughput performance past
previous-generation MXIbus products by defining new
high-performance protocols. MXI-2 is a superset of MXI. However,
MXI-2 defines synchronous MXI block data transfers which surpass
previous block data throughput benchmarks. The new synchronous
MXI block protocol increases MXI-2 throughput to a maximum of
33 MB/s between two MXI-2 devices. All National Instruments MXI-2
boards are capable of initiating and responding to synchronous MXI
block cycles.

© National Instruments Corporation 2-1 NI-VXI User Manual

Introduction to the
NI-VXI Functions

Chapter

2
This chapter introduces you to the NI-VXI functions and their
capabilities. Additional discussion is provided for each function’s
parameters and includes descriptions of the application development
environment. This chapter concludes with an overview on using the
NI-VXI application programming interface.

The NI-VXI functions are a set of C/C++ and BASIC language
functions you can use to perform operations with a VXI/VME system.
The NI-VXI C/C++ language interface is consistent across hardware
platforms and operating systems.

 Function Groups
The NI-VXI functions are divided into several groups. All of them
apply to VXI, but some groups are not applicable to VME.

 VXI/VME Function Groups
The following NI-VXI function groups apply to both VXI and VME.

• System Configuration Functions—The system configuration
functions provide functionality to initialize the NI-VXI software. In
addition, the system configuration functions can retrieve or modify
information about devices in your VXI/VME system.

• High-Level VXIbus Access Functions—Similar to the low-level
VXI/VMEbus access functions, the high-level VXI/VMEbus access
functions give you direct access to the VXI/VMEbus address
spaces. You can use these functions to read, write, and move blocks
of data between any of the VXI/VMEbus address spaces. You can
specify the main VXI/VMEbus privilege mode or byte order. The
functions trap and report bus errors. When the execution speed is
not a critical issue, the high-level VXI/VMEbus access functions
provide an easy-to-use interface.

Chapter 2 Introduction to the NI-VXI Functions

NI-VXI User Manual 2-2 © National Instruments Corporation

• Low-Level VXIbus Access Functions—Low-level VXI/VMEbus
access functions are the fastest access method for directly reading
from or writing to any of the VXI/VMEbus address spaces. You
can use these functions to obtain a pointer that is directly mapped to
a particular VXI/VMEbus address. Then you use the pointer with
the low-level VXI/VMEbus access functions to read from or write
to the VXI/VMEbus address space. When using these functions in
your application, you need to consider certain programming
constraints and error conditions such as bus errors (BERR*).

• Local Resource Access Functions—Local resource access functions
let you access miscellaneous local resources such as the local CPU
VXI register set, Slot 0 MODID operations (when the local device
is configured for Slot 0 operation), and the local CPU VXI Shared
RAM. These functions are useful for shared memory type
communication, for the non-Resource Manager operation (when the
local CPU is not the Resource Manager), and for debugging
purposes.

• VXI Signal Functions—VXI signals are a method for VXI bus
masters to interrupt another device. You can route VXI signals to a
handler or queue them on a global signal queue. You can use these
functions to specify the signal routing, install handlers, manipulate
the global signal queue, and wait for a particular signal value (or set
of values) to be received.

Note: Although signals are defined in the VXI specification, VME customers
may still use the signal register available on any VXI/VME/MXI
hardware. This register provides a simple notification mechanism that can
be used by any bus-master.

• VXI/VME Interrupt Functions—By default, interrupts are processed
as VXI signals (either with a handler or by queuing on the global
signal queue). The VXI/VME interrupt functions can specify the
processing method and install interrupt service routines. In addition,
the VXI/VME interrupt functions can assert specified VXI/VME
interrupt lines with a specified status/ID value.

• System Interrupt Handler Functions—The system interrupt handler
functions let you install handlers for the various system interrupt
conditions. These conditions include Sysfail, ACfail, bus error, and
soft reset interrupts.

• VXI/VMEbus Extender Functions—The VXI/VMEbus extender
functions can dynamically configure multiple-mainframe mappings

Chapter 2 Introduction to the NI-VXI Functions

© National Instruments Corporation 2-3 NI-VXI User Manual

of the VXI/VME interrupt lines, VXI TTL triggers, VXI ECL
triggers, and utility bus signals. The National Instruments Resource
Manager configures the mainframe extenders with settings based on
user-modifiable configuration files.

 VXI-Only Function Groups
The following NI-VXI function groups do not apply to VME.

• Commander Word Serial Protocol Functions—Word Serial is a
form of communication between VXI message-based devices. The
Commander Word Serial functions give you the necessary
capabilities to communicate with a message-based Servant device
using the Word Serial, Longword Serial, or Extended Longword
Serial protocols. These capabilities include the sending of
commands and queries and the reading and writing of buffers.

• Servant Word Serial Protocol Functions—Servant Word Serial
functions allow you to communicate with the message-based
Commander of the local CPU (the device on which the NI-VXI
interface resides) using the Word Serial, Longword Serial, or
Extended Longword Serial protocols. These capabilities include
command/query handling and buffer reads/writes.

• VXI Trigger Functions—The VXI trigger functions let you source
and accept any of the VXIbus trigger protocols. The actual
capabilities available depend on the specific hardware platform.
The VXI trigger functions can install handlers for various trigger
interrupt conditions.

 Calling Syntax
The interface is the same regardless of the development environment or
the operating system used. Great care has been taken to accommodate
all types of operating systems with the same functional interface
(C/C++ source-level compatible), whether it is non-multitasking (for
example, MS-DOS), cooperative multitasking (such as Microsoft
Windows 3.x or Macintosh OS), multitasking (for example, UNIX,
Wndows 95, or Windows NT), or real-time (such as LynxOS or
VxWorks). The NI-VXI interface includes most of the mutual
exclusion necessary for a multitasking environment. Each individual
platform has been optimized within the boundaries of the particular
hardware and operating system environment.

Chapter 2 Introduction to the NI-VXI Functions

NI-VXI User Manual 2-4 © National Instruments Corporation

 LabWindows/CVI
You can use the functions described in this manual with
LabWindows/CVI. LabWindows/CVI is an integrated development
environment for building instrumentation applications using the
ANSI C programming language. You can use LabWindows/CVI with
Microsoft Windows on PC-compatible computers or with Solaris on
Sun SPARCstations. The source code you develop is portable across
either platform.

National Instruments offers VXI/VME development systems for these
two platforms that link the NI-VXI driver software into
LabWindows/CVI to control VXI instruments from either embedded
VXI/VME controllers or external computers equipped with a MXI
interface. All of the NI-VXI functions described in this manual are
completely compatible with LabWindows/CVI.

 Type Definitions
The following data types are used for all parameters in the NI-VXI
functions and in the actual NI-VXI library function definitions. NI-VXI
uses this list of parameter types as an independent method for
specifying data type sizes among the various operating systems and
target CPUs of the NI-VXI software interface.

C/C++ Example:
typedef char INT8; /* 8-bit signed integer */

typedef unsigned char UINT8; /* 8-bit unsigned integer */

typedef short INT16; /* 16-bit signed integer */

typedef unsigned short UINT16; /* 16-bit unsigned integer */

typedef long INT32; /* 32-bit signed integer */

typedef unsigned long UINT32; /* 32-bit unsigned integer */

 Input Versus Output Parameters
Because all C/C++ function calls pass function parameters by value
(not by reference), you must specify the address of the parameter when
the parameter is an output parameter. The C/C++ “&” operator
accomplishes this task.

For example:

ret = VXIinReg (la, reg, &value);

Chapter 2 Introduction to the NI-VXI Functions

© National Instruments Corporation 2-5 NI-VXI User Manual

Because value is an output parameter, &value is used when calling
the function instead of value . The input parameters are la and reg .

 Return Values and System Errors
All NI-VXI functions return a status indicating success or failure. The
return code of 0x8000 is reserved as a return status value for any
function to signify that a system error occurred during the function call
except for the commander word serial operations. This error is specific
to the operating system on which the NI-VXI interface is running.

 Multiple Mainframe Support
The NI-VXI functions described in this manual support multiple
mainframes both in external CPU configurations and embedded CPU
configurations. The Startup Resource Manager supports one or more
mainframe extenders and configures a single- or multiple-mainframe
VXI/VME system. Refer to the VXIbus Mainframe Extender
Specification, Revision 1.3 or later, for more details on multiple
mainframe systems.

If you have a multiple-mainframe VXI/VME system, please continue
with the following sections. If you have a single-mainframe system,
you can skip to the Using NI-VXI section later in this chapter.

 Controllers
A controller is a device that is capable of controlling other devices. A
desktop computer with a MXI interface board, an embedded computer
in a VXI/VME chassis, a VXI-MXI, and a VME-MXI may all be
controllers depending on the configuration of the system.

There are several types of controllers that may exist in a VXI/VME
system; embedded, external, and remote.

• Embedded controller—A computer plugged directly into the
VXI/VME backplane. An example is the National Instruments
VXIpc-850. All of the required VXI/VME interface capabilities are
built directly onto the computer itself. An embedded computer has
direct access to the VXI/VMEbus backplane in which it is installed.

• Remote controller—A device in the VXI/VME system that has the
capability to control the VXI/VMEbus, but has no intelligent CPU
installed. An example is the VXI-MXI-2. In NI-VXI, the
parent-side VXI-MXI-2 (that is, the VXI-MXI-2 with a MXI-2

Chapter 2 Introduction to the NI-VXI Functions

NI-VXI User Manual 2-6 © National Instruments Corporation

cable connected towards the root frame) in the frame acts as a
remote controller. An embedded or external controller may use a
remote controller to control the remote mainframe.

• External controller—A desktop computer or workstation connected
to the VXI/VME system via a MXI interface board. An example is
a standard personal computer with a PCI-MXI-2 installed.

In general, a multiple mainframe VXI/VME system will have one of
the following controller configurations:

• An embedded controller in one frame that is connected to other
frames via mainframe extenders using MXI-2. VXI-MXI-2 or
VME-MXI-2 boards in the other frames can also be used as remote
controllers. See Figure 2-1.

bus

 NATIONAL

INSTRUMENTS®

 N
ATIONAL

INSTRUMENTS
®

bus

Embedded Controller Extender and Remote Controller

Extender Only

bus

 NATIONAL

INSTRUMENTS®

Figure 2-1. An Embedded Controller Connected to Other Frames via
Mainframe Extenders Using MXI-2

• An external controller connected using MXI-2 to a number of
remote controllers, each in a separate frame. The external controller
can use the remote controllers for control of the VXI/VME system,
or it can use its own controller capabilities. See Figure 2-2.

Chapter 2 Introduction to the NI-VXI Functions

© National Instruments Corporation 2-7 NI-VXI User Manual

bus

 NATIONAL

INSTRUMENTS®

bus

 NATIONAL

INSTRUMENTS®

bus

 NATIONAL

INSTRUMENTS®

 N
ATIONAL

INSTRUMENTS
®

bus

Remote Controller
and Extender

Remote Controller
and Extender

External
Controller

Extender
Only

Figure 2-2. An External Controller Connected Using MXI-2 to a
Number of Remote Controllers

 The extender and controller Parameters
In NI-VXI, some functions require a parameter named extender or
controller . Since some extenders act as controllers, there is often
confusion concerning what logical addresses should be passed to these
functions.

The extender parameter is the logical address of a mainframe extender
on which the function should be performed. Usually, functions with an
extender parameter involve the mapping of interrupt lines or trigger
lines into or out of a frame.

The controller parameter is the logical address of an embedded,
external, extending, or remote controller. Usually, functions with a
controller parameter involve sourcing or sensing particular interrupts
or triggers in a frame. According to the definitions of the different
types of controllers, the only valid logical addresses for the controller
parameter are:

• The external or embedded controller on which the program is
running

• A parent-side VXI-MXI-2 or VME-MXI-2 in a frame

Chapter 2 Introduction to the NI-VXI Functions

NI-VXI User Manual 2-8 © National Instruments Corporation

Most functions that take a controller parameter will allow you to pass
(-1) as the logical address. This selects the default controller for the
system. Notice that the default controller is determined by the
following factors:

• If the program is running on an embedded controller, the default
controller is the embedded controller.

• If the program is running on an external controller, you will be
able to configure whether the default controller is the external
controller or the remote controller with the lowest numbered
logical address. With this behavior, if you write a program on an
embedded controller referring to the controller as logical
address-1, you will be able to swap the embedded controller
configuration with an external controller configuration without
changing your source code.

Notice that -1 is never a valid value for the extender parameter. In
addition, the logical addresses of embedded and external controllers
also are never valid values for the extender parameter. The extender
parameter refers only to devices that can map interrupt lines, trigger
lines, or other signals into or out of a frame.

Chapter 2 Introduction to the NI-VXI Functions

© National Instruments Corporation 2-9 NI-VXI User Manual

 Using NI-VXI
This section presents a general overview of the more commonly used
class of functions available in NI-VXI. Additional information
summarizes how you can use the functions to perform certain tasks and
further describes the general structure of NI-VXI programming.

 Header Files
Although nivxi.h is the only header file you need to include in your
program for NI-VXI, the software distribution actually includes several
additional header files along with nivxi.h . Some of these files have
type definitions and macros that can make using NI-VXI easier, and
make the code more portable across different platforms. The three main
files of interest are datasize.h , busacc.h , and devinfo.h .

 The datasize.h File
The datasize.h file defines the integer types for use in your
program. For example, INT16 is defined as a 16-bit signed integer, and
UINT32 is defined as a 32-bit unsigned integer. Using these types
benefits you by letting you apply specific type sizes across platforms.
Using undefined types can cause problems when porting your
application between platforms. For example, an int in DOS is a 16-bit
number but a 32-bit number in Solaris or LabWindows/CVI.

In addition to the integers, datasize.h defines several types for other
uses such as interrupt handlers. For example, NIVXI_HVXIINT is an
interrupt handler type. Merely defining a variable with this type is
sufficient to create the function prototype necessary for your interrupt
handler. Also, different platforms require different flags for use with
interrupt handlers. To simplify this problem, datasize.h defines
NIVXI_HQUAL and NIVXI_HSPEC, which are used in the handler
definition and take care of the platform dependencies. See the
Interrupts and Signals section later in this chapter and your read me

file for more information. In addition, refer to Chapter 3, Software
Overview for specific information.

Chapter 2 Introduction to the NI-VXI Functions

NI-VXI User Manual 2-10 © National Instruments Corporation

 The busacc.h File
The busacc.h file defines constants and macros for use with the
high/low-level and slave memory access functions (see the Master
Memory Access and Slave Memory Access sections later in this
chapter). To make the code more readable, busacc.h defines such
elements as memory space, privilege mode, and byte order as
constants, and it defines macros to combine these constants into the
necessary access parameters. Examine the header file for more
information on the available macros and constants. You can see these
tools in use by reviewing the example programs on memory accesses
that appear later in this chapter and also the example programs
included with your software.

 The devinfo.h File
The devinfo.h file contains a data type that is used with the
GetDevInfo() function described in the System Configuration
Functions section in Chapter 3, Software Overview. The purpose of this
function is to return various information about the system.
GetDevInfo() can return the information either a piece at a time, or in
one large data structure. The header file devinfo.h contains the type
UserLAEntry , which defines the data structure that the function uses.
Refer to the header file for the exact definition of the data structure.

 The Beginning and End of an NI-VXI Program
All NI-VXI programs must call InitVXIlibrary() to initialize the
driver before using any other functions. You must call
CloseVXIlibrary() before exiting from your program to free
resources associated with NI-VXI. The first function creates the
internal structure needed to make the NI-VXI interface operational.
When InitVXIlibrary() completes its initialization procedures,
other functions can access information obtained by RESMAN, the
VXIbus Resource Manager, as well as use other NI-VXI features such
as interrupt handlers and windows for memory access. The second
function destroys this structure and frees the associated memory. All
programs using NI-VXI must call InitVXIlibrary() before any
other NI-VXI function. In addition, your program should include a call
to CloseVXIlibrary() before exiting.

Chapter 2 Introduction to the NI-VXI Functions

© National Instruments Corporation 2-11 NI-VXI User Manual

An important note about these two functions is that the internal
structure maintains a record of the number of calls to
InitVXIlibrary() and CloseVXIlibrary(). Although
InitVXIlibrary() needs to be called only once, the structure of
your program may cause the function to be called multiple times. A
successful call to InitVXIlibrary() returns either a zero or a one. A
zero indicates that the structure has been created, and a one indicates
that the structure was created by an earlier call so no action was taken
(other than incrementing the count of the number of
InitVXIlibrary() calls).

When CloseVXIlibrary() returns a successful code, it also returns
either a zero or a one. A zero indicates that the structure has been
successfully destroyed, and a one indicates that there are still
outstanding calls to InitVXIlibrary() that must be closed before
the structure is destroyed. The outcome of all of this is that when
exiting a program, you should call CloseVXIlibrary () the same
number of times that you have called InitVXIlibrary() .

Caution: In environments where all applications share NI-VXI, and hence the
internal structure (such as Microsoft Windows), it can be dangerous for
any one application to call CloseVXIlibrary() until it returns zero
because this can close out the structure from under another application. It
is vital to keep track of the number of times you have called
InitVXIlibrary() .

 System Configuration Tools
The System Configuration Functions section of Chapter 3, Software
Overview, describes functions that a program can use to access
information about the system. This is obtained either through
configuration information or from information obtained by RESMAN.
Armed with these functions, a program can be more flexible to changes
within the system.

Note: The examples in this manual do not check for either warnings or errors in
most of the functions’ return codes. This step is omitted only to simplify
the example programs. We strongly recommend that you include error
checking in your own programs.

Chapter 2 Introduction to the NI-VXI Functions

NI-VXI User Manual 2-12 © National Instruments Corporation

For example, all VXI devices have at least one logical address by
which they can be accessed. However, it is simple to change the logical
address of most devices. Therefore, any program that uses a constant as
a logical address of a particular device can fail if that device is
reassigned to a different logical address. Programmers can use the
NI-VXI function FindDevLA() to input information about the
device—such as the manufacturer ID and model code—and receive the
device’s current logical address.

Consider the case of wanting to locate a device with manufacturer’s
code ABCh and model number 123h. You could use the following code
to determine the logical address.

C/C++ Example:
main() {

INT16 ret, la;

ret = InitVXIlibrary();

/* -1 and empty quotes are used for don't cares */
ret = FindDevLA("", 0xABC, 0x123, -1, -1, -1, -1, &la);
if (ret < 0)

printf("No such device found.\n");
else

printf("The logical address is %d\n", la);

ret = CloseVXIlibrary();
}

In a similar fashion, the function GetDevInfo() can return a wide
assortment of information on a device, such as the manufacturer name
and number, the base and size of A24/32 memory, and the protocols
that the device supports. This information can be returned in either a
piecemeal fashion or in one large data structure. Notice that this data
structure is a user-defined type, UserLAEntry , which is defined in the
devinfo.h header file.

♦ For VME devices, this information cannot be determined by the
VXIbus Resource manager. However, you can enter this information
into the Non-VXI Device Editor in VXIedit or VXItedit . This will
allow you to use these functions to retrieve information about the
devices at run-time.

Chapter 2 Introduction to the NI-VXI Functions

© National Instruments Corporation 2-13 NI-VXI User Manual

 Word Serial Communication
When communicating with a message-based devices (MBD) in VXI,
the protocol for string passing is known as Word Serial. The term is
derived from the fact that all commands are 16 bits in length (word
length), and that strings are sent serially, or one byte at a time. VXI
also accommodates Long Word Serial (32-bit commands), and
Extended Long Word Serial (48-bit commands). However, the VXIbus
specification revision 1.4 states that only Word Serial commands have
been defined.

Word Serial Protocol is based on a Commander writing 16-bit
commands to a Servant register (See the Commander Word Serial
Protocol Functions in Chapter 3, Software Overview, for more
information on the protocol). The VXIbus specification has defined
several commands, such as Byte Available, Byte Request, and Clear.
The bit patterns for Word Serial commands have been laid out in the
VXIbus specification, and your application can send these commands
to a Servant via the WScmd() function. However, because string
communication is the most common use for Word Serial Protocol, the
functions WSwrt() and WSrd() use the Word Serial commands Byte
Available (for sending a byte to a servant) and Byte Request (for
retrieving a byte from a Servant) repetitively to send or receive strings
as defined by the Word Serial Protocol. In addition, other common
commands such as Clear have been encapsulated in their own
functions, such as WSclr() .

Chapter 3, Software Overview describes all NI-VXI functions
pertaining to message-based communication for the Commander.
However, there are times when you want the controller to operate as a
Word Serial Servant. NI-VXI allows for the controller to accept Word
Serial commands from a Commander. This chapter also describes a
different set of functions that a Servant uses for message-based
communication with its Commander.

For example, WSSrd() (Word Serial Servant Read) sets up the
controller to accept the Byte Request commands from a controller and
respond with the string specified in the function. In a similar fashion,
the WSSwrt() function programs the controller to accept Byte
Available commands. National Instruments strongly recommends that
if you want to program the controller as a Servant, you should aim to
become familiar with the Word Serial Protocol in detail, and implement
as much of the protocol as possible to simplify the debugging and
operation of the program.

Chapter 2 Introduction to the NI-VXI Functions

NI-VXI User Manual 2-14 © National Instruments Corporation

 Master Memory Access
You can access VXIbus memory directly through the NI-VXI
high-level and low-level VXIbus access functions, within the
capabilities of the controller. The main difference between the
high-level and low-level access functions is in the amount of
encapsulation given by NI-VXI.

The high-level VXIbus access functions include functions such as
VXIin() and VXImove() that you can use to access memory in the
VXI system without dealing with such details as memory-mapping
windows, status checking, and recovering from bus timeouts. Although
these functions tend to have more overhead associated with them than
the low-level functions, they are much simpler to use and typically
require less debugging. We recommend that beginner programmers in
VXI rely on the high-level functions until they are familiar with VXI
memory accesses.

You can use the low-level VXI/VMEbus access functions if you want
to access VXI/VME memory with as little overhead as possible.
Although you now have to perform such actions as bus error handling
and mapping—which are handled automatically by the high-level
functions—you can experience a performance gain if you optimize for
the particular accesses you are performing. Consider the following
sample code, which performs a memory access using the low-level
functions. Notice that there is no bus error handler installed by the
program (See the Interrupts and Signals section). Instead, the program
uses the NI-VXI default bus error handler. This handler automatically
increments the BusErrorRecv global variable.

C/C++ Example:
#include <nivxi.h> /* BusErrorRecv defined in nivxi.h */
#include <stdio.h>

main() {
INT16 ret, la;
UINT16 *addrptr, svalue;
UINT32 addr, window1;
INT32 timeout;
UINT32 addrptr1;

/* Start all programs with this function */
ret = InitVXIlibrary();
BusErrorRecv = 0; /* Reset global variable */

/* The following code maps the A16 space with the Access Only */
/* access in order to access the A16 space directly. */
addr = 0xc000L; /* Map upper 16 KB of the A16 space */

Chapter 2 Introduction to the NI-VXI Functions

© National Instruments Corporation 2-15 NI-VXI User Manual

timeout = 2000L; /* 2 seconds */

/* Notice the use of the macros for defining the access */
/* parameters. These can be found in the NI-VXI header files */
addrptr1 = (UINT32) MapVXIAddress(AccessP_Space(A16_SPACE) |

AccessP_Priv(NonPriv_DATA) |
AccessP_BO(MOTOROLA_ORDER) |
AccessP_Owner(0),
addr, timeout, &window1, &ret);

if (ret >= 0) /** MapVXIAddress call is successful **/
{

/* The following code reads the ID register of a device */
/* at logical address 10. */
la = 10;
addrptr = (UINT16 *)((UINT32) addrptr1 + 64 * la);
VXIpeek(addrptr,2, &svalue));

if (BusErrorRecv)
printf("Bus Error has occurred.\n");

else
printf("Value read was %hd.\n", svalue));

ret = UnMapVXIAddress(window1);
} else

printf("Unable to access window.\n");

/* Close library when done */
ret = CloseVXIlibrary();

}

Notice that the return variable for the MapVXIAddress() function is a
pointer. While you can dereference this pointer directly on some
platforms, we recommend that you use the VXIpeek() and
VXIpoke() macros and functions in NI-VXI instead.

You can define BINARY_COMPATIBLE when compiling your program
to force NI-VXI to use a version of VXIpeek() and VXIpoke()

macros that will work on all embedded and MXI platforms. In addition,
you can use the functions, rather than the macros, to ensure future
compatibility. To force the compiler to use the functions, put the
function name in parentheses, for example,

(VXIpoke) (addrptr, 2, 0);

instead of

VXIpoke (addrptr, 2, 0);

Chapter 2 Introduction to the NI-VXI Functions

NI-VXI User Manual 2-16 © National Instruments Corporation

Note: On modern, 32-bit operating systems running on high-performance
processors (such as Microsoft Windows NT on a Pentium or Solaris 2
on a SPARC), we have found no performance gained by using macros
instead of functions. For this reason, we strongly recommend that you use
functions on these platforms to allow your program to be more portable
across future platforms.

 Slave Memory Access
It is possible to share local resources such as RAM with the
VXI/VMEbus. You can accomplish this functionality by setting the
appropriate fields in the VXIedit or VXItedit NI-VXI resource
editor utility to instruct the controller to respond to bus accesses as a
slave. What address space is used is dependent on the settings in
VXIedit or VXItedit . However, the actual VXI/VMEbus memory
addresses are assigned by RESMAN and should be read by the program
through the GetDevInfo() function.

Keep in mind that when the controller shares its resources, it may not
allocate them from the local system first. For example, if you instruct
the system to share 1 MB of RAM, the controller will map VXI/VME
addresses (as defined by RESMAN) to 1 MB of local memory. However,
the controller may not have prevented the local system from also using
this space. For example, on a IBM compatible PC, the first 1 MB of
address space contains not only user RAM, but also the interrupt vector
table, video memory, BIOS, and so on. Therefore, it is important that
you first use VXImemAlloc() to reserve a portion of the shared
memory, and then communicate this address to the remote master that
will be accessing the slave memory. For example, assume that the
following code will run on a controller that has shared 1 MB of local
RAM.

C/C++ Example:

main() {
INT16 ret;
UINT32 *useraddr, vxiaddr;
void *bufaddr;

/* Initialize and allocate 4 KB of memory */
ret = InitVXIlibrary();
ret = VXImemAlloc(4096, &useraddr, &vxiaddr);

/* Put code here to communicate vxiaddr */
/* returned by VXImemAlloc */

Chapter 2 Introduction to the NI-VXI Functions

© National Instruments Corporation 2-17 NI-VXI User Manual

/* At this point, the remote master can perform */
/* I/O on the shared, allocated space. In addition, */
/* the program can use the local address to perform */
/* I/O on the same space, such as reading back a block */
/* of data */
bufaddr = malloc (4096);
ret = VXImemCopy (useraddr, bufaddr, 4096, 0);

/* Return memory to local system */
ret = VXImemFree(useraddr);
ret = CloseVXIlibrary();

}

 Interrupts and Signals
In NI-VXI, you can set up your controller to function as both an
interrupt handler and an interrupter. You can also have your controller
respond to writes to its signal register. Signaling another device
requires the high-level or low-level VXI/VMEbus access functions, as
discussed earlier. In addition, NI-VXI lets you configure both
interrupts and signals to be handled either through callback handlers or
through the signal queue. See the VXI Signal Functions section in
Chapter 3, Software Overview, for more details about the signal queue,
but for now you can look upon it as a FIFO (first-in, first-out) queue
that you can access via the signal queue management functions, such as
SignalDeq() . Both the signal queue and the callback handler will
provide the status/ID obtained from the interrupt acknowledge or from
the signal register. You can use this value to determine which device
generated the interrupt/signal as well as the cause of the event. See the
VXI Interrupt Functions section in Chapter 3, Software Overview, for
more information.

Handling either signals or interrupts through the signal queue is very
straightforward. You can use the RouteVXIint() and
RouteSignal() functions to specify that the events should be handled
by the signal queue. After you have enabled the event handler through
either the EnableSignalInt() or the EnableVXItoSignalInt()

call, the event is placed on the queue when it occurs. You can use the
SignalDeq() or WaitForSignal() functions to retrieve the event
from the queue.

Note: RESMAN allocates interrupt lines to VXI devices that support the
programmable interrupt command. Devices should use only those
interrupt lines allocated to them. Again, you can use GetDevInfo() to
determine what interrupt lines have been allocated to the controller.

Chapter 2 Introduction to the NI-VXI Functions

NI-VXI User Manual 2-18 © National Instruments Corporation

Alternatively, you can choose to handle either signals or interrupts with
a callback handler. You can use RouteSignal() to specify that the
events should be handled by the callback handlers rather than the signal
queue. After you have enabled the callback handler through either the
EnableSignalInt() or the EnableVXIint() call, the callback
function will be invoked when the event occurs. Installing and using
callback handlers is very simple with NI-VXI because all of the
operating system interaction is handled for you. The following section
of code gives an example of using an callback handler.

C/C++ Example:
#define VXI_INT_LEVEL 1 /* this sample only interested in level 1 */

/* NIVXI_HVXIINT is a type defined for VXI/VME interrupt callback handlers */
NIVXI_HVXIINT *OldVXIintHandler; /* pointer to save the old handler */
NIVXI_HVXIINT UserVXIintHandler; /* function declr for new handler */

main () {
INT16 ret, controller;

/* Always begin by initializing the NI-VXI library */
ret = InitVXIlibrary ();
controller = -1;

/* Get address of the old handler */
OldVXIintHandler = GetVXIintHandler (VXI_INT_LEVEL);

/* Set callback handler to new user-defined procedure */
ret = DisableVXIint (controller, 1<<(VXI_INT_LEVEL-1));
ret = SetVXIintHandler (1<<(VXI_INT_LEVEL-1), UserVXIintHandler);
ret = EnableVXIint (controller, 1<<(VXI_INT_LEVEL-1));

/**/
/* user code */
/**/

/* Restore callback handler to what it was before we changed it */
ret = DisableVXIint (controller, 1<<(VXI_INT_LEVEL-1));
SetVXIintHandler (1<<(VXI_INT_LEVEL-1), OldVXIintHandler);
ret = EnableVXIint (controller, 1<<(VXI_INT_LEVEL-1));

/* Always close the NI-VXI library before exiting */
CloseVXIlibrary ();

}

/* The NIVXI_HQUAL and NIVXI_HSPEC should bracket */
/* every interrupt handler as shown below. */
NIVXI_HQUAL void NIVXI_HSPEC UserVXIintHandler (INT16 controller,

UINT16 level, UINT32 statusID)
{

/* user code for processing statusID */
}

Chapter 2 Introduction to the NI-VXI Functions

© National Instruments Corporation 2-19 NI-VXI User Manual

Note: Although NI-VXI simplifies the installation and use of callback handlers,
it cannot affect how the system handles interrupts. The programmer must
follow programming guidelines set by the chosen operating system. Some
of these guidelines could include using only reentrant functions, adhering
to timing restrictions, and on Macintosh computers, regaining access to
global variables.

 Triggers
The addition of trigger lines to the VMEbus is one improvement the
VXIbus has over VME in the field of instrumentation. To take
advantage of this feature, NI-VXI has a wide selection of functions you
can use to set up your controller to both source and acknowledge
trigger lines. The TIC is a National Instruments ASIC (Application
Specific Integrated Circuit) that gives you the capability to map trigger
lines to trigger lines as well as to external lines, use special
counter/timers, and monitor multiple trigger lines simultaneously.

© National Instruments Corporation 3-1 NI-VXI User Manual

Software Overview

Chapter

3
This chapter describes the C/C++ and BASIC usage of VXI and VME
functions and briefly describes each function. Functions are listed
alphabetically in each functional group.

 System Configuration Functions
The VXI system configuration functions copy all of the Resource
Manager (RM) table information into data structures at startup so that
you can find device names or logical addresses by specifying certain
attributes of the device for identification purposes.

Initializing and closing the NI-VXI software interface, and getting
information about devices in the system are among the most important
aspects of the NI-VXI software. All applications need to use the system
configuration functions at one level or another. When the NI-VXI RM
runs, it logs the system configuration information in the RM table file,
resman.tbl . The InitVXIlibrary function reads the information
from resman.tbl into data structures accessible from the
GetDevInfo and SetDevInfo functions. From this point on, you can
retrieve any device-related information from the entry in the table. In
most cases you do not need to modify resource manager information.
However, you can use SetDevInfo functions to modify the
information in the table. In this manner, both the application and the
driver functions have direct access to all the necessary VXI/VME
system information. Your application must call the CloseVXIlibrary

function upon exit to free all data structures and disable interrupts.

The following paragraphs describe the system configuration functions.
The descriptions are presented at a functional level describing the
operation of each function.

Chapter 3 Software Overview

NI-VXI User Manual 3-2 © National Instruments Corporation

 CloseVXIlibrary ()
CloseVXIlibrary is the application termination routine, which
must be included at the end (or abort) of any application.
CloseVXIlibrary disables interrupts and frees dynamic memory
allocated for the internal RM table and other structures. You must
include a call to CloseVXIlibrary at the termination of your
application (for whatever reason) to free all data structures allocated
by InitVXIlibrary and disable interrupts. Failure to call
CloseVXIlibrary when terminating your application can cause
unpredictable and undesirable results. If your application can be
aborted from some operating system abort routine (such as a break key
or a process kill signal), be certain to install an abort/close routine to
call CloseVXIlibrary .

 CreateDevInfo (la)
CreateDevInfo creates a new entry in the dynamic NI-VXI RM table
for the specified logical address. It installs default NULL values into the
entry. You must use one of the SetDevInfo functions after this point
to change any of the device information as needed. This operation is
not needed for VME devices since it is recommended that you use the
Non-VXI Device Editor in the VXIedit or VXItedit NI-VXI
resource editor utility. At the startup of your application,
InitVXIlibrary completely initializes the RM table to how the RM
configured the VXI system. No initial changes/creations are necessary
for VXI devices. You can use CreateDevInfo to add non-VXI
devices or pseudo-devices (future expansion).

 FindDevLA (namepat, manid, modelcode, devclass, slot,
mainframe, cmdrla, la)

FindDevLA scans the RM table information for a device with the
specified attributes and returns its VXI logical address. You can use
any combination of attributes to specify a device. A -1 (negative one)
or "" specifies to ignore the corresponding field in the attribute
comparison. After finding the VXI logical address, you can use one of
the GetDevInfo functions to get any information about the specified
device.

Chapter 3 Software Overview

© National Instruments Corporation 3-3 NI-VXI User Manual

 GetDevInfo (la, field, fieldvalue)
GetDevInfo returns information about the specified device from the
NI-VXI RM table. The field parameter specifies the attribute of the
information to retrieve. Possible fields include the device name,
Commander’s logical address, mainframe number, slot, manufacturer
ID number, model code, model name, device class, VXI address
space/base/size allocated, VXI interrupt lines/handlers allocated,
protocols supported, and so on. A field value of zero (0) specifies to
return a structure containing all possible information about the
specified device.

 GetDevInfoLong (la, field, longvalue)
GetDevInfoLong returns information about the specified device from
the NI-VXI RM table. The field parameter specifies the attribute of the
information to retrieve. GetDevInfoLong is a function layered on top
of GetDevInfo for languages (such as BASIC) that cannot typecast
the fieldvalues of GetDevInfo . GetDevInfoLong returns only the
fields of GetDevInfo that are 32-bit integers. Possible fields include
the VXI address base and size allocated to the device by the RM.

 GetDevInfoShort (la, field, shortvalue)
GetDevInfoShort returns information about the specified device
from the NI-VXI RM table. The field parameter specifies the attribute
of the information to retrieve. GetDevInfoShort is a function layered
on top of GetDevInfo for languages (such as BASIC) that cannot
typecast the fieldvalues of GetDevInfo . GetDevInfoShort returns
only the fields of GetDevInfo that are 16-bit integers. Possible fields
include the Commander’s logical address, mainframe number, slot,
manufacturer ID number, manufacturer name, model code, device
class, VXI address space allocated, VXI interrupt lines/handlers
allocated, protocols supported, and so on.

 GetDevInfoStr (la, field, stringvalue)
GetDevInfoStr returns information about the specified device from
the NI-VXI RM table. The field parameter specifies the attribute of the
information to retrieve. GetDevInfoStr is a function layered on top
of GetDevInfo for languages (such as BASIC) that cannot typecast
the fieldvalues of GetDevInfo . GetDevInfoStr returns only the
fields of GetDevInfo that are character strings. Possible fields
include the device name, manufacturer name, and model name.

Chapter 3 Software Overview

NI-VXI User Manual 3-4 © National Instruments Corporation

 InitVXIlibrary ()
InitVXIlibrary is the NI-VXI initialization routine. An application
must call InitVXIlibrary at application startup. InitVXIlibrary

performs all necessary installation and initialization procedures to
make the NI-VXI interface functional. This includes copying all of the
RM device information into the data structures in the NI-VXI library.
This function configures all hardware interrupt sources (but leaves
them disabled) and installs the corresponding default handlers. It also
creates and initializes any other data structures required internally by
the NI-VXI interface. When your application completes (or is aborted),
it must call CloseVXIlibrary to free data structures and disable all
of the interrupt sources.

 SetDevInfo (la, field, fieldvalue)
SetDevInfo changes information about the specified device in the
NI-VXI RM table. The field parameter specifies the attribute of the
information to change. Possible fields include the device name,
Commander’s logical address, mainframe number, slot, manufacturer
ID number, manufacturer name, model code, model name, device
class, VXI address space/base/size allocated, VXI interrupt
lines/handlers allocated, protocols supported, and so on. A field value
of zero (0) specifies to change the specified entry with the supplied
structure containing all possible information about the specified device.
You should use this function only in very special situations, because it
updates information in the NI-VXI interface and can affect execution.
At the startup of your application, InitVXIlibrary completely
initializes the RM table according to how the RM configured the VXI
system. No initial changes are necessary for VXI devices.

 SetDevInfoLong (la, field, longvalue)
SetDevInfoLong changes information about the specified device in
the NI-VXI RM table. The field parameter specifies the attribute of the
information to change. SetDevInfoLong is a function layered on top
of SetDevInfo for languages (such as BASIC) that cannot typecast
the fieldvalues of SetDevInfo . SetDevInfoLong returns only the
fields of SetDevInfo that are 32-bit integers. Possible fields include
the VXI address base and size allocated to the device by the RM. You
should use this function only in very special situations, because it
updates information in the NI-VXI interface and can affect execution.
At the startup of your application, InitVXIlibrary completely
initializes the RM table to how the RM configured the VXI system. No
initial changes are necessary for VXI devices.

Chapter 3 Software Overview

© National Instruments Corporation 3-5 NI-VXI User Manual

 SetDevInfoShort (la, field, shortvalue)
SetDevInfoShort changes information about the specified device in
the NI-VXI RM table. The field parameter specifies the attribute of the
information to change. SetDevInfoShort is a function layered on top
of SetDevInfo for languages (such as BASIC) that cannot typecast
the fieldvalues of SetDevInfo . SetDevInfoShort changes only the
fields of SetDevInfo that are 16-bit integers. Possible fields include
the Commander’s logical address, mainframe number, slot,
manufacturer ID number, model code, device class, VXI address space
allocated, VXI interrupt lines/handlers allocated, protocols supported,
and so on. You should use this function only in very special situations,
because it updates information in the NI-VXI interface and can affect
execution. At the startup of your application, InitVXIlibrary

completely initializes the RM table to how the RM configured the VXI
system. No initial changes are necessary for VXI devices.

 SetDevInfoStr (la, field, stringvalue)
SetDevInfoStr changes information about the specified device in the
NI-VXI RM table. The field parameter specifies the attribute of the
information to change. SetDevInfoStr is a function layered on top of
SetDevInfo for languages (such as BASIC) that cannot typecast the
fieldvalues of SetDevInfo . SetDevInfoStr returns only the fields
of SetDevInfo that are character strings. Possible fields include the
device name, manufacturer name, and model name. You should use
this function only in very special situations, because it updates
information in the NI-VXI interface and can affect execution. At the
startup of your application, InitVXIlibrary completely initializes
the RM table to how the RM configured the VXI system. No initial
changes are necessary for VXI devices.

 Commander Word Serial Protocol Functions
Word Serial communication is the minimal mode of communication
between VXI message-based devices within the VXI
Commander/Servant hierarchy. The Commander Word Serial functions
let the local CPU (the CPU on which the NI-VXI interface resides)
perform VXI message-based Commander Word Serial communication
with its Servants. The four basic types of Commander Word Serial
transfers are as follows:

• Command sending

• Query sending

Chapter 3 Software Overview

NI-VXI User Manual 3-6 © National Instruments Corporation

• Buffer writes

• Buffer reads

The Word Serial Protocol is a 16-bit transfer protocol between a
Commander and its Servants. The Commander polls specific bits in the
Servant’s VXI Response register to determine when it can write a
command, when it can read a response from the Data Low register, and
when a Word Serial protocol error occurs.

Before a Commander can send a Word Serial command to a Servant, it
must first poll the Write Ready (WR) bit until it is asserted (set to 1).
The Commander can then write the command to the servant’s Data
Low register. If the Commander is sending a query, it first sends the
query in the same manner as sending a command, but then continues
by polling the Read Ready (RR) bit until it is asserted. It then reads the
response from the servant’s Data Low register.

A buffer write involves sending a series of Byte Available (BAV) Word
Serial commands to the Servant, with the additional constraint that the
Data In Ready (DIR) bit as well as the WR bit be asserted before
sending the Byte Available. The lower 8 bits (bits 0 to 7) of the 16-bit
command contain a single byte of data (bit 8 is the END bit).
Therefore, one Byte Available is sent for each data byte in the buffer
written.

A buffer read involves sending a series of Byte Request (BREQ) Word
Serial queries to the Servant, with the additional constraint that the
Data Out Ready (DOR) bit as well as the WR bit must be asserted
before sending the Byte Request. The lower 8 bits (bits 0 to 7) of the
16-bit response contain a single byte of data (bit 8 is the END bit).
Therefore, one Byte Request is sent for each data byte in the buffer
read.

In addition to the WR, RR, DIR, and DOR bits that get polled during
various Word Serial transfers, the functions also check the ERR* bit.
The ERR* bit indicates when a Word Serial Protocol error occurs. The
Word Serial Protocol errors are Unsupported Command, Multiple
Query Error (MQE), DIR Violation, DOR Violation, RR Violation, or
WR Violation. After the Servant asserts the ERR* bit, the application
can determine the actual error that occurred by sending a Read
Protocol Error query to the Servant. The NI-VXI Word Serial
functions query the Servant automatically and return the appropriate
error codes to the caller, at which time the Servant deasserts the
ERR* bit.

Chapter 3 Software Overview

© National Instruments Corporation 3-7 NI-VXI User Manual

In addition to the four basic types of Word Serial transfers, there are
two special cases: the Word Serial Clear and Trigger commands. The
Word Serial Clear command must ignore the ERR* bit. One of the
functions of the Clear command is to clear a pending protocol error
condition. If the ERR* bit was polled during the transfer, the Clear
would not succeed. The Word Serial Trigger command requires polling
the DIR bit as well as the WR bit (similar to the buffer write) before
writing the Trigger to the Data Low register. The VXIbus specification
requires polling the DIR bit for the Word Serial Trigger to keep the
write and trigger model consistent with IEEE 488.2.

The Longword Serial and Extended Longword Serial Protocols are
similar to the Word Serial Protocol, but involve 32-bit and 48-bit
command transfers, respectively, instead of the 16-bit transfers of the
Word Serial Protocol. The VXIbus specification, however, provides no
common command usages for these protocols. The commands are
either VXI Reserved or User-Defined. The NI-VXI interface gives you
the ability to send any one of these commands.

 Programming Considerations
The Commander Word Serial functions provide a flexible, easy-to-use
interface. Depending upon the hardware and software platforms
involved in your system, however, certain issues need to be taken into
account. In particular, the behavior of these functions will vary when
called from different processes depending on how your operating
system performs multitasking.

 Interrupt Service Routine Support
If portability between operating systems is essential, the Word Serial
Protocol functions should not be called from an interrupt service
routine. Only for operating systems in which the user-installed handlers
are run at process level (most UNIX, OS/2, and Windows 95/NT
systems) is it possible to initiate Word Serial operations from a
user-installed handler. The Commander Word Serial functions require
operating system support provided only at the application (process)
level of execution. Calling these functions from the CPU interrupt level
will have undetermined results.

Chapter 3 Software Overview

NI-VXI User Manual 3-8 © National Instruments Corporation

The WSabort function is the only exception to this restriction.
WSabort is used to abort various Word Serial transfers in progress and
will usually be called from an interrupt service routine (although it is
not limited to interrupt service routines). The most common example of
calling this function from an interrupt service routine is with the
handling of Unrecognized Command events from a device. When an
Unrecognized Command event is received by the NI-VXI interrupt or
Signal interrupt handler, WSabort must be called to abort the current
Word Serial command transfer in progress that caused the generation
of the Unrecognized Command event.

 Single-Tasking Operating System Support
The Word Serial Protocol functions have no asynchronous or multiple
call support for a non-multitasking operating system. Because the
Word Serial Protocol functions are polled I/O functions that do not
return to the caller until the entire operation is complete, only one call
can be pending for the application-level code. No Word Serial Protocol
functions, other than WSabort , can be called at interrupt service
routine time. If a Word Serial operation is underway and an interrupt
service routine invokes another Word Serial operation, the polling
mechanism may become inconsistent with the state of the Servant’s
communication registers. This could result in invalid data being
transferred, protocol errors occurring, or a timeout. The WSabort

function is used to asynchronously abort Word Serial operations in
progress and can be used at interrupt service routine time.

 Cooperative Multitasking Support
NI-VXI supports multiple processes under cooperative multitasking
operating systems. The behavior is the same as in single-tasking
operating systems, described above.

 Multitasking Support (Preemptive Operating System)
The Word Serial Protocol functions have extensive mutual exclusion
support when running on a preemptive multitasking operating system.
A two-level mutual exclusion algorithm is used to allow read, write,
and trigger calls to be made at the same time. Command transfers will
automatically suspend read, write, or trigger calls in progress.

Chapter 3 Software Overview

© National Instruments Corporation 3-9 NI-VXI User Manual

Figure 3-1 gives a precise description of this two-level mutual
exclusion algorithm. Notice that this mutual exclusion is on a per
logical address basis. Any number of logical addresses can have Word
Serial transfers in progress without conflict. If the application is to be
compatible with IEEE 488.2, the application must perform trigger and
write calls in sequential order.

WSwrt, WSwrtf WStrg WSrd, WSrdf

Wrt and Trg Exclusion
Write and trigger ordering for IEEE 488.2
compatible operation must be done by the
application. No attempt is made to order or
perform mutual exclusion between write and
trigger calls. In addition, no mutual exclusion
is done between multiple writes or multiple
triggers. No more than one write or trigger
call may be pending at any one time (per
logical address).

Local CPU VXI A16 Window

VXIbus

Remote Word Serial Hardware

WScmd, WSclr,
WSLcmd, WSEcmd

Rd/Wrt/Trg Exclusion

Command Priority Override
All Word Serial command functions have priority over the read
and write functions. If a command call is underway, all read
and write calls will be suspended until the command transfer
is complete. If a read or write call is already underway when
a command call is made, the command call will cause the read
or write call to suspend before the next individual read or write
command/query is sent (Byte Available for WSwrt, WSwrtf, or
Byte Request for WSrd, WSrdf). When the command transfer is
complete, the read or write call will continue exactly from where
it was suspended. No mutual exclusion is done between multiple
command calls. The application must guarantee that only one
command call is pending at one time.

Read held off if write or trigger underway. Write and trigger
held off if read underway. No mutual exclusion is done between
multiple reads or multiple writes and triggers. No more than
one read call may be pending at any one time (per logical
address). No more than one write or trigger call may be
pending at any one time (per logical address).

Figure 3-1. Preemptive Word Serial Mutual Exclusion (Per Logical Address)

The Commander Word Serial functions are fully reentrant and
preemptive on a per logical address basis. Any number of logical
addresses can have Commander Word Serial functions in progress
without conflict.

Because Commander Word Serial is a protocol involving extensive
polling, support has been added for a round-robin effect of
Commander Word Serial function calls. If a particular logical address
does not respond within a set number of polls to a particular Word
Serial command or query, the process is suspended and another process
(possibly with a different Commander Word Serial call in progress) can
continue to execute. The amount of time for which the process is
suspended is dependent upon the operating system. When the original
process is resumed, the polling will continue. The polling will continue

Chapter 3 Software Overview

NI-VXI User Manual 3-10 © National Instruments Corporation

until the transfer is complete or a timeout occurs. This support also
keeps a word serial device which is not responding from “hanging” on
the local CPU.

The following paragraphs describe the Commander Word Serial,
Longword Serial, and Extended Longword Serial Protocol functions.
The descriptions are grouped by functionality and are presented at a
functional level describing the operation of each of the functions.

 WSabort (la, abortop)
WSabort aborts the Commander Word Serial operation(s) in progress
with a particular device. This function does not perform any Word
Serial transfers. Instead, it aborts any Word Serial operation already in
progress. The abortop parameter specifies the type of abort to perform.
The ForcedAbort operation aborts read, write, and trigger operations
with the specified device. The UnSupCom operation performs an
Unsupported Command abort of the current Word Serial, Longword
Serial, or Extended Longword Serial command in progress. The
UnSupCom operation is called when an Unrecognized Command Event
is received by DefaultSignalHandler .

 WSclr (la)
WSclr sends the Word Serial Clear command to a message-based
Servant. The Clear command clears any pending protocol error on the
receiving device. The ERR* bit is ignored during the transfer. The WR
bit is polled until asserted after the Clear command is sent to verify that
the command executed properly.

 WScmd (la, cmd, respflag, response)
WScmd sends a Word Serial command or query to a message-based
Servant. It polls the WR bit before sending the command, and polls the
RR bit before reading the response (if applicable) from the Data Low
register. WScmd polls the WR bit after either sending the command (for
a command) or reading the response (for a query), to guarantee that no
protocol errors occurred during the transfer. Under the VXIbus
specification, the ERR* bit can be asserted at any time prior to
reasserting the WR bit. Do not use this function to send the Word
Serial commands Byte Available (BAV), Byte Request (BREQ),
Trigger, or Clear. All of these Word Serial commands require different
Response register polling techniques.

Chapter 3 Software Overview

© National Instruments Corporation 3-11 NI-VXI User Manual

 WSEcmd (la, cmdExt, cmd, respflag, response)
WSEcmd sends an Extended Word Serial command or query to a
message-based Servant. It polls the WR bit before sending the 48-bit
command. WSEcmd sends the command by writing the Data Extended
register first with the upper 16 bits of the command (cmdExt),
followed by the Data High register with the middle 16 bits of the
command (upper 16 bits of cmd), and concluding with the Data Low
register with the lower 16 bits of the command (lower 16 bits of cmd).
It then polls the RR bit before reading the 32-bit response from the
Data Low and Data High registers (there are no 48-bit responses for
Extended Longword Serial). WSEcmd polls the WR bit after either
sending the command (for a command) or reading the response (for a
query), to guarantee that no protocol errors occurred during the
transfer.

 WSgetTmo (actualtimo)
WSgetTmo retrieves the current timeout period for all of the
Commander Word Serial Protocol functions. It retrieves the current
timeout value in milliseconds to the nearest resolution of the host CPU.

 WSLcmd (la, cmd, respflag, response)
WSLcmd sends a Longword Serial command or query to a
message-based Servant. It polls the WR bit before sending the
command. WSLcmd sends the command by writing the Data High
register first with the upper 16 bits of the 32-bit command, and then
writing the Data Low register with the lower 16 bits of the 32-bit
command. It then polls the RR bit before reading the 32-bit response
from the Data Low and Data High registers. WSLcmd polls the WR bit
after either sending the command (for a command) or reading the
response (for a query), to guarantee that no protocol errors occurred
during the transfer.

 WSLresp (la, response)
WSLresp retrieves a response to a previously sent Longword Serial
Protocol query from a VXI message-based Servant.

Note: This function is intended only for debugging purposes.

Chapter 3 Software Overview

NI-VXI User Manual 3-12 © National Instruments Corporation

Normally, you would use the WSLcmd function to send Longword
Serial queries with the response automatically read (specified with
respflag). In cases when you need to inspect the Longword Serial
transfer at a lower level, however, you can break up the query sending
and query response retrieval by using the WSLcmd function to send the
query as a command, and using the WSLresp function to retrieve the
response. WSLresp polls the RR bit before reading the response from
the Data High and Data Low registers to form the 32-bit response.
After reading the response, it polls the Response register until the WR
bit is asserted to guarantee that no protocol errors occurred during the
transfer.

 WSrd (la, buf, count, modevalue, retcount)
WSrd is the word serial buffer read function. WSrd reads a specified
number of bytes from a Servant device into a local memory buffer,
using the VXIbus Byte Transfer Protocol. The process involves
sending a series of Byte Request (BREQ) Word Serial queries and
reading the responses. Each response contains a data byte in the lower
8 bits and the END bit in bit 8. Before sending the BREQ command,
WSrd polls both Response register bits—Data Out Ready (DOR) and
Write Ready (WR). It polls the Response register Read Ready (RR) bit
before reading the response from the Data Low register. The read
terminates when it receives a maximum number of bytes or if it
encounters an END bit, a carriage return (CR), a line feed (LF), or a
user-specified termination character.

 WSrdf (la, filename, count, modevalue, retcount)
WSrdf is an extension of the WSrd function. WSrdf reads a specified
number of bytes from a Servant device into the specified file, using the
VXIbus Byte Transfer Protocol. The process involves calling the
function WSrd (possibly many times) to read in a block of data and
writing the data to the specified file. The read terminates when it
receives a maximum number of bytes or if it encounters an END bit, a
carriage return (CR), a line feed (LF), or a user-specified termination
character.

 WSresp (la, response)
WSresp retrieves a response to a previously sent Word Serial Protocol
query from a VXI message-based Servant.

Note: This function is intended only for debugging purposes.

Chapter 3 Software Overview

© National Instruments Corporation 3-13 NI-VXI User Manual

Normally, you would use the WScmd function to send Word Serial
queries with the response automatically read (specified with respflag).
In cases when you need to inspect the Word Serial transfer at a lower
level, however, you can break up the query sending and query response
retrieval by using the WScmd function to send the query as a command
and using the WSresp function to retrieve the response. During the
interim period between sending the WScmd and WSresp functions, you
can check register values and other hardware conditions. WSresp polls
the RR bit before reading the response from the Data Low register.
After reading the response, it polls the Response register until the
WR bit is asserted.

 WSsetTmo (timo, actualtimo)
WSsetTmo sets the timeout period for all of the Commander Word
Serial Protocol functions. It sets the timeout value in milliseconds to
the nearest resolution of the host CPU. When a timeout occurs during a
Commander Word Serial Protocol function, the function terminates
with a corresponding error code.

 WStrg (la)
WStrg sends the Word Serial Trigger command to a message-based
Servant. Before sending the Trigger command (by writing to the Data
Low register), WStrg polls both Response register bits—Data In Ready
(DIR) and Write Ready (WR)—until asserted. You cannot use the
WScmd function to send the Word Serial Trigger command (WScmd

polls only for WR before sending the command). WStrg polls the
WR bit until asserted again after sending the Trigger command to
guarantee that no protocol errors occurred during the transfer.

 WSwrt (la, buf, count, modevalue, retcount)
This function is the buffer write function. WSwrt writes a specified
number of bytes from a memory buffer to a message-based Servant
using the VXIbus Byte Transfer Protocol. The process involves
sending a series of Byte Available (BAV) Word Serial commands with
a single byte in the lower 8 bits of the command. Before sending the
BAV command, WSwrt polls both Response register bits—Data In
Ready (DIR) and Write Ready (WR)—until asserted. The modevalue
parameter in the call specifies whether to send BAV only or BAV with
END for the last byte of the transfer.

Chapter 3 Software Overview

NI-VXI User Manual 3-14 © National Instruments Corporation

 WSwrtf (la, filename, count, modevalue, retcount)
WSwrtf is an extension of the WSwrt function. WSwrtf writes a
specified number of bytes from the specified file to a message-based
Servant using the VXIbus Byte Transfer Protocol. The process involves
calling the WSwrt function (possibly many times) to write out a block
of data read from the specified file. The modevalue parameter in the
call specifies whether to send BAV only or BAV with END for the last
byte of the transfer.

 Servant Word Serial Protocol Functions
Word Serial communication is the minimal mode of communication
between VXI message-based devices within the VXI
Commander/Servant hierarchy. The local CPU (the CPU on which the
NI-VXI functions are running) uses the Servant Word Serial functions
to perform VXI message-based Servant Word Serial communication
with its Commander. These functions are needed only in the case
where the local CPU is not a top-level Commander (probably not the
Resource Manager), such as in a multiple CPU situation. In a multiple
CPU situation, the local CPU must allow the Resource Manager device
to configure the local CPU and can optionally implement some basic
message-transfer Word Serial communication with its Commander.
The four basic types of Servant Word Serial functions are as follows:

• Receiving commands

• Receiving and responding to queries

• Responding to requests to send buffers

• Receiving buffers

The Word Serial Protocol is a 16-bit transfer protocol between a
Commander and its Servants. The Commander polls specific bits in the
Servant’s VXI Response register to determine when it can write a
command or read a response from the Data Low register. It also
determines when a Word Serial protocol error occurs. Before a
Commander can send a Word Serial command to a Servant, it must
first poll the Write Ready (WR) bit until it is asserted (set to 1). The
Commander can then write the command to the Data Low register. If
the Commander is sending a query, it first sends the query in the same
manner as sending a command, but then continues by polling the Read
Ready (RR) bit until it is asserted. It then reads the response from the
Data Low register.

Chapter 3 Software Overview

© National Instruments Corporation 3-15 NI-VXI User Manual

A buffer write is a series of Byte Available Word Serial commands sent
to the Servant, with the additional constraint that the Data In Ready
(DIR) bit as well as the WR bit must be asserted before sending the
Byte Available command. The lower 8 bits (bits 0 to 7) of the 16-bit
command contain a single byte of data (bit 8 is the END bit).
Therefore, one Byte Available is sent for each data byte in the buffer
written.

A buffer read is a series of Byte Request Word Serial queries sent to the
Servant, with the additional constraint that the Data Out Ready (DOR)
bit as well as the WR bit must be asserted before sending the Byte
Request. The lower 8 bits (bits 0 to 7) of the 16-bit response contain a
single byte of data (bit 8 is the END bit). Therefore, one Byte Request
is sent for each data byte in the buffer read.

In addition to polling the WR, RR, DIR, and DOR bits during various
Word Serial transfers, the functions also check the ERR* bit. The
ERR* bit indicates when a Word Serial Protocol error occurs. The
Word Serial Protocol errors are: Unsupported Command, Multiple
Query Error (MQE), DIR Violation, DOR Violation, RR Violation, or
WR Violation. The Servant Word Serial Protocol functions let the local
CPU generate any of the Word Serial Protocol errors and respond to
the Read Protocol Error Word Serial query with the corresponding
protocol error. The functions automatically handle asserting and
deasserting of the ERR* bit.

The Longword Serial and Extended Longword Serial Protocols are
similar to the Word Serial Protocol, but involve 32-bit and 48-bit
command transfers, respectively, instead of the 16-bit transfers of the
Word Serial Protocol. The VXI specification, however, provides no
common command usages for these protocols. The commands are
either VXI Reserved or User-Defined. The NI-VXI interface gives you
the ability to receive and process any one of these commands.

 Programming Considerations
Most of the Servant Word Serial functions require an interrupt handler.
The word serial commands must be parsed (and responded to) within
the appropriate interrupt handler. Word Serial commands Byte
Available (BAV) and Byte Request (BREQ) are handled as a special
case for reads and writes. For reads and writes, a user-supplied handler
is notified only that the transfer is complete and not for each byte
processed. Asserting and unasserting of all Response register bits

Chapter 3 Software Overview

NI-VXI User Manual 3-16 © National Instruments Corporation

(DIR, DOR, WR, RR, and ERR*) are done automatically within the
functions as required.

Figure 3-2 provides a graphical overview of the Servant Word Serial
functions.

ERROR

Hardware

WSScmdHandler

NI-VXI base Interrupt Service Routine (ISR)

WSSenable()
WSSdisable()

SetWSScmdHandler()

GetWSScmdHandler()

DefaultWSScmdHandler()

Read Command

WSSLcmdHandlerWSSrdHandler WSSEcmdHandlerWSSwrtHandler

SetWSSwrtHandler()

GetWSSwrtHandler()

DefaultWSSwrtHandler()

SetWSSrdHandler()

GetWSSrdHandler()

DefaultWSSrdHandler()

SetWSSLcmdHandler()

GetWSSLcmdHandler()

DefaultWSSLcmdHandler()

SetWSSLcmdHandler()

GetWSSLcmdHandler()

DefaultWSSLcmdHandler()

WSS? WSSL? WSSE?

if write pending and cmd is
 BREQ respond with next byte
 if done
 call WSSwrtHandler with
 status set WR and exit
else if read pending and cmd
 is BAV store byte in buffer
 if done
 call WSSrdHandler with
 status set WR and exit
else call WSScmdHandler

Local VXI Communication Registers
Write Data

Low High Ext

Read Data

Low High

Response

WR RR ERR*

WSSsendResp()
WSSLsendResp()

WSSwrt()

WSSrd()

NI-VXI

Software

User
Application

User
ISRs

Word Serial
Processor

RespProtError()

GenProtError()

(
u
i
n
t
1
6
)
c
m
d

(
u
i
n
t
1
6
)
c
m
d

(uint32)cmd

(uint16)cmdExt, (uint32)cmd

(
i
n
t
1
6
)
s
t
a
t
u
s
,

(
u
i
n
t
3
2
)
c
o
u
n
t

(
i
n
t
1
6
)
s
t
a
t
u
s
,

(
u
i
n
t
3
2
)
c
o
u
n
t

WSSnoResp()
WSSLnoResp()

Figure 3-2. NI-VXI Servant Word Serial Model

The following paragraphs describe the Servant Word Serial, Longword
Serial, and Extended Longword Serial Protocol functions. The
descriptions are grouped by functionality and are presented at a
functional level describing the operation of each of the functions.

Chapter 3 Software Overview

© National Instruments Corporation 3-17 NI-VXI User Manual

 DefaultWSScmdHandler (cmd)
DefaultWSScmdHandler is the default handler for the WSSwrt

interrupt, which InitVXIlibrary automatically installs when it
initializes the NI-VXI software. The current WSScmdHandler is called
whenever the local CPU Commander sends any Word Serial Protocol
command or query (other than BAV or BREQ). While Word Serial
operations are enabled, the WSScmd interrupt handler is called every
time a Word Serial command is received (other than BAV if a
WSSrd call is pending, or BREQ if a WSSwrt call is pending).
DefaultWSScmdHandler parses the commands and takes appropriate
action. If it is a query, it returns a response using the WSSsendResp

function. If it is a command, it calls the WSSnoResp function to
acknowledge it. If either a BREQ or BAV command is received via this
handler, it calls GenProtError with the corresponding protocol error
code (DOR violation or DIR violation). For unsupported commands,
the protocol error code sent to GenProtError is UnSupCom.

 DefaultWSSEcmdHandler (cmdExt, cmd)
DefaultWSSEcmdHandler is the default handler for the WSSwrt

interrupt, which InitVXIlibrary automatically installs when it
initializes the NI-VXI software. The current WSSEcmdHandler is
called whenever the local CPU Commander sends any Extended
Longword Serial Protocol command or query. While Word Serial
operations are enabled, the WSSEcmdHandler is called whenever a
Longword Serial command is received. WSSEcmdHandler must parse
the commands and take the appropriate action. Because the VXI
specification does not define any Extended Longword Serial
commands, DefaultWSSEcmdHandler calls GenProtError with a
protocol error code of UnSupCom for every Extended Longword Serial
command received.

 DefaultWSSLcmdHandler (cmd)
DefaultWSSLcmdHandler is the default handler for the WSSwrt

interrupt, which InitVXIlibrary automatically installs when it
initializes the NI-VXI software. The current WSSLcmdHandler is
called whenever the local CPU Commander sends any Longword Serial
Protocol command or query. While Word Serial operations are
enabled, the WSSLcmdHandler is called whenever a Longword Serial
command is received. The WSSLcmdHandler must parse the
commands and take the appropriate action. Because the VXI
specification does not define any Longword Serial commands,

Chapter 3 Software Overview

NI-VXI User Manual 3-18 © National Instruments Corporation

DefaultWSSLcmdHandler calls GenProtError with a protocol error
code of UnSupCom for every Longword Serial command received.

 DefaultWSSrdHandler (status, count)
DefaultWSSrdHandler is the default handler for the WSSrd interrupt,
which InitVXIlibrary automatically installs when it initializes the
NI-VXI software. When WSSrd reaches the specified count or an END
bit, or an error occurs, it calls the WSSrd interrupt handler with the
status of the call. The default handler sets the global variables
WSSrdDone, WSSrdDoneStatus , and WSSrdDoneCount . You can
use the variable WSSrdDone to poll until the operation is complete.
Afterwards, you can inspect WSSrdDoneStatus and
WSSrdDoneCount to see the outcome of the call. If you want, you can
use the SetWSSrdHandler function to install an alternate handler.

 DefaultWSSwrtHandler (status, count)
DefaultWSSwrtHandler is the default handler for the WSSwrt

interrupt, which InitVXIlibrary automatically installs when it
initializes the NI-VXI software. When WSSwrt reaches the specified
count or an error occurs, it calls the WSSwrt interrupt handler with the
status of the call. The default handler sets the global variables
WSSwrtDone, WSSwrtDoneStatus , and WSSwrtDoneCount . You can
use the variable WSSwrtDone to poll until the operation is complete.
Afterwards, you can inspect WSSwrtDoneStatus and
WSSwrtDoneCount to see the outcome of the call. If you want, you
can use the SetWSSwrtHandler function to install an alternate
handler.

 GenProtError (proterr)
In response to a Word Serial Protocol Error, the application should call
GenProtError to generate the error. Generating the error consists of
preparing the response to a future Read Protocol Error query (saving
the value in a global variable) and setting the ERR* bit in the local
Response register. The RespProtError function actually generates
the response when the Read Protocol Error query is received later.

 GetWSScmdHandler ()
GetWSScmdHandler returns the address of the current WSScmd

interrupt handler function. While Word Serial operations are enabled,
the WSScmd interrupt handler is called whenever a Word Serial
command (other than BREQ and BAV) is received.

Chapter 3 Software Overview

© National Instruments Corporation 3-19 NI-VXI User Manual

 GetWSSEcmdHandler ()
GetWSSEcmdHandler returns the address of the current WSSEcmd

interrupt handler function. While Word Serial operations are enabled,
the WSSEcmd interrupt handler will be called every time an Extended
Longword Serial command is received.

 GetWSSLcmdHandler ()
GetWSSLcmdHandler returns the address of the current WSSLcmd

interrupt handler function. While Word Serial operations are enabled,
the WSSLcmd interrupt handler is called whenever a Longword Serial
command is received.

 GetWSSrdHandler ()
GetWSSrdHandler returns the address of the current WSSrd interrupt
handler function. When WSSrd reaches the specified count or an END
bit, or an error occurs, it calls the WSSrd interrupt handler with the
status of the call.

 GetWSSwrtHandler ()
GetWSSwrtHandler returns the address of the current WSSwrt

interrupt handler function. When WSSwrt reaches the specified count
or an error occurs, it calls the WSSwrt interrupt handler with the status
of the call.

 RespProtError ()
When the Word Serial Read Protocol Error query is received,
RespProtError places the saved error response in the Data Low
register, sets the saved error response to ffffh (no error), unasserts
ERR*, and sets RR. If no previous error is pending, the value ffffh
(no error) is returned.

 SetWSScmdHandler (func)
SetWSScmdHandler replaces the current WSScmd interrupt handler
with an alternate handler. While Word Serial operations are enabled,
the WSScmd interrupt handler is called whenever a Word Serial
command is received (other than BAV if a WSSrd call is pending,
or BREQ if a WSSwrt call is pending). A default handler,
DefaultWSScmdHandler , is supplied in source code as an example,
and is automatically installed when InitVXIlibrary is called. The

Chapter 3 Software Overview

NI-VXI User Manual 3-20 © National Instruments Corporation

default handler provides examples of how to parse commands, respond
to queries, and generate protocol errors.

 SetWSSEcmdHandler (func)
SetWSSEcmdHandler replaces the current WSSEcmd interrupt handler
with an alternate handler. While Word Serial operations are enabled,
the WSSEcmd interrupt handler is called whenever an Extended
Longword Serial command is received. A default handler,
DefaultWSSEcmdHandler , is supplied in source code as an example,
and is automatically installed when InitVXIlibrary is called.

 SetWSSLcmdHandler (func)
SetWSSLcmdHandler replaces the current WSSLcmd interrupt handler
with an alternate handler. While Word Serial operations are enabled,
the WSSLcmd interrupt handler is called whenever a Longword Serial
command is received. A default handler, DefaultWSSLcmdHandler ,
is supplied in source code as an example, and is automatically installed
when InitVXIlibrary initializes the NI-VXI software.

 SetWSSrdHandler (func)
SetWSSrdHandler replaces the current WSSrd interrupt handler with
an alternate handler. When WSSrd reaches the specified count or an
END bit, or an error occurs, it calls the WSSrd interrupt handler with
the status of the call. A default handler, DefaultWSSrdHandler , is
automatically installed when InitVXIlibrary is called. The default
handler puts the status and read count in a global variable and flags the
operation complete.

 SetWSSwrtHandler (func)
SetWSSwrtHandler replaces the current WSSwrt interrupt handler
with an alternate handler. When WSSwrt reaches the specified count or
an error occurs, it calls the WSSwrt interrupt handler with the status of
the call. The DOR bit will be cleared before WR is set on the last byte
of transfer. InitVXIlibrary automatically installs a default handler,
DefaultWSSwrtHandler , when it initializes the NI-VXI software.
The default handler puts the status and read count in a global variable
and flags the operation complete.

Chapter 3 Software Overview

© National Instruments Corporation 3-21 NI-VXI User Manual

 WSSabort (abortop)
WSSabort aborts the Servant Word Serial operation(s) in progress. It
returns an error code of ForcedAbort to the WSSrd or WSSwrt

interrupt handlers in response to the corresponding pending functions.
This may be necessary if the application needs to abort for some
application-specific reason, or if the Commander of this device sends a
Word Serial Clear, End Normal Operation, or Abort command.

 WSSdisable ()
WSSdisable disables all Servant Word Serial functions from being
used. More precisely, this function desensitizes the local CPU to
interrupts generated when writing a Word Serial command to the Data
Low register or reading a response from the Data Low register.

 WSSenable ()
WSSenable enables all Servant Word Serial functions. More precisely,
this function sensitizes the local CPU to interrupts generated when
writing a Word Serial command to the Data Low register or reading a
response from the Data Low register. By default, the Servant Word
Serial functions are disabled. At any time after InitVXIlibrary

initializes the NI-VXI software, you can call WSSenable to set up
processing of Servant Word Serial commands and queries.

 WSSLnoResp ()
WSSLnoResp sets the WR bit so that it is ready to accept any further
Longword Serial commands. The WSSLcmd interrupt handler should
call WSSLnoResp after processing a Longword Serial command (it
calls WSSLsendResp for Longword Serial queries).

 WSSLsendResp (response)
WSSLsendResp responds to a Longword Serial Protocol query from a
VXI message-based Commander device. The WSSLcmd interrupt
handler calls this function to respond to a Longword Serial query. If a
previous response has not been read yet, a WSSLsendResp call
generates a Multiple Query Error (MQE). Otherwise, it writes a
response value to the Data High and Data Low registers and sets the
RR bit. It also sets the WR bit so that it is ready to accept any further
Word Serial commands.

Chapter 3 Software Overview

NI-VXI User Manual 3-22 © National Instruments Corporation

 WSSnoResp ()
WSSnoResp sets the WR bit so that it is ready to accept any further
Word Serial commands. The WSScmd interrupt handler should call
WSSnoResp after processing a Word Serial command (it calls
WSSsendResp for a Word Serial query, which requires a response).

 WSSrd (buf, count, modevalue)
WSSrd is the buffer read function. WSSrd receives a specified number
of bytes from a VXI message-based Commander device and places the
bytes into a memory buffer, using the VXIbus Byte Transfer Protocol.
The process involves setting the DIR and WR bits on the local CPU
Response register and building a buffer out of data bytes received via a
series of Byte Available (BAV) Word Serial commands. When WSSrd

reaches the specified count or an END bit, or an error occurs, it calls
the WSSrd interrupt handler with the status of the call. It clears the DIR
bit before setting the WR on the last byte of transfer.

 WSSsendResp (response)
WSSsendResp responds to a Word Serial Protocol query from a VXI
message-based Commander device. The WSScmd interrupt handler calls
this function to respond to a Word Serial query. If a previous response
has not been read yet, a WSSsendResp call generates a Multiple Query
Error (MQE). Otherwise, it writes a response value to the Data Low
register and sets the RR bit is. It also sets the WR bit so that it is ready
to accept any further Word Serial commands.

 WSSwrt (buf, count, modevalue)
WSSwrt sends a specified number of bytes to a VXI message-based
Commander device, using the VXIbus Byte Transfer Protocol. The
process involves setting the DOR and WR bits in the local Response
register and responding to a series of Byte Request (BREQ) Word
Serial commands. When the data output completes or an error occurs,
WSSwrt calls its interrupt handler with the status of the call. Before
responding to the last byte of the write, it clears DOR to prevent
another BREQ from being sent before the application is able to handle
the BREQ properly.

Chapter 3 Software Overview

© National Instruments Corporation 3-23 NI-VXI User Manual

 High-Level VXI/VMEbus Access Functions
You can use both low-level and high-level VXI/VMEbus access
functions to read or write to VXI/VMEbus addresses. These are
required in many situations, including the following:

• Register-based device/instrument drivers

• Non-VXI/VME device/instrument drivers

• Accessing device-dependent registers on any type of VXI/VME
device

• Implementing shared memory protocols

Low-level and high-level access to the VXI/VMEbus, as the NI-VXI
interface defines them, are very similar. Both sets of functions can
perform direct reads of and writes to any VXI/VMEbus address space
with any privilege state or byte order. However, the two interfaces have
different emphases with respect to user protection, error checking, and
access speed. For example, your application must check error
conditions such as Bus Error (BERR*) separately when using low-level
accesses.

High-level VXI/VMEbus access functions need not take into account
any of the considerations that are required by the low-level VXIbus
access functions. The high-level VXI/VMEbus access functions have
all necessary information for accessing a particular VXI/VMEbus
address wholly contained within the function parameters. The
parameters prescribe the address space, privilege state, byte order, and
offset within the address space. High-level VXI/VMEbus access
functions automatically trap bus errors and return an appropriate error
status. Using the high-level VXI/VMEbus access functions involves
more overhead, but if overall throughput of a particular access (for
example, configuration or small number of accesses) is not the primary
concern, the high-level VXI/VMEbus access functions act as an
easy-to-use interface for VXI/VMEbus accesses.

 Programming Considerations
All accesses to the VXI/VMEbus address spaces performed by use of
the high-level VXI/VMEbus access functions are fully protected. The
hardware interface settings (context) for the applicable window are
saved on entry to the function and restored upon exit. No other
functions in the NI-VXI interface, including the low-level
VXI/VMEbus access functions, will conflict with the high-level

Chapter 3 Software Overview

NI-VXI User Manual 3-24 © National Instruments Corporation

VXI/VMEbus access functions. You can use both high-level and
low-level VXI/VMEbus access functions at the same time.

The following paragraphs describe the high-level VXI/VMEbus access
functions.

 VXIin (accessparms, address, width, value)
VXIin reads a single byte, word, or longword from a particular
VXI/VME address in one of the VXI address spaces. The parameter
accessparms specifies the VXI/VME address space, the VXI privilege
access, and the byte order to use with the access. The address
parameter specifies the offset within the particular VXI/VME address
space. The width parameter selects either byte, word, or longword
transfers. The value read from the VXI/VMEbus returns in the output
parameter value. If the VXI/VME address selected has no device
residing at the address and a bus error occurs, VXIin traps the bus error
condition and indicates the error through the return status.

 VXIinReg (la, reg, value)
VXIinReg reads a single 16-bit value from a particular VXI device’s
VXI registers within the logical address space (the upper 16 KB of VXI
A16 address space). The function sets the VXI access privilege to
Nonprivileged Data and the byte order to Motorola. If the VXI address
selected has no device residing at the address and a bus error occurs,
VXIinReg traps the bus error condition and indicates the error through
the return status. This function is mainly for convenience and is a layer
on top of VXIinLR and VXIin . If the la specified is the local CPU
logical address, it calls the VXIinLR function. Otherwise, it calculates
the A16 address of the VXI device’s register and calls VXIin .

Note: VXIinReg is designed to access a VXIbus device configuration register
and therefore is not applicable to VME devices.

 VXImove (srcparms, srcaddr, destparms, destaddr, length, width)
VXImove moves a block of bytes, words, or longwords from a
particular address in one of the available address spaces (local, A16,
A24, A32) to any other address in any one of the address spaces. The
parameters srcparms and destparms specify the address space, the
privilege access, and the byte order used to perform the access for the
source address and the destination address, respectively. The srcaddr
and destaddr parameters specify the offset within the particular

Chapter 3 Software Overview

© National Instruments Corporation 3-25 NI-VXI User Manual

address space for the source and destination, respectively. The width
parameter selects either byte, word, or longword transfers. If one of the
addresses selected has no device residing at the address and a bus error
occurs, VXImove traps the bus error condition and indicates the error
through the return status.

 VXIout (accessparms, address, width, value)
VXIout writes a single byte, word, or longword to a particular
VXI/VME address in one of the VXI/VME address spaces. The
parameter accessparms specifies the VXI address space, the VXI
privilege access, and the byte order to use with the access. The address
parameter specifies the offset within the particular VXI/VME address
space. The width parameter selects either byte, word, or longword
transfers. If the VXI/VME address selected has no device residing at
the address and a bus error occurs, VXIout traps the bus error
condition and indicates the error through the return status.

 VXIoutReg (la, reg, value)
VXIoutReg writes a single word to a particular VXI device’s VXI
registers within the logical address space (the upper 16 KB of VXI
A16 address space). The function sets the VXI access privilege to
Nonprivileged Data and the byte order to Motorola. If the VXI address
selected has no device residing at the address and a bus error occurs,
VXIinReg traps the bus error condition and indicates the error through
the return status. This function is mainly for convenience and is a layer
on top of VXIoutLR and VXIout . If the la specified is the local CPU
logical address, it calls the VXIoutLR function. Otherwise, it calculates
the A16 address of the VXI device’s register and calls VXIout .

Note: VXIoutReg is designed to access a VXIbus device configuration register
and therefore is not applicable to VME devices.

Chapter 3 Software Overview

NI-VXI User Manual 3-26 © National Instruments Corporation

 Low-Level VXI/VMEbus Access Functions
This section describes the use of the low-level VXI/VMEbus access
functions. You can use both low-level and high-level VXI/VMEbus
access functions to directly read or write to VXI/VMEbus addresses.
Some of the situations that require direct reads and writes to the
different VXI/VMEbus address spaces include the following:

• Register-based device/instrument drivers

• Non-VXI device/instrument drivers

• Accessing device-dependent registers on any type of VXI/VME
device

• Implementing shared memory protocols

Low-level and high-level access to the VXI/VMEbus, as the NI-VXI
interface defines them, are very similar in nature. Both sets of functions
can perform direct reads of and writes to any VXI/VMEbus address
space with any privilege state or byte order. However, the two
interfaces have different emphases with respect to user protection, error
checking, and access speed.

Low-level VXI/VMEbus access is the fastest access method (in terms
of overall throughput to the device) for directly reading or writing
to/from any of the VXI/VMEbus address spaces with random memory
accesses. Under many platforms, the high-level operation VXImove

provides the fastest access in terms of block moves. As such, however,
it is more detailed and leaves more issues for the application to resolve.
You can use these functions to obtain pointers that are directly mapped
to a particular VXI/VMEbus address with a particular VXI/VME
access privilege and byte ordering. You need to consider a number of
issues when using the direct pointers:

• You need to determine bounds for the pointers.

• Based on the methods in which a particular hardware platform sets
up access to VXI/VME address spaces, using more than one pointer
can result in conflicts.

• Your application must check error conditions such as Bus Error
(BERR*) separately.

Chapter 3 Software Overview

© National Instruments Corporation 3-27 NI-VXI User Manual

 Programming Considerations
All accesses to the VXI/VMEbus address spaces are performed by
reads and writes to particular offsets within the local CPU address
space, which are made to correspond to addresses on the VXI/VMEbus
(using a hardware interface). The areas where the address space of the
local CPU is mapped onto the VXI/VMEbus are referred to as
windows. The sizes and numbers of windows present vary depending
on the hardware being used. The size of the window is always a power
of two, where a multiple of the size of the window would encompass
an entire VXI/VMEbus address space. The multiple for which a
window currently can access is determined by modifying a window
base register.

The constraints of a particular hardware platform lead to restrictions on
the area of address space reserved for windows into VXI/VMEbus
address spaces. Be sure to take into account the number and size of the
windows provided by a particular platform. If a mapped pointer is to be
incremented or decremented, the bounds for accessing within a
particular address space must be tested before accessing within the
space.

NI-VXI uses a term within this chapter called the hardware
(or window) context. The hardware context for window to VXI/VME
consists of the VXI/VME address space being accessed, the base offset
into the address space, the access privilege, and the byte order for the
accesses through the window. Before accessing a particular address,
you must set up the window with the appropriate hardware context.
You can use the MapVXIAddress function for this purpose. This
function returns a pointer that you can use for subsequent accesses to
the window with the VXIpeek and VXIpoke functions.

On most systems, VXIpeek and VXIpoke are really C macros
(#defines) that dereference the pointer. It is highly recommended to
use these functions instead of performing the direct dereference within
the application. If your application does not use VXIpeek and
VXIpoke , it might not be portable between different platforms. In
addition, VXIpeek and VXIpoke allow for compatibility between the
C language and other languages such as BASIC.

Chapter 3 Software Overview

NI-VXI User Manual 3-28 © National Instruments Corporation

 Multiple-Pointer Access for a Window
Application programmers can encounter a potential problem when the
application requires different privilege states, byte orders, and/or base
addresses within the same window. If the hardware context changes
due to a subsequent call to MapVXIAddress or other calls such as
SetPrivilege or SetByteOrder , previously mapped pointers would
not have their intended access parameters. This problem is greater in a
multitasking system, where independent and conflicting processes can
change the hardware context. Two types of access privileges to a
window are available to aid in solving this problem: Owner Privilege,
and Access-Only Privilege. These two privileges define which caller of
the MapVXIAddress function can change the settings of the
corresponding window.

 Owner Privilege
A caller can obtain Owner Privilege to a window by requesting owner
privilege in the MapVXIAddress call (via the accessparms parameter).
This call will not succeed if another process already has either Owner
Privilege or Access-Only Privilege to that window. If the call succeeds,
the function returns a valid pointer and a non-negative return value.
The 32-bit windowId output parameter returned from the
MapVXIAddress call associates the C pointer returned from the
function with a particular window and also signifies Owner Privilege to
that window. Owner Privilege access is complete and exclusive. The
caller can use SetPrivilege , SetByteOrder , and SetContext with
this windowId to dynamically change the access privileges.

Notice that if the call to MapVXIAddress succeeds for either Owner
Privilege or Access-Only Privilege, the pointer remains valid in both
cases until an explicit UnMapVXIAddress call is made for the
corresponding window. The pointer is guaranteed to be a valid pointer
in either multitasking systems or nonmultitasking systems. The
advantage with Owner Privilege is that it gives complete and exclusive
access for that window to the caller, so you can dynamically change the
access privileges. Because no other callers can succeed, there is no
problem with either destroying another caller’s access state or having
an inconsistent pointer environment.

 Access-Only Privilege
A process can obtain Access-Only Privilege by requesting access-only
privileges in the MapVXIAddress call. With this privilege mode, you

Chapter 3 Software Overview

© National Instruments Corporation 3-29 NI-VXI User Manual

can have multiple pointers in the same process or over multiple
processes to access a particular window simultaneously, while still
guaranteeing that the hardware context does not change between
accesses. The call succeeds under either of the following conditions:

• No processes are mapped for the window (first caller for
Access-Only Privilege for this window). The hardware context is
set as requested in the call. The call returns a successful status and a
valid C pointer and windowId for Access-Only Privilege.

• No process currently has Owner Privilege to the required window.
There are processes with Access-Only Privilege, but they are using
the same hardware context (privilege state, byte order, address
range) for their accesses to the window. Because the hardware
context is compatible, it does not need to be changed. The call
returns a successful status and a valid C pointer and windowId for
Access-Only Privilege.

The successful call returns a valid pointer and a non-negative return
value. The 32-bit window number signifies that the access privileges to
the window are Access-Only Privilege.

With Access-Only Privilege, you cannot use the SetPrivilege ,
SetByteOrder , and SetContext calls in your application to
dynamically change the hardware context. No Access-Only accessor
can change the state of the window. The initial Access-Only call sets
the hardware context for the window, which cannot be changed until
all Access-Only accessors have called UnMapVXIAddress to free the
window. The functions GetPrivilege , GetByteOrder , and
GetContext will succeed regardless of whether the caller has Owner
Privilege or Access-Only Privilege.

The following paragraphs describe the low-level VXIbus access
functions. The descriptions are presented at a functional level
describing the operation of each of the functions. The functions are
grouped by area of functionality.

Note: On MITE-based platforms, MapVXIAddress cannot be called while the
CPU is in interrupt context. For this reason, it is recommended that you
not use the SaveContext and RestoreContext functions. Due to the
multiple window support of the MITE, you should not need these
functions.

Chapter 3 Software Overview

NI-VXI User Manual 3-30 © National Instruments Corporation

 GetByteOrder (window, ordermode)
GetByteOrder retrieves the byte/word order of data transferred into
or out of the specified window. The two possible settings are Motorola
(most significant byte/word first) or Intel (least significant byte/word
first). The application can have either Owner-Access Privilege or
Access-Only Privilege to the applicable window for this function to
execute successfully.

 GetContext (window, context)
GetContext retrieves all of the hardware interface settings (context)
for a particular VXI/VME window. The application can have either
Owner Access Privilege or Access-Only Privilege to the applicable
window for this function to execute successfully. Any application can
use GetContext along with SetContext to save and restore the
VXI/VME interface hardware state (context) for a particular window.

 GetPrivilege (window, priv)
GetPrivilege retrieves the current windowing hardware
VXI/VMEbus access privileges for the specified window. The possible
privileges include Nonprivileged Data, Supervisory Data,
Nonprivileged Program, Supervisory Program, Nonprivileged Block,
and Supervisory Block access. The application can have either
Owner-Access Privilege or Access-Only Privilege to the applicable
window for this function to execute successfully.

 GetVXIbusStatus (controller, status)
GetVXIbusStatus retrieves information about the current state of the
VXI/VMEbus.

The information that is returned includes the state of the Sysfail,
ACfail, VXI/VME interrupt, TTL trigger, and ECL trigger lines as
well as the number of VXI signals on the global signal queue. This
information returns in a C structure containing all of the known
information. An individual hardware platform might not support all
of the different hardware signals polled. In this case, a value of -1 is
returned for the corresponding field in the structure. Interrupt service
routines can automatically handle all of the conditions retrieved from
this function, if enabled to do so. You can use this function for simple
polled operations.

Chapter 3 Software Overview

© National Instruments Corporation 3-31 NI-VXI User Manual

 GetVXIbusStatusInd (controller, field, status)
GetVXIbusStatusInd retrieves information about the current state of
the VXI/VMEbus.

The information that can be returned includes the state of the Sysfail,
ACfail, VXI interrupt, TTL trigger, or ECL trigger lines as well as the
number of VXI signals on the global signal queue. The specified
information returns in a single integer value. The field parameter
specifies the particular VXI/VMEbus information to be returned. An
individual hardware platform might not support the specified hardware
signals polled. In this case, a value of -1 is returned in status. Interrupt
service routines can automatically handle all of the conditions retrieved
from this function, if enabled to do so. You can use this function for
simple polled operations.

 GetWindowRange (window, windowbase, windowend)
GetWindowRange retrieves the range of addresses that a particular
VXI/VMEbus window can currently access within a particular
VXI/VMEbus address space. The windowbase and windowend output
parameters are based on VXI/VME addresses (not local CPU
addresses). The window parameter value should be the value returned
from a MapVXIAddress call. The VXI/VME address space being
accessed is inherent in the window parameter.

 MapVXIAddress (accessparms, address, timo, window, ret)
MapVXIAddress sets up a window into one of the VXI/VME address
spaces and returns a pointer to a local address that will access the
specified VXI/VME address. The accessparms parameter specifies
Owner Privilege/Access-Only Privilege, the VXI/VME address space,
the VXI/VME access privilege, and the byte ordering. The value of the
timo parameter gives the time (in milliseconds) that the process
will wait checking for window availability. The function returns
immediately if the window is already available, or if the timo value
is 0. The timo field is ignored in a uniprocess (nonmultitasking)
system. The return value in window gives a unique window identifier
that various calls such as GetWindowRange or GetContext use to get
window settings. When a request for Owner Privilege is granted, you
can also use this window identifier with calls such as SetContext or
SetPrivilege to change the hardware context for that window.

Chapter 3 Software Overview

NI-VXI User Manual 3-32 © National Instruments Corporation

 MapVXIAddressSize (size)
MapVXIAddressSize sets the size for mapping user windows. The
subsequent calls to MapVXIAddress will attempt to map a window of
the size passed to MapVXIAddressSize . MapVXIAddressSize only
provides a preferred size to the MapVXIAddress . If it is not possible to
map a window to the given size, MapVXIAddress can use a different
size. To determine the exact size of window mapped, use the
GetWindowRange function.

Note: Not all platforms support MapVXIAddressSize .

 SetByteOrder (window, ordermode)
SetByteOrder sets the byte/word order of data transferred into or out
of the specified window. The two possible settings are Motorola (most
significant byte/word first) or Intel (least significant byte/word first).
The application must have Owner-Access Privilege to the applicable
window for this function to execute successfully. Notice that some
hardware platforms do not allow you to change the byte order of a
window, which is reflected in the return code of the call to
SetByteOrder . Most Intel processor-based hardware platforms
support both byte order modes. Most Motorola processor-based
hardware platforms support only the Motorola byte order mode,
because the VXI/VMEbus is based on Motorola byte order.

 SetContext (window, context)
SetContext sets all of the hardware interface settings (context)
for a particular VXI/VME window. The application must have
Owner-Access Privilege to the applicable window for this function to
execute successfully. Any application can use GetContext along with
SetContext to save and restore the VXI/VME interface hardware
state (context) for a particular window. As a result, the application can
set the hardware context associated with a particular pointer into
VXI/VME address spaces (obtained from MapVXIAddress). After
making a MapVXIAddress call for Owner Access to a particular
window (and possibly calls to SetPrivilege and SetByteOrder),
you can call GetContext to save this context for later restoration by
SetContext .

Chapter 3 Software Overview

© National Instruments Corporation 3-33 NI-VXI User Manual

 SetPrivilege (window, priv)
SetPrivilege sets the VXI/VMEbus windowing hardware to access
the specified window with the specified VXI/VMEbus access privilege.
The possible privileges include Nonprivileged Data, Supervisory Data,
Nonprivileged Program, Supervisory Program, Nonprivileged
Block, and Supervisory Block access. The application must have
Owner-Access Privilege to the applicable window for this function to
execute successfully. Notice that some platforms may not support all of
the privilege states. This is reflected in the return code of the call to
SetPrivilege . Nonprivileged Data transfers must be supported
within the VXI/VME environment, and are supported on all hardware
platforms.

 UnMapVXIAddress (window)
UnMapVXIAddress reallocates the window mapped using the
MapVXIAddress function. If the caller is an Owner-Privilege accessor
(only one is permitted), the window is free to be remapped. If the caller
is an Access-Only Privilege accessor, the window can be remapped
only if the caller is the last Access-Only accessor. After a call is made
to UnMapVXIAddress , the pointer obtained from MapVXIAddress is
no longer valid. You should no longer use the pointer because a
subsequent call may have changed the settings for the particular
window, or the window may no longer be accessible at all.

 VXIpeek (addressptr, width, value)
VXIpeek reads a single byte, word, or longword from a particular
address obtained by MapVXIAddress . On most platforms using
C language interfaces, VXIpeek is a macro. It is recommended,
however, that you use VXIpeek instead of a direct dereference of the
pointer, as it supports portability between different platforms and
programming languages.

 VXIpoke (addressptr, width, value)
VXIpoke writes a single byte, word, or longword to a particular
address obtained by MapVXIAddress . On most platforms using
C language interfaces, VXIpoke is a macro. It is recommended,
however, that you use VXIpoke instead of a direct dereference of the
pointer, as it supports portability between different platforms and
programming languages.

Chapter 3 Software Overview

NI-VXI User Manual 3-34 © National Instruments Corporation

 Local Resource Access Functions
Local resources are hardware and/or software capabilities that are
reserved for the local CPU (the CPU on which the NI-VXI interface
resides). You can use these functions to gain access to miscellaneous
local resources such as the local CPU register set and the local CPU
Shared RAM. These functions are useful for shared memory type
communication, non-Resource Manager operation, and debugging
purposes.

The following paragraphs describe the local resource access functions.
The descriptions are presented at a functional level describing the
operation of each of the functions. The functions are grouped by area
of functionality.

 GetMyLA
GetMyLA retrieves the logical address of the local VXI/VME device.
The local CPU VXI/VME logical address is required for retrieving
configuration information with one of the GetDevInfo functions. The
local CPU VXI/VME logical address is also required for creating
correct VXI signal values to send to other devices.

 ReadMODID (modid)
ReadMODID senses the MODID line drivers of the local CPU when
configured as a VXI Slot 0 device. The modid output parameter returns
the polarity of each of the slot’s MODID lines.

 SetMODID (enable, modid)
SetMODID controls the MODID line drivers of the local CPU when
configured as a VXI Slot 0 device. The enable parameter enables the
MODID drivers for all the slots. The modid parameter specifies which
slots should have their corresponding MODID lines asserted.

Note: The MODID lines are unique to the VXIbus and has no meaning on a
VMEbus.

Chapter 3 Software Overview

© National Instruments Corporation 3-35 NI-VXI User Manual

 VXIinLR (reg, width, value)
VXIinLR reads a single byte, word, or longword from the local CPU
VXI/VME registers. On many CPUs, the local CPU VXI/VME
registers cannot be accessed from the local CPU in the A16 address
space window (due to hardware limitations). Another area in the local
CPU address space is reserved for accessing the local CPU VXI
registers. VXIinLR is designed to read these local registers. The
VXI/VME access privilege is not applicable but can be assumed to be
Nonprivileged Data. The byte order is Motorola. Unless otherwise
specified, reads should always be performed as words. This function
can be used to read configuration information (manufacturer, model
code, and so on) for the local CPU.

 VXImemAlloc (size, useraddr, vxiaddr)
VXImemAlloc allocates physical RAM from the operating system’s
dynamic memory pool. This RAM will reside in the VXI/VME Shared
RAM region of the local CPU. VXImemAlloc returns not only the user
address that the application uses, but also the VXI/VME address that a
remote device would use to access this RAM. This function is very
helpful on virtual memory systems, which require contiguous,
locked-down blocks of virtual-to-physical RAM. On non-virtual
memory systems, this function is a malloc (standard C dynamic
allocation routine) and an address translation. When the application is
finished using the memory, it should make a call to VXImemFree to
return the memory to the operating system’s dynamic memory pool.

 VXImemCopy (useraddr, bufaddr, size, dir)
VXImemCopy copies blocks of memory to or from the local user’s
address space into the local shared memory region. On some interfaces,
your application cannot directly access local shared memory.
VXImemCopy gives you fast access to this local shared memory.

 VXImemFree (useraddr)
VXImemFree reallocates physical RAM from the operating system’s
dynamic memory pool allocated using VXImemAlloc . VXImemAlloc

returns not only the user address that the application uses, but also the
VXI address that a remote device would use to access this RAM. When
the application is through using the memory, it should make a call to
VXImemFree (with the user address) to return the memory to the
operating system’s dynamic memory pool.

Chapter 3 Software Overview

NI-VXI User Manual 3-36 © National Instruments Corporation

 VXIoutLR (reg, width, value)
VXIoutLR writes a single byte, word, or longword to the local CPU
VXI/VME registers. On many CPUs, the local CPU VXI/VME
registers cannot be accessed from the local CPU in the A16 address
space window (due to hardware limitations). Another area in the local
CPU address space is reserved for accessing the local CPU VXI
registers. VXIoutLR is designed to write to these local VXI/VME
registers. The VXI/VME access privilege is not applicable but can be
assumed to be Nonprivileged Data. The byte order is Motorola. Unless
otherwise specified, writes should always be performed as words. This
function can be used to write application specific registers (A24 pointer
register, A32 pointer register, and so on) for the local CPU.

 VXI Signal Functions
With these functions, VXI/VME bus master devices can interrupt
another device. VXI signal functions can specify the signal routing,
manipulate the global signal queue, and wait for a particular signal
value (or set of values) to be received.

VXI signals are a basic form of asynchronous communication used by
VXI/VME bus master devices. A VXI signal is a 16-bit value written to
the Signal register of a VXI message-based device. Normally, the write
to the Signal register generates a local CPU interrupt, and the local
CPU then acquires the signal value in some device-specific manner. All
National Instruments hardware platforms have a hardware FIFO to
accumulate signal values while waiting for the local CPU to retrieve
them. The format of the 16-bit signal value is defined by the VXIbus
specification and is the same as the format used for the VXI interrupt
status/ID word that is returned during a VXI interrupt acknowledge
cycle. All VXI signals and status/ID values contain the VXI logical
address of the sending device in the lower 8 bits of the VXI signal or
status/ID value. The upper 8 bits of the 16-bit value depends on the
VXI device type.

Note: For VME bus master devices, the VXI signal register can be considered a
general purpose notification register. Although the VXIbus specification
defines the use for this register, you can program the application on the
controller to respond to write to this register in any manner you require.

Chapter 3 Software Overview

© National Instruments Corporation 3-37 NI-VXI User Manual

VXI signals from message-based devices can be one of two types:
Response signals and Event signals (bit 15 distinguishes between the
two). Response signals are used to report changes in Word Serial
communication status between a Servant and its Commander. Event
signals are used to inform another device of other asynchronous
changes. The four Event signals currently defined by the VXIbus
specification (other than Shared Memory Events) are No Cause Given,
Request for Service True (REQT), Request for Service False (REQF),
and Unrecognized Command. REQT and REQF are used to manipulate
the SRQ condition (RSV bit assertion in the IEEE 488/488.2 status
byte) while Unrecognized Command is used to report unsupported
Word Serial commands (only in VXIbus specification, Revision 1.2).
If the sender of a signal (or VXI interrupt status/ID) value is a
register-based device, the upper 8 bits are device dependent. Consult
your device manual for definitions of these values.

Two methods are available to handle VXI signals under the NI-VXI
software interface. Signals can be handled either by calling a handler or
by queuing on a global signal queue. The RouteSignal function
specifies which types of signals are handled by the handlers, and which
are queued onto the global signal queue for each VXI logical address.
A separate handler can be installed for each VXI logical address
present (see the description of SetSignalHandler). The
InitVXIlibrary function automatically installs a default handler,
DefaultSignalHandler , for every VXI logical address. If signals
are queued, the application can use the SignalDeq function to
selectively retrieve a signal off a global signal queue by VXI logical
address and/or type of signal.

In another method for handling signals (and VXI/VME interrupts
routed to signals) other than the two previous methods, you can use
the function WaitForSignal . This function can suspend a
process/function until a particular signal (or one of a set of signals)
arrives. A multitasking operating system lets you have any number of
WaitForSignal calls pending. A non-multitasking operating system
permits only one pending WaitForSignal call. Notice that even on a
multitasking operating system, there is only one signal queue for the
entire system. Therefore, if two applications both wait on the same
logical address, it will be a race condition as to which process will
receive the signal.

Chapter 3 Software Overview

NI-VXI User Manual 3-38 © National Instruments Corporation

 Programming Considerations
The global signal queue used to hold signal values is of a finite length.
If the application is not handling signals fast enough, it is theoretically
possible to fill the global signal queue. If the global signal queue
becomes full, DisableSignalInt is called to inhibit more signals
from being received. Under the VXIbus specification, if the local CPU
signal FIFO becomes full (in which case a signal be lost if another
signal is written), the local CPU must return a bus error on any
subsequent writes to its Signal register. This bus error condition
notifies the sending CPU that the signal transfer needs to be retried.
This guarantees the application that, even if the global signal queue
becomes full, no signals will be lost.

In addition to DisableSignalInt , the DisableVXItoSignalInt

function is also called to disable VXI/VME interrupts from occurring
on levels that are routed to the signal Processor. When SignalDeq is
called to remove a signal from the global signal queue, the interrupts
for the Signal register and the VXI/VME interrupt levels routed to the
signal handler are automatically re-enabled.

If signals received never get dequeued, the global signal queue
eventually becomes full and the interrupts will be disabled forever. If
the signals were routed to the DefaultSignalHandler , all except
Unrecognized Command Events from message-based devices perform
no operation. Unrecognized Command Events call the function
WSabort to abort the current Word Serial operation in progress.

Chapter 3 Software Overview

© National Instruments Corporation 3-39 NI-VXI User Manual

Figure 3-3 provides a graphical overview of the NI-VXI interrupt and
signal functions.

RouteVXIint()

VXI/VME Interrupts 1-7Hardware

NI-VXI

Software

User
Application

VXIintHandlers SignalHandlers

NI-VXI base Interrupt Service Routines (ISR)

Local VXI Signals

EnableSignalInt()
DisableSignalInt()

RouteSignal()

EnableVXIint()
DisableVXIint()

EnableVXItoSignalInt()
DisableVXItoSignalInt()

SetVXIintHandler()

GetVXIintHandler()

DefaultVXIintHandler()

SignalEnq()

User

ISRs (1 per VXI/VME interrupt level) (1 per logical address)

SetSignalHandler()

GetSignalHandler()

DefaultSignalHandler()

Signal Processor

S
ig

na
l Q

ue
ue

WaitForSignal()

If signal not on queue
 enable monitor
 block till received
else
 SignalDeq()
return signal, mask

SignalDeq()

(
u
i
n
t
1
6
)
s
i
g
n
a
l

SignalEnq()
SignalDeq()

SignalJam()

(uint16)statusId

WaitForSignal()

(
u
i
n
t
1
6
)
l
e
v
e
l
,

(
u
i
n
t
3
2
)
s
t
a
t
u
s
I
d

(uint16)signal

(
u
i
n
t
1
6
)
s
i
g
n
a
l

Get SignalGet Status/Id

VXIintAcknowledgeMode()

Figure 3-3. NI-VXI Interrupt and Signal Model

 WaitForSignal Considerations
The function WaitForSignal can be used to suspend a
process/function until a particular VXI signal (or one of a set of
signals) arrives. Any signals to be waited on should be routed to the
global signal queue. If the RouteSignal function has specified
for the signal to be handled by the interrupt service routine, the
WaitForSignal call will not detect that the signal and the
process/function may block until a timeout. WaitForSignal attempts
to dequeue a signal of the specified type before the process/function is
suspended. If an appropriate signal can be dequeued, the signal is

Chapter 3 Software Overview

NI-VXI User Manual 3-40 © National Instruments Corporation

returned immediately to the caller and the process/function is not
suspended.

The following paragraphs describe the VXI signal functions and
default handler. The descriptions are presented at a functional level
describing the operation of each of the functions. The functions are
grouped by area of functionality.

 DefaultSignalHandler (signal)
DefaultSignalHandler is the sample handler for VXI signals that
is installed when the InitVXIlibrary function is called for every
applicable VXI logical address. The default handler performs no action
on the signals except when Unrecognized Command Events are
received. For these events, it calls the function WSabort with an
abortop of UnSupCom to abort the current Word Serial transfer in
progress.

 DisableSignalInt ()
DisableSignalInt desensitizes the application to local signal
interrupts. While signal interrupts are disabled, a write to the local
CPU VXI Signal register does not cause an interrupt on the local CPU;
instead, the local CPU hardware signal FIFO begins to fill up. If the
hardware FIFO becomes full, bus errors will occur on subsequent
writes to the Signal register. This function is automatically called when
the global signal queue becomes full, and is automatically re-enabled
on a call to SignalDeq . DisableSignalInt along with
EnableSignalInt can be used to temporarily suspend the generation
of signal interrupts.

 EnableSignalInt ()
EnableSignalInt sensitizes the application to local signal interrupts.
When signal interrupts are enabled, any write to the local CPU VXI
Signal register causes an interrupt on the local CPU. The internal signal
router then routes the signal value to the handler or to the global
signal queue, as specified by the RouteSignal function.
EnableSignalInt must be called after InitVXIlibrary to
begin the reception of signals. Calls to RouteSignal and/or
SetSignalHandler must be made before the signal interrupt is
enabled to guarantee proper signal routing of the first signals.

Chapter 3 Software Overview

© National Instruments Corporation 3-41 NI-VXI User Manual

 GetSignalHandler (la)
GetSignalHandler returns the address of the current signal handler
for the specified VXI logical address. If signal interrupts are enabled
(via EnableSignalInt), the signal handler for a specific logical
address is called if the RouteSignal function has been set up to route
signals to the handler (as opposed to the global signal queue). The
InitVXIlibrary function automatically installs a default handler,
DefaultSignalHandler , for every VXI logical address.

 RouteSignal (la, modemask)
RouteSignal specifies how to route VXI signals for the application.
Two methods are available to handle VXI signals. You can handle the
signals either at interrupt service routine time or by queueing on a
global signal queue. For each VXI logical address, the RouteSignal

function specifies which types of signals should be handled by the
handlers, and which should be queued on the global signal queue. A
separate handler can be installed for each VXI logical address present
(see the description of SetSignalHandler). The InitVXIlibrary

function automatically installs a default handler,
DefaultSignalHandler , for every VXI logical address. If signals
are queued, the application can use the SignalDeq or
WaitForSignal function to selectively return a signal off a global
signal queue by VXI logical address and/or type of signal. The default
for RouteSignal is to have all signals routed to interrupt service
routines.

 SetSignalHandler (la, func)
SetSignalHandler replaces the current signal handler for the
specified VXI logical address with an alternate handler. If signal
interrupts are enabled (via EnableSignalInt), the signal handler for
a specific logical address is called if the RouteSignal function has
been set up to route signals to the handler (as opposed to the global
signal queue). The InitVXIlibrary function automatically installs a
default handler, DefaultSignalHandler , for every VXI logical
address. The logical address (la) value of -2 is a special case and is
provided to specify a handler to capture signals from devices not
known to the device information table. This should occur only when
the local CPU is not the Resource Manager or VME devices not listed
in the Non-VXI Device Editor in VXIedit . Support is not provided to
handle these signals via the global signal queue or the
WaitForSignal function.

Chapter 3 Software Overview

NI-VXI User Manual 3-42 © National Instruments Corporation

 SignalDeq (la, signalmask, signal)
SignalDeq retrieves signals from the global signal queue. Two
methods are available to handle VXI signals. You can handle the
signals either by handlers or by queueing on a global signal queue. The
RouteSignal function specifies which types of signals should be
handled by which of the two methods for each VXI logical address.
You can use SignalDeq to selectively dequeue a signal off of the
global signal queue. The signal specified by signalmask for the
specified logical address (la) is dequeued and returned in the output
parameter signal.

 SignalEnq (signal)
SignalEnq places signals at the end of the global signal queue. You
can use SignalEnq within a signal handler to queue a signal or to
simulate the reception of a signal by placing a value on the global
signal queue that was not actually received as a signal.

 SignalJam (signal)
SignalJam places signals at the front of the global signal queue.
SignalJam can be used to simulate the reception of a signal by
placing a value on the global signal queue that was not actually
received as a signal. Because SignalJam places signal values on the
front of the global signal queue, the signal is guaranteed to be the first
of its type to be dequeued.

Note: This function is intended only for debugging purposes.

 WaitForSignal (la, signalmask, timeout, retsignal, retsignalmask)
WaitForSignal waits for the specified maximum amount of time for
a particular signal (or class of signals) to be received. Signalmask

defines the type(s) of signals that the application program waits for.
The timeout value specifies the maximum amount of time (in
milliseconds) to wait until the signal occurs. The signal that unblocks
the WaitForSignal call returns in the output parameter retsignal.
You should use the WaitForSignal function only when signals are
queued. A multitasking operating system lets you have any number of
WaitForSignal calls pending. A non-multitasking operating system
permits only one pending WaitForSignal call.

Chapter 3 Software Overview

© National Instruments Corporation 3-43 NI-VXI User Manual

 VXI Interrupt Functions
VXI/VME interrupts are a basic form of asynchronous communication
used by devices with interrupter support. In VME, a device asserts
a VME interrupt line and the VME interrupt handler device
acknowledges the interrupt. During the VME interrupt acknowledge
cycle, an 8-bit status/ID value is returned. Most 680x0-based VME
CPUs use this 8-bit value as a local interrupt vector value routed
directly to the 680x0 processor. This value specifies which interrupt
service routine to invoke.

In VXI systems, however, the VXI interrupt acknowledge cycle returns
(at a minimum) a 16-bit status/ID value. This 16-bit status/ID value is
data, not a vector base location. The definition of the 16-bit value is
specified by the VXIbus specification and is the same as for the VXI
signal. The lower 8 bits of the status/ID value form the VXI logical
address of the interrupting device, while the upper 8 bits specify the
reason for interrupting.

VXI status/ID values from message-based devices can be one of two
types: Response status/IDs and Event status/IDs (bit 15 distinguishes
between the two). Response status/IDs are used to report changes in
Word Serial communication status between a Servant and its
Commander. Event status/IDs are used to inform another device of
other asynchronous changes. The four Event status/IDs currently
defined by the VXIbus specification (other than Shared Memory
Events) are No Cause Given, Request for Service True (REQT),
Request for Service False (REQF), and Unrecognized Command.
REQT and REQF are used to manipulate the SRQ condition (RSV bit
assertion in the IEEE 488/488.2 status byte), while Unrecognized
Command is used to report unsupported Word Serial commands (only
in VXIbus specification, Revision 1.2). If the VXI interrupt status/ID
value is from a register-based device, the upper 8 bits are device
dependent. Consult your device manual for definitions of these values.

Because the VXI interrupt status/ID has the same format as the VXI
signal, your application can handle VXI interrupts as VXI signals.
However, because VME interrupters may be present in a VXI system,
the VXI/VME interrupt handler functions are included with the
NI-VXI software. The RouteVXIint function specifies whether
the status/ID value should be handled as a signal or handled by a
VXI/VME interrupt handler. Two methods are available to handle VXI
signals. Signals can be handled either by calling a signal handler, or by
queueing on a global signal queue. The RouteSignal function

Chapter 3 Software Overview

NI-VXI User Manual 3-44 © National Instruments Corporation

specifies which types of signals are handled by signal handlers, and
which are queued onto the global signal queue for each VXI logical
address. A separate handler can be installed for each VXI logical
address present (refer to the description for SetSignalHandler). A
default handler, DefaultSignalHandler , is automatically installed
when InitVXIlibrary is called from the application for every VXI
logical address. If signals are queued, the application can use the
SignalDeq function to selectively return a signal off a global signal
queue by VXI logical address and/or type of signal.

Another method for handling signals (and VXI/VME interrupts routed
to signals) can be used instead of the two previous methods, and
involves using the WaitForSignal function. WaitForSignal can be
used to suspend a process/function until a particular signal (or one of a
set of signals) arrives. In a multitasking operating system, any number
of WaitForSignal calls can be pending. In a nonmultitasking
operating system, only one WaitForSignal call can be pending.

If the RouteVXIint has specified that a status/ID value should be
handled by the VXI/VME interrupt handler and not by the signal
handler, the specified callback handler is invoked. The VXI/VME
interrupt handler for a particular level is called with the VXI interrupt
level and the status/ID without any interpretation of the status/ID value.
The callback handler can do whatever is necessary with the status/ID
value. The SetVXIintHandler function can be called to change the
current callback handler for a particular level. A default handler,
DefaultVXIintHandler is automatically installed with a call to
InitVXIlibrary at the start of the application. EnableVXIint and
DisableVXIint are used to sensitize and desensitize the application
to VXI/VME interrupts routed to the VXI/VME interrupt handlers.
EnableVXItoSignalInt and DisableVXItoSignalInt are used to
sensitize and desensitize the application to VXI/VME interrupts routed
to be processed as VXI signals.

When you are testing VXI/VME interrupt handlers or creating a
message-based interrupter, you must assert a VXI/VMEbus interrupt
line and present a valid status/ID value. The AssertVXIint function
asserts an interrupt on the local CPU or on the specified extended
controller. DeAssertVXIint can be used to unassert a VXI/VME
interrupt that was asserted using the AssertVXIint function.
AcknowledgeVXIint can be used to acknowledge VXI/VME
interrupts that the local CPU is not enabled to automatically handle
via EnableVXIint or EnableVXItoSignalInt . Both

Chapter 3 Software Overview

© National Instruments Corporation 3-45 NI-VXI User Manual

DeAssertVXIint and AcknowledgeVXIint are intended only for
debugging purposes.

 Programming Considerations
Figure 3-4 is a graphical overview of the NI-VXI interrupt and signal
model.

RouteVXIint()

VXI/VME Interrupts 1-7Hardware

NI-VXI

Software

User
Application

VXIintHandlers SignalHandlers

NI-VXI base Interrupt Service Routines (ISR)

Local VXI Signals

EnableSignalInt()
DisableSignalInt()

RouteSignal()

EnableVXIint()
DisableVXIint()

EnableVXItoSignalInt()
DisableVXItoSignalInt()

SetVXIintHandler()

GetVXIintHandler()

DefaultVXIintHandler()

SignalEnq()

User

ISRs (1 per VXI/VME interrupt level) (1 per logical address)

SetSignalHandler()

GetSignalHandler()

DefaultSignalHandler()

Signal Processor

S
ig

na
l Q

ue
ue

WaitForSignal()

If signal not on queue
 enable monitor
 block till received
else
 SignalDeq()
return signal, mask

SignalDeq()

(
u
i
n
t
1
6
)
s
i
g
n
a
l

SignalEnq()
SignalDeq()

SignalJam()

(uint16)statusId

WaitForSignal()

(
u
i
n
t
1
6
)
l
e
v
e
l
,

(
u
i
n
t
3
2
)
s
t
a
t
u
s
I
d

(uint16)signal

(
u
i
n
t
1
6
)
s
i
g
n
a
l

Get SignalGet Status/Id

VXIintAcknowledgeMode()

Figure 3-4. NI-VXI Interrupt and Signal Model

Chapter 3 Software Overview

NI-VXI User Manual 3-46 © National Instruments Corporation

 ROAK Versus RORA VXI/VME Interrupters
There are two types of VXI/VME interrupters. The Release On
Acknowledge (ROAK) interrupter is the more common. A ROAK
interrupter automatically unasserts the VXI/VME interrupt line it is
asserting when an interrupt acknowledge cycle on the backplane occurs
on the corresponding level. The VXIbus specification requires that all
message-based devices be ROAK interrupters. It is recommended that
all other types of VXI devices also be ROAK interrupters.

The Release On Register Access (RORA) interrupt is the second type
of VXI/VME interrupter. The RORA interrupter continues to assert the
VXI/VME interrupt line after the interrupt acknowledge cycle is
complete. The RORA interrupter will unassert the interrupt only when
some device-specific interaction is performed. There is no standard
method to cause a RORA interrupter to unassert its interrupt line.
Because a RORA interrupt remains asserted on the backplane, the local
CPU interrupt generation must be inhibited until the device-dependent
acknowledgment is complete.

The function VXIintAcknowledgeMode specifies whether a
VXI/VME interrupt level for a particular controller (embedded or
extended) is to be handled as a RORA or ROAK interrupt. If the
VXI/VME interrupt is specified to be handled as a RORA interrupt, the
local CPU automatically inhibits VXI/VME interrupt generation for the
corresponding controller and levels whenever the corresponding
VXI/VME interrupt occurs. After the application has handled and
caused the RORA interrupter to unassert the interrupt line, either
EnableVXIint or EnableVXItoSignalInt must be called to
re-enable local CPU interrupt generation.

The following paragraphs describe the VXI/VME interrupt functions
and default handler. The descriptions are presented at a functional level
describing the operation of each of the functions. The functions are
grouped by area of functionality.

 AcknowledgeVXIint (controller, level, statusId)
AcknowledgeVXIint performs a VXI/VME interrupt acknowledge
(IACK cycle) on the backplane in the specified controller and
VXI/VME interrupt level.

Note: This function is intended only for debugging purposes.

Chapter 3 Software Overview

© National Instruments Corporation 3-47 NI-VXI User Manual

Normally, VXI/VME interrupts are automatically acknowledged when
enabled via the function EnableVXIint . However, if the interrupts
are not enabled and the assertion of an interrupt is detected through
some method (such as GetVXIbusStatus), you can use
AcknowledgeVXIint to acknowledge an interrupt and return the
status/ID value. If the controller parameter specifies an extended
controller, AcknowledgeVXIint specifies hardware on the VXI/VME
frame extender (if present) to acknowledge the specified interrupt.

 AssertVXIint (controller, level, statusId)
AssertVXIint asserts a particular VXI/VME interrupt level on a
specified controller (embedded or extended) and returns the specified
status/ID value when acknowledged. You can use AssertVXIint to
send any status/ID value to the VXI/VME interrupt handler configured
for the specified VXI/VME interrupt level. AssertVXIint returns
immediately (that is, it does not wait for the interrupt to be
acknowledged). You can call GetVXIbusStatus to detect if the
interrupt has been serviced. Use DeAssertVXIint to unassert a
interrupt that had been asserted using AssertVXIint but has not yet
been acknowledged.

 DeAssertVXIint (controller, level)
DeAssertVXIint unasserts the VXI/VME interrupt level on a given
controller that was previously asserted using the AssertVXIint

function. You can use AssertVXIint to send any status/ID value to
the VXI/VME interrupt handler configured for the specified interrupt
level. You can call GetVXIbusStatus to detect if the interrupt has
been serviced. Use DeAssertVXIint to unassert a VXI/VME
interrupt that had been asserted using AssertVXIint but has not yet
been acknowledged.

Note: Unasserting an interrupt may violate the VME and VXIbus specifications
if the interrupt has not yet been acknowledged by the interrupt handler.

 DefaultVXIintHandler (controller, level, statusId)
DefaultVXIintHandler is the sample handler for VXI/VME
interrupts, which is installed when the function InitVXIlibrary is
called. If VXI/VME interrupts are enabled (via EnableVXIint), the
VXI/VME interrupt handler for a specific logical address is called. You
must first call RouteVXIint to route VXI/VME interrupts to the
callback handler (as opposed to the signal processing routine).

Chapter 3 Software Overview

NI-VXI User Manual 3-48 © National Instruments Corporation

DefaultVXIintHandler sets the global variables
VXIintController , VXIintLevel , and VXIintStatusId . You can
leave this default handler installed or install a completely new handler
using SetVXIintHandler .

 DisableVXIint (controller, levels)
DisableVXIint desensitizes the application to specified VXI
interrupt levels being processed as VXI/VME interrupts (not as VXI
signals). EnableVXIint enables VXI/VME interrupts to be handled as
VXI/VME interrupts (not as VXI signals). A -1 (negative one) or local
logical address in the controller parameter specifies the local frame
(for an embedded CPU) or the first extended controller (in an external
CPU situation).

 DisableVXItoSignalInt (controller, levels)
DisableVXItoSignalInt desensitizes the application to specified
VXI/VME interrupt levels being processed as VXI/VME signals. An
EnableVXItoSignalInt call enables VXI/VME interrupt levels that
are routed to VXI signals. Use DisableVXItoSignalInt to disable
these interrupts. Use EnableVXIint to enable interrupts not routed to
signals. A -1 (negative one) or local logical address in the controller
parameter specifies the local frame (for an embedded CPU) or the first
extended controller (in an external CPU situation). If a RouteVXIint

call has specified to route a particular VXI/VME interrupt level to the
VXI signal processing routine and the global signal queue becomes
full, DisableVXItoSignalInt is automatically called to inhibit these
VXI/VME interrupts from being received from the appropriate levels.
EnableVXItoSignalInt is automatically called to enable interrupt
reception when SignalDeq is called.

 EnableVXIint (controller, levels)
EnableVXIint sensitizes the application to specified VXI/VME
interrupt levels being processed as VXI/VME interrupts (not as
VXI signals). After calling InitVXIlibrary , the application can
sensitize itself to interrupt levels for which it is configured to handle.
RouteVXIint specifies whether interrupts are to be handled as
VXI/VME interrupts or as VXI signals (the default is VXI signals).
You must then call EnableVXIint to enable interrupts to be handled
as VXI/VME interrupts (not as VXI signals). A -1 (negative one) or
local logical address in the controller parameter specifies the local

Chapter 3 Software Overview

© National Instruments Corporation 3-49 NI-VXI User Manual

frame (for an embedded CPU) or the first extended controller (in an
external CPU situation).

 EnableVXItoSignalInt (controller, levels)
EnableVXItoSignalInt is used to sensitize the application to
specified interrupt levels being processed as VXI signals. After calling
InitVXIlibrary , the application can sensitize itself to interrupt
levels for which it is configured to handle. RouteVXIint specifies
whether interrupts are to be handled as VXI/VME interrupts or as VXI
signals (the default is VXI signals). An EnableVXItoSignalInt

call enables interrupt levels that are routed to VXI signals. Use
DisableVXItoSignalInt to disable these VXI interrupts. Use
EnableVXIint to enable interrupts not routed to VXI signals. A -1
(negative one) or local logical address in the controller parameter
specifies the local embedded controller or the first extended controller
(in an external controller situation). If a RouteVXIint call has
specified to route a particular VXI/VME interrupt level to the VXI
signal processing routine and the global signal queue becomes full,
DisableVXItoSignalInt is automatically called to inhibit these
VXI interrupts from being received from the appropriate levels.
EnableVXItoSignalInt is automatically called to enable VXI/VME
interrupt reception when SignalDeq is called.

 GetVXIintHandler (level)
GetVXIintHandler returns the address of the current VXI/VME
interrupt handler routine for the specified interrupt level. If interrupts
are enabled (via EnableVXIint), the callback handler for a specific
logical address is called. You must first call RouteVXIint to route
VXI/VME interrupts to the callback handler (as opposed to the signal
processing routine). A default handler, DefaultVXIintHandler , is
automatically installed for every applicable VXI interrupt level when
the InitVXIlibrary function is called.

 RouteVXIint (controller, Sroute)
RouteVXIint specifies whether status/ID values returned from a
VXI/VME interrupt acknowledge cycle are routed to a VXI/VME
interrupt handler or to the VXI signal processing routine. The function
RouteVXIint specifies whether the status/ID value should be handled
as a signal or handled locally by a VXI/VME interrupt handler. Two
methods are available to handle VXI signals. Signals can be handled
either by signal handlers (as signals) or by queueing on a global signal

Chapter 3 Software Overview

NI-VXI User Manual 3-50 © National Instruments Corporation

queue. The RouteSignal function specifies which types of signals
should be handled by signal handlers, and which should be queued on
the global signal queue for each VXI logical address. If the VXI/VME
interrupt status/IDs are specified to be handled by a VXI/VME
interrupt handler, the level and status/ID value is sent to the appropriate
callback handler when an interrupt occurs. An individual handler
can be installed for each of the seven VXI/VME interrupt levels.
EnableVXIint and EnableVXItoSignalInt must be used to
sensitize the local CPU to interrupts generated by VXI/VME interrupts.
Only the levels routed to the appropriate handlers (VXI/VME
interrupts or VXI signals) via the RouteVXIint function are enabled.

 SetVXIintHandler (levels, func)
SetVXIintHandler replaces the current callback handler for the
specified VXI/VME interrupt levels with an alternate callback handler.
If VXI/VME interrupts are enabled (via EnableVXIint), the
VXI/VME interrupt handler for a specific logical address is called.
The RouteVXIint function must first be called to route VXI/VME
interrupts to the callback handler (as opposed to the signal processing
routine). A default handler, DefaultVXIintHandler is automatically
installed when the InitVXIlibrary function is called for every
applicable VXI/VME interrupt level. You can use
SetVXIintHandler to install a new callback handler.

 VXIintAcknowledgeMode (controller, modes)
VXIintAcknowledgeMode specifies whether to handle the VXI/VME
interrupt acknowledge cycle for the specified controller (embedded or
extended) for the specified levels as ROAK interrupts or as RORA
interrupts. If the VXI/VME interrupt level is handled as a RORA
interrupt, the local interrupt generation is automatically inhibited
during the interrupt acknowledgment. After device-specific interaction
has caused the deassertion of the interrupt on the backplane, your
application must call EnableVXIint to re-enable the appropriate
VXI/VME interrupt level.

Chapter 3 Software Overview

© National Instruments Corporation 3-51 NI-VXI User Manual

 VXI Trigger Functions
VXI triggers are a backplane feature that VXI added to the VME
standard. Tight timing and signaling is important between many types
of controllers and/or instruments. In the past, clumsy cables of
specified length had to be connected between controllers and/or
instruments to get the required timing. For many systems, phase
shifting and propagation delays had to be calculated precisely, based on
the instrument connection scheme. This limited the architecture of
many systems.

In VXI however, every VXI board with a P2 connector has access to
eight 10 MHz TTL trigger lines. If the VXI board has a P3 connector, it
has access to six 100 MHz ECL trigger lines. The phase shifting and
propagation delays can be held to a known maximum, based on the
VXIbus specification’s rigid requirement on backplanes. The VXIbus
specification does not currently prescribe an allocation method for TTL
or ECL trigger lines. The application must decide how to allocate
required trigger lines.

The VXIbus specification specifies several trigger protocols that can be
supported, thereby promoting compatibility among the various VXI
devices. The following is a description of the four basic protocols.

• SYNC—SYNC protocol is the most basic protocol. SYNC protocol
is a pulse of a minimum time (30 ns on TTL, 8 ns on ECL) on any
one of the trigger lines.

• ASYNC—ASYNC is a two-device, two-line handshake protocol.
ASYNC uses two consecutive even/odd trigger lines (a
source/acceptor line and an acknowledge line, respectively). The
sourcing device sources a trigger pulse (30 ns TTL, 8 ns ECL
minimum) on the even trigger line (TTL0, TTL2, TTL4, TTL6,
ECL0, ECL2, or ECL4) and waits for the acknowledge pulse on the
next highest odd trigger line (TTL1, TTL3, TTL5, TTL7, ECL1,
ECL3, or ECL5). The acceptor waits for the source pulse on the
even trigger line. Sometime after the source pulse is sensed (no
maximum time is specified), the acceptor sends an acknowledge
pulse back on the next highest odd trigger line to complete the
handshake.

• SEMI-SYNC—SEMI-SYNC is a one-line, open collector,
multiple-device handshake protocol. The sourcing device sources a
trigger pulse (50 ns TTL, 20 ns ECL minimum) on any one of the
trigger lines. The accepting device(s) must begin to assert the same
trigger line upon reception (within 40 ns TTL, 15 ns ECL

Chapter 3 Software Overview

NI-VXI User Manual 3-52 © National Instruments Corporation

maximum time from source assertion edge). The accepting
device(s) can later unassert the trigger line (no maximum time is
specified) to complete the handshake.

• START/STOP—START/STOP is a one-line, multiple-device
protocol. START/STOP can be sourced only by the VXI Slot 0
device and sensed by any other devices on the VXI backplane. The
START/STOP protocol is synchronized with the backplane clock
(CLK10 for TTL, CLK100 and SYNC100 for ECL) onto any one
of the trigger lines. A START condition is generated on the
assertion edge on the trigger line, and a STOP condition is
generated on the unassertion edge of the trigger line.

• ON/OFF—ON/OFF protocol is identical to the START/STOP
protocol. The VXIbus specification, however, defines
START/STOP such that only Slot 0 may assert START/STOP.
Therefore, ON/OFF protocols are outside the VXIbus specifications
but provide similar functionality.

You can use these protocols in any way that your application requires.
You can use them for device synchronization, for stepping through
tests, or for a command path. The NI-VXI trigger functions have been
designed to accommodate all trigger lines and the protocols for all
appropriate TTL and ECL VXI trigger lines (SYNC, ASYNC,
SEMI-SYNC, START/STOP, and ON/OFF).

The VXI trigger functions have been grouped into the following four
categories:

• Source trigger functions

• Acceptor trigger functions

• Map trigger functions

• Trigger configuration functions

The actual capabilities of specific systems are based on the triggering
capabilities of the hardware devices involved (both the sourcing and
accepting devices). All of the NI-VXI functions have appropriate error
response for unsupported capabilities.

 Capabilities of the National Instruments Triggering Hardware
The NI-VXI trigger functions are a general-purpose interface designed
to accommodate most uses of VXI triggers. The actual capabilities of a
particular platform will always be a subset of these capabilities. In

Chapter 3 Software Overview

© National Instruments Corporation 3-53 NI-VXI User Manual

general, however, National Instruments hardware has two current
configurations that provide triggering functionality:

• Trigger control used on a VXI-MXI-1 frame extender when used as
an extending controller (under direct control of a root-level MXI-1
controller interface, such as an AT-MXI-1). These configurations
do not have the National Instruments Trigger Interface Chip (TIC)
on them.

Note: VXI-MXI-1 and VXI-MXI-2 controllers that are configured for extender
only (that is, not extending controllers), as well as external MXI-1
controllers, do not have trigger functionality. See the section, Multiple
Mainframe Support, in Chapter 2, Introduction to the NI-VXI Functions,
for more information.

• An embedded controller, external MXI-2 controllers, or
VXI-MXI-2 remote controllers. These configurations do have the
National Instruments Trigger Interface Chip (TIC) on them.

 External Controller/VXI-MXI-1 Trigger
Capabilities
All National Instruments external controllers (such as the AT-MXI-1)
that are connected to VXI-MXI-1 extending controllers have the same
basic trigger capabilities:

• Source a single TTL or ECL (0 and 1 only) trigger using any
protocol on any one of the backplane TTL trigger lines

• Accept a single backplane TTL or ECL (0 and 1 only) trigger using
any protocol (as long as it does not source SEMI-SYNC and
ASYNC protocols at the same time)

• Map a front panel In connector to a TTL or ECL (0 or 1 only)
trigger line (sourcing will be disabled)

• Source a TTL or ECL (0 or 1 only) trigger out the front panel

• Map a TTL or ECL (0 or 1 only) trigger line from the backplane
out the front panel Out connector (accepting disabled) (Some
platforms do not have this capability.)

The following capabilities are not supported:

• Multiple-line support

• Crosspoint switching

• Signal conditioning

• External connections other than the front panel In/Out

Chapter 3 Software Overview

NI-VXI User Manual 3-54 © National Instruments Corporation

 Embedded, External MXI-2, and Remote
Controller Trigger Capabilities
National Instruments has developed a highly functional ASIC
specifically designed for use within the VXIbus triggering environment
called the Trigger Interface Chip (TIC).

Note: In MXI-2 and the latest embedded systems, the TIC has been incorporated
into the MANTIS ASIC.

The TIC chip has access to all of the eight VXI TTL trigger lines,
two ECL trigger lines (ECL0 and ECL1), and 10 external or
General-Purpose Input/Output (GPIO) connections simultaneously.
The TIC also contains a 16-bit counter and a dual 5-bit scaler tick
timer. It contains a full crosspoint switch for routing trigger lines and
GPIOs (as well as the counter and the tick timers) between one another.

If you want more information on triggering or if you plan to use any of
the advanced features of the TIC, please contact National Instruments
for the technical note, Triggering with NI-VXI.

 Acceptor Trigger Functions
The NI-VXI acceptor trigger functions act as a standard interface for
sensing (accepting) TTL and ECL triggers, as well as for sending
acknowledgments back to the sourcing device. These functions can
sense any of the VXI-defined trigger protocols on the local
embedded controller or external extended controller(s). Use the
EnableTrigSense function to prepare for the sensing of any of the
trigger protocols. If the protocol requires an acknowledgment, you
should call the AcknowledgeTrig function when appropriate. You
can use SetTrigHandler to install a callback handler for the
specified trigger line. A default handler, DefaultTrigHandler , is
installed for each one of the trigger lines when InitVXIlibrary

is called and will call AcknowledgeTrig for you. You can use the
SetTrigHandler function at any time to replace the default handlers.
In addition, you can use the WaitForTrig function to accommodate
applications that do not want to install callback handlers.

Chapter 3 Software Overview

© National Instruments Corporation 3-55 NI-VXI User Manual

 AcknowledgeTrig (controller, line)
AcknowledgeTrig performs the required trigger acknowledgments
for the ASYNC or SEMI-SYNC VXI-defined protocol, as configured
via the EnableTrigSense function.

 DefaultTrigHandler (controller, line, type)
DefaultTrigHandler is the sample handler for the receiving
acknowledges and sensing triggers, and is automatically installed after
a call to InitVXIlibrary . After a call to EnableTrigSense for a
particular VXI trigger line protocol, the trigger handler for a specific
trigger line is called when the sourced trigger is sensed from the
sourcing device. If the configured VXI trigger protocol requires an
acknowledgment (either ASYNC or SEMI-SYNC), you must call the
AcknowledgeTrig function to perform the acknowledgment.
DefaultTrigHandler calls the AcknowledgeTrig function if the
type parameter specifies that an acknowledge interrupt occurred.
Otherwise, DefaultTrigHandler performs no operations.

 DefaultTrigHandler2 (controller, line, type)
DefaultTrigHandler2 is a sample handler for receiving
trigger interrupt sources similar to DefaultTrigHandler .
DefaultTrigHandler2 performs no operations. Any required
acknowledgments must be performed by the application.

 DisableTrigSense (controller, line)
DisableTrigSense unconfigures and desensitizes the triggering
hardware that was enabled by the EnableTrigSense function to
generate interrupts when any VXI-defined trigger protocol is sensed on
the specified trigger line.

 EnableTrigSense (controller, line, prot)
EnableTrigSense configures and sensitizes the triggering hardware
to generate interrupts when the specified VXI-defined trigger protocol
is sensed on the specified trigger line. When EnableTrigSense has
configured and enabled the triggering hardware to generate interrupts,
and the specified trigger protocol is sensed, a local CPU interrupt is
generated. The trigger handler installed is automatically called when a
trigger interrupt occurs.

Chapter 3 Software Overview

NI-VXI User Manual 3-56 © National Instruments Corporation

 GetTrigHandler (line)
GetTrigHandler returns the address of the current trigger handler for
the specified VXI trigger line.

 SetTrigHandler (lines, func)
SetTrigHandler replaces the current trigger handler for the specified
VXI trigger lines with an alternate handler.

 WaitForTrig (controller, line, timeout)
You can use the WaitForTrig function to suspend operation until it
receives a trigger configured by the EnableTrigSense function.
After a call to EnableTrigSense for a particular VXI trigger line
protocol, the trigger handler for a specific trigger line is called when
the sourced trigger is sensed from the sourcing device. You can use
WaitForTrig as an alternate method for receiving sensed triggers by
having the caller wait until the trigger occurs instead of installing a
callback handler. The current handler is invoked regardless of whether
a WaitForTrig call is pending.

 Map Trigger Functions
You can use the NI-VXI map trigger functions as configuration tools
for multiframe and local support for VXI triggers. You can configure
the triggering hardware to route specified source trigger locations to
destination trigger locations by using the MapTrigToTrig and
UnMapTrigToTrig functions.

 MapTrigToTrig (controller, srcTrig, destTrig, mode)
MapTrigToTrig configures triggering hardware to route specified
source trigger locations to destination trigger locations with some
possible signal conditioning. The possible values for source or
destination locations are the TTL trigger lines, ECL trigger lines,
Star X lines, Star Y lines, or miscellaneous external sources.
Miscellaneous external sources include front panel trigger ins, front
panel trigger outs, local clocks, and crosspoint switch locations. The
mode parameter specifies how the line is to be routed to the
destination. You can manipulate the line in various ways, including
inverting it, synchronizing it with the CLK10, or stretching it to a
minimum time. In this way, MapTrigToTrig can be used as a simple
map from an external source to a trigger line, or as a complex

Chapter 3 Software Overview

© National Instruments Corporation 3-57 NI-VXI User Manual

crosspoint switch configurator (depending on the hardware capabilities
of the applicable device).

 UnMapTrigToTrig (controller, srcTrig, destTrig)
UnMapTrigToTrig unconfigures triggering hardware that was
configured by the MapTrigToTrig function to route specified source
trigger locations to destination trigger locations.

 Source Trigger Functions
The NI-VXI source trigger functions act as a standard interface for
asserting (sourcing) TTL and ECL triggers, as well as for detecting
acknowledgments from accepting devices. These functions can source
any of the VXI-defined trigger protocols from the local embedded
controller or external extended controller(s). You can use the SrcTrig

function to initiate any of the trigger protocols. If the protocol requires
an acknowledgment and your application is required to know when the
acknowledgment occurs, you must use the SetTrigHandler function
to install a callback handler for the specified trigger line. A default
handler, DefaultTrigHandler , is installed for each one of the
trigger lines when InitVXIlibrary is called. You can use the
SetTrigHandler function at any time to replace the default handlers.

 SrcTrig (controller, line, prot, timeout)
Use SrcTrig to source any one of the VXI-defined trigger protocols
from the local CPU or from any remote frame extender device
that supports trigger assertion. For protocols that require an
acknowledgment from the accepting device (ASYNC or SEMI-SYNC),
you need to specify whether to wait for an acknowledgment (with a
timeout) or return immediately and let the trigger handler get called
when the acknowledgment is received. Another option is available in
which you can assert or unassert any of the trigger lines continuously,
or have an external trigger (possibly from the front panel) routed to the
VXIbus backplane.

Chapter 3 Software Overview

NI-VXI User Manual 3-58 © National Instruments Corporation

 Trigger Configuration Functions
You can use the NI-VXI trigger configuration functions to configure
not only the general settings of the trigger inputs and outputs, but also
the TIC counter and tick timers.

 TrigAssertConfig (controller, trigline, mode)
TrigAssertConfig configures the local triggering generation method
for the TTL/ECL triggers. You can decide on an individual basis
whether to synchronize the triggers to CLK10. You can globally select
the synchronization to be the rising or falling edge of CLK10. In
addition, you can specify the trigger line to partake in automatic
external SEMI-SYNC acknowledgment. In this mode, when a trigger is
sensed on the line, the line is asserted until an external (GPIO) trigger
line which is mapped to the corresponding trigger line is pulsed. You
can also use AcknowledgeTrig to manually acknowledge a pending
SEMI-SYNC trigger configured in this fashion.

 TrigCntrConfig (controller, mode, source, count)
TrigCntrConfig configures the TIC chip’s 16-bit counter. You can
use this function to initialize, reload, or disable the current counter
settings. If the counter is initialized, you must call either SrcTrig or
EnableTrigSense to actually start the counter. You can use any
trigger line, CLK10, or EXTCLK as the source of the counter. The
count range is 1 to 65535. You can use the counter to source multiple
sync or multiple semi-sync triggers to one or more trigger lines. You
can also use it to accept multiple sync or multiple semi-sync triggers
from one trigger line. The counter has two outputs: TCNTR and
GCNTR. The TCNTR signal pulses for 100 ns every time a source
pulse occurs. You can use MapTrigToTrig to map the TCNTR signal
to one or more trigger lines. The GCNTR signal stays unasserted until
the counter goes from 1 to 0. It then becomes asserted until the counter
is disabled. You can use the MapTrigToTrig function to directly map
the GCNTR signal to one or more GPIO lines.

 TrigExtConfig (controller, extline, mode)
TrigExtConfig configures the way the external trigger sources
(General-Purpose Inputs and Outputs, or GPIOs) are configured. The
TIC chip has 10 GPIO lines. Typically, GPIO 0 is connected to the
front panel In connector. GPIO 1 is connected to the front panel Out
connector. GPIO 2 is connected to a direct ECL bypass from the front

Chapter 3 Software Overview

© National Instruments Corporation 3-59 NI-VXI User Manual

panel. GPIO 3 is fed back in as the EXTCLK signal used for signal
conditioning modes with MapTrigToTrig . The six remaining GPIOs
are dependent upon the hardware platform. Regardless of the sources
connected to the GPIOs, TrigExtConfig configures several aspects
of the connection. You can disconnect and feed back the connection for
use as a crosspoint switch. You can also choose whether to invert the
external input. In addition, you can configure the GPIO to be asserted
high or low continuously. In this configuration, no input mapping is
possible (that is, no trigger line can be mapped to the GPIO).

 TrigTickConfig (controller, mode, source, tcount1, tcount2)
TrigTickConfig configures the TIC chip’s dual 5-bit tick timers.
This function can initialize with auto reload, initialize with manual
reload, do a manual reload, or disable the current tick timer settings. If
the tick timer is initialized, you must call either EnableTrigSense or
SrcTrig to start the tick timer. You can use any GPIO line, CLK10, or
EXTCLK as the source of the tick timer. Both tick timers—TICK1 and
TICK2—count independently from the same internal counter. The
range for each tick timer is specified as a power of two from 0 to 31. If
you did not select auto reload, the timer stops when TICK1 has counted
to zero. You can use MapTrigToTrig to map the TICK1 output signal
to one or more trigger lines, or to map the TICK2 output signal to one
or more trigger lines or GPIO lines. Both TICK1 and TICK2 outputs
are square wave outputs. The signal is asserted for the duration of the
corresponding tick count and then unasserted for the duration of the
count.

 System Interrupt Handler Functions
With these functions, you can handle miscellaneous system conditions
that can occur in the VXI/VME environment, such as Sysfail, ACfail,
Sysreset, Bus Error, and/or Soft Reset interrupts. The NI-VXI software
interface can handle all of these system conditions for the application
through the use of callback routines. The NI-VXI software handles all
system interrupt handlers in the same manner. Each type of interrupt
has its own specified default handler, which is installed when
InitVXIlibrary initializes the NI-VXI software. If your application
program requires a different interrupt handling algorithm, it can call the
appropriate SetHandler function to install a new callback handler. All
system interrupt handlers are initially disabled (except for Bus Error).
The corresponding enable function for each handler must be called in
order to invoke the default or user-installed handler.

Chapter 3 Software Overview

NI-VXI User Manual 3-60 © National Instruments Corporation

The following paragraphs describe the system interrupt handler
functions and default handlers. The descriptions are presented at a
functional level describing the operation of each of the functions. The
functions are grouped by area of functionality.

 AssertSysreset (controller, mode)
AssertSysreset asserts the SYSRESET* signal on the specified
controller. You can use this function to reset the local CPU, individual
mainframes, all mainframes, or the entire system. If you reset the
system but not the local CPU, you will need to re-execute all device
configuration programs.

Note: Due to the operation of some operating systems, not all platforms support
resetting the local CPU.

 DefaultACfailHandler (controller)
DefaultACfailHandler is the sample handler for the ACfail
interrupt, and is installed as a default handler when InitVXIlibrary

initializes the NI-VXI software. It increments the global variable
ACfailRecv . The VXI/VMEbus specification allows for a minimum
amount of time after a power failure condition occurs for the system to
remain operational. The detection of a power failure in a VXI/VME
system asserts the backplane signal ACFAIL*. An ACfail condition
detected on the local CPU generates an interrupt that calls the current
ACfail interrupt handler. Your application can take any appropriate
action within the allotted time period before complete power failure.
Your application must then call EnableACfail to enable ACfail
interrupts after the InitVXIlibrary call.

 DefaultBusErrorHandler ()
DefaultBusErrorHandler is the sample handler for the bus error
exception, and is installed as a default handler when InitVXIlibrary

initializes the NI-VXI software. During an access to the VXI/VMEbus,
the BERR* signal (bus error) is asserted to end the bus cycle if the
address or mode of access is determined to be invalid. The bus error
exception condition generates an exception on the local CPU, which
can be trapped by the bus error handler. Your application should
include a retry mechanism if it is possible for a particular access to
generate bus errors at times and valid results at other times. Because
bus errors can occur at any time, a corresponding enable and disable
function is not possible. Notice that only BERRs occurring via

Chapter 3 Software Overview

© National Instruments Corporation 3-61 NI-VXI User Manual

low-level VXI/VMEbus access functions will be reported to this
handler. See also the descriptions of SetBusErrorHandler and
GetBusErrorHandler .

 DefaultSoftResetHandler ()
DefaultSoftResetHandler is the sample handler for the Soft Reset
interrupt, and is installed as a default handler when InitVXIlibrary

initializes the NI-VXI software. It increments the global variable
SoftResetRecv . When the Reset bit in the VXI Control register of
the local CPU is written, the VXI interface (if an embedded CPU) and
the VXI register sets are reset (VXI logical address and address base
are retained). The write to the Reset bit causes an interrupt on the local
CPU, which can be handled in any appropriate manner. The CPU
cannot restart operation until the Reset bit is cleared. After the Reset bit
is cleared, the local CPU can go through a reinitialization process or
reboot altogether. If the local CPU is the Resource Manager (and
top-level Commander), the Reset bit should never be written. Writing
the Reset bit of any device should be reserved for the Commander of
the device. EnableSoftReset must be called to enable writes to the
Reset bit to generate interrupts to the local CPU after the
InitVXIlibrary call.

Note: The Soft Reset interrupt does not apply to VME.

 DefaultSysfailHandler (controller)
DefaultSysfailHandler is the sample handler for the Sysfail
interrupt, and is installed as a default handler when InitVXIlibrary

initializes the NI-VXI software. The VXIbus specification requires that
all VXI Commanders monitor the PASSed or FAILed state of their
VXI Servants. When a VXIbus device is in the FAILed state, the
failed device clears its PASS bit (in its Status register) and asserts the
SYSFAIL* signal on the VXIbus backplane. A Sysfail condition
detected on the local CPU generates an interrupt that calls the current
Sysfail interrupt handler. The failed Servant device must be
forced offline or brought back online in an orderly fashion.
DefaultSysfailHandler scans the local CPU Servants and if a
Servant is detected to have failed, the Servant’s Sysfail Inhibit bit in its
Control register is set. In addition, the global variable SysfailRecv is
incremented.

Chapter 3 Software Overview

NI-VXI User Manual 3-62 © National Instruments Corporation

 DefaultSysresetHandler (controller)
DefaultSysresetHandler is the sample handler for the Sysreset
interrupt, and is installed as a default handler when InitVXIlibrary

initializes the NI-VXI software. It increments the global variable
SysresetRecv .

 DisableACfail (controller)
DisableACfail desensitizes the application to ACfail interrupts from
embedded controller or extended controller(s) ACfail conditions
(dependent on the hardware platform). The VXI/VMEbus specification
allows for a minimum amount of time after a power failure condition
occurs for the system to remain operational. The detection of the power
failure asserts the VXI/VMEbus backplane signal ACFAIL*. An
ACfail condition detected on the local CPU generates an interrupt that
calls the current ACfail interrupt handler. Your application can take
any appropriate action within the allotted time period before complete
power failure.

 DisableSoftReset ()
DisableSoftReset desensitizes the application to Soft Reset
conditions on the local CPU. When the Reset bit in the VXI Control
register of the local CPU is written, the VXI interface (if an embedded
CPU) and the VXI register sets are reset (VXI logical address and
address base are retained). The write to the Reset bit causes an interrupt
on the local CPU, which can be handled in any appropriate manner.
The CPU cannot restart operation until the Reset bit is cleared. After
the Reset bit is cleared, the local CPU can go through a reinitialization
process or reboot altogether. If the local CPU is the Resource Manager
(and top-level Commander), the Reset bit should never be written.
Writing the Reset bit of any device should be reserved for the
Commander of the device.

Note: The Soft Reset interrupt does not apply to VME.

 DisableSysfail (controller)
DisableSysfail desensitizes the application to Sysfail interrupts
from embedded controller or extended controller(s) Sysfail conditions
(dependent on the hardware platform). The VXIbus specification
requires that all VXI Commanders monitor the PASSed or FAILed
state of their VXI Servants. When a VXIbus device is in the FAILed

Chapter 3 Software Overview

© National Instruments Corporation 3-63 NI-VXI User Manual

state, the failed device clears its PASS bit (in its Status register) and
asserts the SYSFAIL* signal on the VXIbus backplane.

 DisableSysreset (controller)
DisableSysreset desensitizes the application to Sysreset interrupts
from embedded or extended controller(s) (dependent on the hardware
platform).

 EnableACfail (controller)
EnableACfail sensitizes the application to ACfail interrupts from
embedded controller or extended controller(s) ACfail conditions
(dependent on the hardware platform). The VXI/VMEbus specification
allows for a minimum amount of time after a power failure condition
occurs for the system to remain operational. The detection of the power
failure asserts the VXI/VMEbus backplane signal ACFAIL*. An
ACfail condition detected on the local CPU generates an interrupt that
calls the current ACfail interrupt handler. Your application can take
any appropriate action within the allotted time period before complete
power failure.

 EnableSoftReset ()
EnableSoftReset sensitizes the application to Soft Reset conditions
on the local CPU. When the Reset bit in the VXI Control register of the
local CPU is written, the VXI interface (if an embedded CPU) and the
VXI register sets are reset (VXI logical address and address base are
retained). The write to the Reset bit causes an interrupt on the local
CPU, which can be handled in any appropriate manner. The CPU
cannot restart operation until the Reset bit is cleared. After the Reset bit
is cleared, the local CPU can go through a reinitialization process or
reboot altogether. If the local CPU is the Resource Manager (and
top-level Commander), the Reset bit should never be written. Writing
the Reset bit of any device should be reserved for the Commander of
the device.

Note: The Soft Reset interrupt does not apply to VME.

 EnableSysfail (controller)
EnableSysfail sensitizes the application to Sysfail interrupts from
embedded controller or extended controller(s) Sysfail conditions
(dependent on the hardware platform and configuration). The VXIbus

Chapter 3 Software Overview

NI-VXI User Manual 3-64 © National Instruments Corporation

specification requires that all VXI Commanders monitor the PASSed or
FAILed state of their VXI Servants. When a VXIbus device is in the
FAILed state, the failed device clears its PASS bit (in its Status
register) and asserts the SYSFAIL* signal on the VXIbus backplane.
When a Sysfail condition is detected on the local CPU, an interrupt is
generated, and the current Sysfail interrupt handler is called. The failed
Servant device must be forced offline or brought back online in an
orderly fashion.

 EnableSysreset (controller)
EnableSysreset sensitizes the application to Sysreset interrupts from
embedded or extended controller(s) (dependent on the hardware
platform). Notice that if the local CPU is configured to be reset by
Sysreset conditions on the backplane, the interrupt handler will not get
invoked (the CPU will reboot).

 GetACfailHandler ()
GetACfailHandler returns the address of the current ACfail interrupt
handler. An ACfail condition detected on the local CPU generates
an interrupt that calls the current ACfail interrupt handler. Your
application can take any appropriate action within the allotted time
period before complete power failure. The InitVXIlibrary function
automatically installs a default handler, DefaultACfailHandler ,
when it initializes the NI-VXI software.

 GetBusErrorHandler ()
GetBusErrorHandler returns the address of the current bus error
interrupt handler. During an access to the VXI/VMEbus, the BERR*
signal (bus error) is asserted to end the bus cycle if the address or mode
of access is determined to be invalid. The bus error exception condition
generates an exception on the local CPU, which can be trapped by the
bus error handler. Your application should include a retry mechanism if
it is possible for a particular access to generate bus errors at times
and valid results at other times. The InitVXIlibrary function
automatically installs a default handler, DefaultBusErrorHandler ,
when it initializes the NI-VXI software. It increments the global
variable BusErrorRecv . Because bus errors can occur at any time, a
corresponding enable and disable function is not possible.

Chapter 3 Software Overview

© National Instruments Corporation 3-65 NI-VXI User Manual

 GetSoftResetHandler ()
GetSoftResetHandler returns the address of the current Soft Reset
interrupt handler. A default handler, DefaultSoftResetHandler , is
automatically installed when InitVXIlibrary initializes the NI-VXI
software.

Note: The Soft Reset interrupt does not apply to VME.

 GetSysfailHandler ()
GetSysfailHandler returns the address of the current Sysfail
interrupt handler. A Sysfail condition detected on the local CPU
generates an interrupt that calls the current Sysfail interrupt handler. A
default handler, DefaultSysfailHandler , is automatically installed
when InitVXIlibrary initializes the NI-VXI software.

 GetSysresetHandler ()
GetSysresetHandler returns the address of the current Sysreset
interrupt handler. The InitVXIlibrary function automatically
installs a default handler, DefaultSysresetHandler , when it
initializes the NI-VXI software.

 SetACfailHandler (func)
SetACfailHandler replaces the current ACfail interrupt handler with
an alternate handler. An ACfail condition detected on the local CPU
generates an interrupt that calls the current ACfail interrupt handler.
Your application can take any appropriate action within the allotted
time period before complete power failure. The InitVXIlibrary

function automatically installs a default handler,
DefaultACfailHandler , when it initializes the NI-VXI software.
Your application must then call EnableACfail to enable ACfail
interrupts.

 SetBusErrorHandler (func)
SetBusErrorHandler replaces the current bus error interrupt handler
with an alternate handler. During an access to the VXI/VMEbus, the
BERR* signal (bus error) is asserted to end the bus cycle if the address
or mode of access is determined to be invalid. The bus error exception
condition generates an exception on the local CPU, which can be
trapped by the bus error handler. Your application should include a
retry mechanism if it is possible for a particular access to generate bus

Chapter 3 Software Overview

NI-VXI User Manual 3-66 © National Instruments Corporation

errors at times and valid results at other times. The InitVXIlibrary

function automatically installs a default handler,
DefaultBusErrorHandler , when it initializes the NI-VXI software.
Because bus errors can occur at any time, a corresponding enable and
disable function is not possible.

 SetSoftResetHandler (func)
SetSoftResetHandler replaces the current Soft Reset
interrupt handler with an alternate handler. A default handler,
DefaultSoftResetHandler , is automatically installed when
InitVXIlibrary initializes the NI-VXI software.
EnableSoftReset must be called to enable writes to the Reset bit to
generate interrupts to the local CPU after the InitVXIlibrary call.

Note: The Soft Reset interrupt does not apply to VME.

 SetSysfailHandler (func)
SetSysfailHandler replaces the current Sysfail interrupt handler
with an alternate handler. A Sysfail condition detected on the local
CPU generates an interrupt that calls the current Sysfail interrupt
handler. A default handler, DefaultSysfailHandler , is
automatically installed when InitVXIlibrary initializes the NI-VXI
software. EnableSysfail must be called to enable Sysfail interrupts
after the InitVXIlibrary call.

 SetSysresetHandler (func)
SetSysresetHandler replaces the current SYSRESET* interrupt
handler with an alternate handler. The InitVXIlibrary function
automatically installs a default handler, DefaultSysresetHandler ,
when it initializes the NI-VXI software. Your application must then
call EnableSysreset to enable writes to the Reset bit to generate
interrupts to the local CPU.

Chapter 3 Software Overview

© National Instruments Corporation 3-67 NI-VXI User Manual

 VXI/VMEbus Extender Functions
The NI-VXI software interface fully supports the standard VXIbus
extension method presented in the VXIbus Mainframe Extender
Specification. When the National Instruments Resource Manager (RM)
completes its configuration, all default transparent extensions are
complete. The transparent extensions include extensions of VXI/VME
interrupt, TTL trigger, ECL trigger, Sysfail, ACfail, and Sysreset
signals. The VXI/VMEbus extender functions are used to dynamically
change the default RM settings if the application has such a
requirement. Usually, the application never needs to change the default
settings. Consult your utilities manual on how to use the NI-VXI
resource editor utility, either VXIedit or VXItedit , to change the
default extender settings.

Note: The MXIbus, which is used as the transparent mainframe extender bus,
extends both VXI and VME chassis and even allows a system consisting
of both VXI and VME chassis.

The following paragraphs describe the VXI/VMEbus extender
functions. The descriptions are presented at a functional level
describing the operation of each of the functions.

 MapECLtrig
MapECLtrig configures mainframe extender triggering hardware to
map the specified ECL triggers for the specified mainframe in the
specified direction (into or out of the mainframe). If the specified
frame extender can extend VXI ECL triggers between the mainframes,
you can use MapECLtrig to configure the mainframe-to-mainframe
mapping. The NI-VXI Resource Manager automatically configures a
default mapping based on the user-modifiable configuration files. The
MapECLtrig function can dynamically reconfigure the ECL trigger
mapping. Only special circumstances should require any changes to the
default configuration.

 MapTTLtrig
MapTTLtrig configures mainframe extender triggering hardware to
map the specified TTL triggers for the specified mainframe in the
specified direction (into or out of the mainframe). If the specified
frame extender can extend VXI TTL triggers between the mainframes,

Chapter 3 Software Overview

NI-VXI User Manual 3-68 © National Instruments Corporation

you can use MapTTLtrig to configure the mainframe-to-mainframe
mapping. The NI-VXI Resource Manager automatically configures a
default mapping based on the user-modifiable configuration files. The
MapTTLtrig function can dynamically reconfigure the TTL trigger
mapping. Only special circumstances should require any changes to the
default configuration.

 MapUtilBus (extender, modes)
MapUtilBus configures mainframe extender utility bus hardware to
map Sysfail, ACfail, and/or Sysreset for the specified mainframe into
and/or out of the mainframe. If the specified frame extender can extend
the VXI/VME utility signals between mainframes, you can use
MapUtilBus to configure the mainframe-to-mainframe mapping. The
NI-VXI Resource Manager automatically configures a default mapping
based on user-modifiable configuration files. The MapUtilBus

function can dynamically reconfigure the utility bus mapping. Only
special circumstances should require any changes to the default
configuration.

 MapVXIint (extender, levels, directions)
MapVXIint changes the VXI/VME interrupt extension configuration
in multiple mainframe configurations. If the specified frame extender
can extend the VXI/VME interrupts between mainframes, you can use
MapVXIint to configure the mainframe-to-mainframe mapping. The
NI-VXI Resource Manager automatically configures a default mapping
based on user-modifiable configuration files. The MapVXIint function
can dynamically reconfigure the utility bus mapping. Only special
circumstances should require any changes to the default configuration.

© National Instruments Corporation1 A-1 NI-VXI User Manual

Function Classification
Reference

A
Appendix

This appendix contains two tables you can use as a quick reference.
Table A-1, Function Listing by Group, lists the NI-VXI functions by
their group association. This arrangement can help you determine
easily which functions are available within each group. Table A-2,
Function Listing by Name, lists each function alphabetically. You can
refer to this table if you don’t remember the group association of a
particular function. Both tables use checkmarks to denote whether a
VXI function also applies to VME and also whether it is associated
with C/C++ and/or BASIC.

Table A-1. Function Listing by Group

Group Function VXI VME C/C++ BASIC

System CloseVXIlibrary ✔ ✔ ✔ ✔

Configuration CreateDevInfo ✔ ✔ ✔ ✔

FindDevLA ✔ ✔ ✔ ✔

GetDevInfo ✔ ✔ ✔

GetDevInfoLong ✔ ✔ ✔ ✔

GetDevInfoShort ✔ ✔ ✔ ✔

GetDevInfoStr ✔ ✔ ✔ ✔

InitVXIlibrary ✔ ✔ ✔ ✔

SetDevInfo ✔ ✔ ✔

SetDevInfoLong ✔ ✔ ✔ ✔

SetDevInfoShort ✔ ✔ ✔ ✔

SetDevInfoStr ✔ ✔ ✔ ✔

Appendix A Function Classification Reference

NI-VXI User Manual A-2 © National Instruments Corporation

Table A-1. Function Listing by Group

Group Function VXI VME C/C++ BASIC

Commander WSabort ✔ ✔ ✔

Word Serial WSclr ✔ ✔ ✔

Protocol WScmd / WSEcmd/ WSLcmd ✔ ✔ ✔

WSgetTmo ✔ ✔ ✔

WSrd / WSrdi / WSrdl ✔ ✔ ✔

WSrdf ✔ ✔ ✔

WSresp/WSLresp ✔ ✔ ✔

WSsetTmo ✔ ✔ ✔

WStrg ✔ ✔ ✔

WSwrt / WSwrti / WSwrtl ✔ ✔ ✔

WSwrtf ✔ ✔ ✔

Servant Word DefaultWSScmdHandler ✔ ✔

Serial Protocol DefaultWSSEcmdHandler ✔ ✔

DefaultWSSLcmdHandler ✔ ✔

DefaultWSSrdHandler ✔ ✔

DefaultWSSwrtHandler ✔ ✔

GenProtError ✔ ✔

GetWSScmdHandler ✔ ✔

GetWSSEcmdHandler ✔ ✔

GetWSSLcmdHandler ✔ ✔

GetWSSrdHandler ✔ ✔

GetWSSwrtHandler ✔ ✔

RespProtError ✔ ✔

SetWSScmdHandler ✔ ✔

SetWSSEcmdHandler ✔ ✔

SetWSSLcmdHandler ✔ ✔

SetWSSrdHandler ✔ ✔

Appendix A Function Classification Reference

© National Instruments Corporation A-3 NI-VXI User Manual

Table A-1. Function Listing by Group

Group Function VXI VME C/C++ BASIC

Servant Word SetWSSwrtHandler ✔ ✔

Serial Protocol WSSabort ✔ ✔

(continued) WSSdisable ✔ ✔

WSSenable ✔ ✔

WSSnoResp /WSSLnoResp ✔ ✔

WSSrd / WSSrdi / WSSrdl ✔ ✔

WSSsendResp / WSSLsendResp ✔ ✔

WSSwrt / WSSwrti / WSSwrtl ✔ ✔

High-Level VXIin ✔ ✔ ✔ ✔

VXI/VMEbus VXIinReg ✔ ✔ ✔

Access VXImove ✔ ✔ ✔ ✔

VXIout ✔ ✔ ✔ ✔

VXIoutReg ✔ ✔ ✔

Low-Level GetByteOrder ✔ ✔ ✔ ✔

VXI/VMEbus GetContext ✔ ✔ ✔ ✔

Access GetPrivilege ✔ ✔ ✔ ✔

GetVXIbusStatus ✔ ✔ ✔

GetVXIbusStatusInd ✔ ✔ ✔ ✔

GetWindowRange ✔ ✔ ✔ ✔

MapVXIAddress ✔ ✔ ✔ ✔

MapVXIAddressSize ✔ ✔ ✔ ✔

SetByteOrder ✔ ✔ ✔ ✔

SetContext ✔ ✔ ✔ ✔

SetPrivilege ✔ ✔ ✔ ✔

UnMapVXIAddress ✔ ✔ ✔ ✔

VXIpeek ✔ ✔ ✔ ✔

VXIpoke ✔ ✔ ✔ ✔

Appendix A Function Classification Reference

NI-VXI User Manual A-4 © National Instruments Corporation

Table A-1. Function Listing by Group

Group Function VXI VME C/C++ BASIC

Local Resource GetMyLa ✔ ✔ ✔ ✔

Access ReadMODID ✔ ✔ ✔

SetMODID ✔ ✔ ✔

VXIinLR ✔ ✔ ✔ ✔

VXImemAlloc ✔ ✔ ✔ ✔

VXImemCopy ✔ ✔ ✔ ✔

VXImemFree ✔ ✔ ✔ ✔

VXIoutLR ✔ ✔ ✔ ✔

VXI Signal DefaultSignalHandler ✔ ✔ ✔ ✔

DisableSignalInt ✔ ✔ ✔

EnableSignalInt ✔ ✔ ✔

GetSignalHandler ✔ ✔ ✔

RouteSignal ✔ ✔ ✔ ✔

SetSignalHandler ✔ ✔ ✔

SignalDeq ✔ ✔ ✔ ✔

SignalEnq ✔ ✔ ✔ ✔

SignalJam ✔ ✔ ✔ ✔

WaitForSignal ✔ ✔ ✔ ✔

VXI/VME AcknowledgeVXIint ✔ ✔ ✔ ✔

Interrupt AssertVXIint ✔ ✔ ✔ ✔

DeAssertVXIint ✔ ✔ ✔ ✔

DefaultVXIintHandler ✔ ✔ ✔ ✔

DisableVXIint ✔ ✔ ✔ ✔

DisableVXItoSignalInt ✔ ✔ ✔ ✔

EnableVXIint ✔ ✔ ✔ ✔

EnableVXItoSignalInt ✔ ✔ ✔ ✔

GetVXIintHandler ✔ ✔ ✔

Appendix A Function Classification Reference

© National Instruments Corporation A-5 NI-VXI User Manual

Table A-1. Function Listing by Group

Group Function VXI VME C/C++ BASIC

VXI/VME RouteVXIint ✔ ✔ ✔ ✔

Interrupt SetVXIintHandler ✔ ✔ ✔

(continued) VXIintAcknowledgeMode ✔ ✔ ✔ ✔

Triggers AcknowledgeTrig ✔ ✔ ✔

DefaultTrigHandler ✔ ✔ ✔

DefaultTrigHandler2 ✔ ✔ ✔

DisableTrigSense ✔ ✔ ✔

EnableTrigSense ✔ ✔ ✔

GetTrigHandler ✔ ✔

MapTrigToTrig ✔ ✔ ✔

SetTrigHandler ✔ ✔

SrcTrig ✔ ✔ ✔

TrigAssertConfig ✔ ✔ ✔

TrigCntrConfig ✔ ✔ ✔

TrigExtConfig ✔ ✔ ✔

TrigTickConfig ✔ ✔ ✔

UnMapTrigToTrig ✔ ✔ ✔

WaitForTrig ✔ ✔ ✔

System Interrupt AssertSysreset ✔ ✔ ✔ ✔

Handler DefaultACfailHandler ✔ ✔ ✔ ✔

DefaultBusErrorHandler ✔ ✔ ✔ ✔

DefaultSoftResetHandler ✔ ✔ ✔

DefaultSysfailHandler ✔ ✔ ✔ ✔

DefaultSysresetHandler ✔ ✔ ✔ ✔

DisableACfail ✔ ✔ ✔ ✔

DisableSoftReset ✔ ✔ ✔

DisableSysfail ✔ ✔ ✔ ✔

Appendix A Function Classification Reference

NI-VXI User Manual A-6 © National Instruments Corporation

Table A-1. Function Listing by Group

Group Function VXI VME C/C++ BASIC

System Interrupt DisableSysreset ✔ ✔ ✔ ✔

Handler EnableACfail ✔ ✔ ✔ ✔

(continued) EnableSoftReset ✔ ✔ ✔

EnableSysfail ✔ ✔ ✔ ✔

EnableSysreset ✔ ✔ ✔ ✔

GetACfailHandler ✔ ✔ ✔

GetBusErrorHandler ✔ ✔ ✔

GetSoftResetHandler ✔ ✔

GetSysfailHandler ✔ ✔ ✔

GetSysresetHandler ✔ ✔ ✔

SetACfailHandler ✔ ✔ ✔

SetBusErrorHandler ✔ ✔ ✔

SetSoftResetHandler ✔ ✔

SetSysfailHandler ✔ ✔ ✔

SetSysresetHandler ✔ ✔ ✔

VXI/VMEbus MapECLtrig ✔ ✔ ✔

Extender MapTTLtrig ✔ ✔ ✔

MapUtilBus ✔ ✔ ✔ ✔

MapVXIint ✔ ✔ ✔ ✔

Appendix A Function Classification Reference

© National Instruments Corporation A-7 NI-VXI User Manual

Table A-2. Function Listing by Name

Function Group VXI VME C/C++ BASIC

AcknowledgeTrig Triggers ✔ ✔ ✔

AcknowledgeVXIint VXI/VME Interrupt ✔ ✔ ✔ ✔

AssertSysreset System Interrupt
Handler

✔ ✔ ✔ ✔

AssertVXIint VXI/VME Interrupt ✔ ✔ ✔ ✔

CloseVXIlibrary System Configuration ✔ ✔ ✔ ✔

CreateDevInfo System Configuration ✔ ✔ ✔ ✔

DeAssertVXIint VXI/VME Interrupt ✔ ✔ ✔ ✔

DefaultACfailHandler System Interrupt
Handler

✔ ✔ ✔ ✔

DefaultBusErrorHandler System Interrupt
Handler

✔ ✔ ✔ ✔

DefaultSignalHandler VXI Signal ✔ ✔ ✔ ✔

DefaultSoftResetHandler System Interrupt
Handler

✔ ✔ ✔

DefaultSysfailHandler System Interrupt
Handler

✔ ✔ ✔ ✔

DefaultSysresetHandler System Interrupt
Handler

✔ ✔ ✔ ✔

DefaultTrigHandler Triggers ✔ ✔ ✔

DefaultTrigHandler2 Triggers ✔ ✔ ✔

DefaultVXIintHandler VXI/VME Interrupt ✔ ✔ ✔ ✔

DefaultWSScmdHandler Servant Word Serial
Protocol

✔ ✔

DefaultWSSEcmdHandler Servant Word Serial
Protocol

✔ ✔

DefaultWSSLcmdHandler Servant Word Serial
Protocol

✔ ✔

DefaultWSSrdHandler Servant Word Serial
Protocol

✔ ✔

DefaultWSSwrtHandler Servant Word Serial
Protocol

✔ ✔

Appendix A Function Classification Reference

NI-VXI User Manual A-8 © National Instruments Corporation

Table A-2. Function Listing by Name

Function Group VXI VME C/C++ BASIC

DisableACfail System Interrupt
Handler

✔ ✔ ✔ ✔

DisableSignalInt VXI Signal ✔ ✔ ✔

DisableSoftReset System Interrupt
Handler

✔ ✔ ✔

DisableSysfail System Interrupt
Handler

✔ ✔ ✔ ✔

DisableSysreset System Interrupt
Handler

✔ ✔ ✔ ✔

DisableTrigSense Triggers ✔ ✔ ✔

DisableVXIint VXI/VME Interrupt ✔ ✔ ✔ ✔

DisableVXItoSignalInt VXI/VME Interrupt ✔ ✔ ✔ ✔

EnableACfail System Interrupt
Handler

✔ ✔ ✔ ✔

EnableSignalInt VXI Signal ✔ ✔ ✔

EnableSoftReset System Interrupt
Handler

✔ ✔ ✔

EnableSysfail System Interrupt
Handler

✔ ✔ ✔ ✔

EnableSysreset System Interrupt
Handler

✔ ✔ ✔ ✔

EnableTrigSense Triggers ✔ ✔ ✔

EnableVXIint VXI/VME Interrupt ✔ ✔ ✔ ✔

EnableVXItoSignalInt VXI/VME Interrupt ✔ ✔ ✔ ✔

FindDevLA System Configuration ✔ ✔ ✔ ✔

GenProtError Servant Word Serial
Protocol

✔ ✔

GetACfailHandler System Interrupt
Handler

✔ ✔ ✔

GetBusErrorHandler System Interrupt
Handler

✔ ✔ ✔

GetByteOrder Low-Level
VXI/VMEbus Access

✔ ✔ ✔ ✔

Appendix A Function Classification Reference

© National Instruments Corporation A-9 NI-VXI User Manual

Table A-2. Function Listing by Name

Function Group VXI VME C/C++ BASIC

GetContext Low-Level
VXI/VMEbus Access

✔ ✔ ✔ ✔

GetDevInfo System Configuration ✔ ✔ ✔

GetDevInfoLong System Configuration ✔ ✔ ✔ ✔

GetDevInfoShort System Configuration ✔ ✔ ✔ ✔

GetDevInfoStr System Configuration ✔ ✔ ✔ ✔

GetMyLa Local Resource
Access

✔ ✔ ✔ ✔

GetPrivilege Low-Level
VXI/VMEbus Access

✔ ✔ ✔ ✔

GetSignalHandler VXI Signal ✔ ✔ ✔

GetSoftResetHandler System Interrupt
Handler

✔ ✔

GetSysfailHandler System Interrupt
Handler

✔ ✔ ✔

GetSysresetHandler System Interrupt
Handler

✔ ✔ ✔

GetTrigHandler Triggers ✔ ✔

GetVXIbusStatus Low-Level
VXI/VMEbus Access

✔ ✔ ✔

GetVXIbusStatusInd Low-Level
VXI/VMEbus Access

✔ ✔ ✔ ✔

GetVXIintHandler VXI/VME Interrupt ✔ ✔ ✔

GetWindowRange Low-Level
VXI/VMEbus Access

✔ ✔ ✔ ✔

GetWSScmdHandler Servant Word Serial
Protocol

✔ ✔

GetWSSEcmdHandler Servant Word Serial
Protocol

✔ ✔

GetWSSLcmdHandler Servant Word Serial
Protocol

✔ ✔

GetWSSrdHandler Servant Word Serial
Protocol

✔ ✔

GetWSSwrtHandler Servant Word Serial
Protocol

✔ ✔

Appendix A Function Classification Reference

NI-VXI User Manual A-10 © National Instruments Corporation

Table A-2. Function Listing by Name

Function Group VXI VME C/C++ BASIC

InitVXIlibrary System Configuration ✔ ✔ ✔ ✔

MapECLtrig VXI/VMEbus
Extender

✔ ✔ ✔

MapTrigToTrig Triggers ✔ ✔ ✔

MapTTLtrig VXI/VMEbus
Extender

✔ ✔ ✔

MapUtilBus VXI/VMEbus
Extender

✔ ✔ ✔ ✔

MapVXIAddress Low-Level
VXI/VMEbus Access

✔ ✔ ✔ ✔

MapVXIAddressSize Low-Level
VXI/VMEbus Access

✔ ✔ ✔ ✔

MapVXIint VXI/VMEbus
Extender

✔ ✔ ✔ ✔

ReadMODID Local Resource
Access

✔ ✔ ✔

RespProtError Servant Word Serial
Protocol

✔ ✔

RouteSignal VXI Signal ✔ ✔ ✔ ✔

RouteVXIint VXI/VME Interrupt ✔ ✔ ✔ ✔

SetACfailHandler System Interrupt
Handler

✔ ✔ ✔

SetBusErrorHandler System Interrupt
Handler

✔ ✔ ✔

SetByteOrder Low-Level
VXI/VMEbus Access

✔ ✔ ✔ ✔

SetContext Low-Level
VXI/VMEbus Access

✔ ✔ ✔ ✔

SetDevInfo System Configuration ✔ ✔ ✔

SetDevInfoLong System Configuration ✔ ✔ ✔ ✔

SetDevInfoShort System Configuration ✔ ✔ ✔ ✔

SetDevInfoStr System Configuration ✔ ✔ ✔ ✔

SetMODID Local Resource
Access

✔ ✔ ✔

SetPrivilege Low-Level
VXI/VMEbus Access

✔ ✔ ✔ ✔

Appendix A Function Classification Reference

© National Instruments Corporation A-11 NI-VXI User Manual

Table A-2. Function Listing by Name

Function Group VXI VME C/C++ BASIC

SetSignalHandler VXI Signal ✔ ✔ ✔

SetSoftResetHandler System Interrupt
Handler

✔ ✔

SetSysfailHandler System Interrupt
Handler

✔ ✔ ✔

SetSysresetHandler System Interrupt
Handler

✔ ✔ ✔

SetTrigHandler Triggers ✔ ✔

SetVXIintHandler VXI/VME Interrupt ✔ ✔ ✔

SetWSScmdHandler Servant Word Serial
Protocol

✔ ✔

SetWSSEcmdHandler Servant Word Serial
Protocol

✔ ✔

SetWSSLcmdHandler Servant Word Serial
Protocol

✔ ✔

SetWSSrdHandler Servant Word Serial
Protocol

✔ ✔

SetWSSwrtHandler Servant Word Serial
Protocol

✔ ✔

SignalDeq VXI Signal ✔ ✔ ✔ ✔

SignalEnq VXI Signal ✔ ✔ ✔ ✔

SignalJam VXI Signal ✔ ✔ ✔ ✔

SrcTrig Triggers ✔ ✔ ✔

TrigAssertConfig Triggers ✔ ✔ ✔

TrigCntrConfig Triggers ✔ ✔ ✔

TrigExtConfig Triggers ✔ ✔ ✔

TrigTickConfig Triggers ✔ ✔ ✔

UnMapTrigToTrig Triggers ✔ ✔ ✔

UnMapVXIAddress Low-Level
VXI/VMEbus Access

✔ ✔ ✔ ✔

VXIin High-Level
VXI/VMEbus Access

✔ ✔ ✔ ✔

VXIinLR Local Resource ✔ ✔ ✔ ✔

Appendix A Function Classification Reference

NI-VXI User Manual A-12 © National Instruments Corporation

Table A-2. Function Listing by Name

Function Group VXI VME C/C++ BASIC

Access

VXIinReg High-Level
VXI/VMEbus Access

✔ ✔ ✔

VXIintAcknowledgeMode VXI/VME Interrupt ✔ ✔ ✔ ✔

VXImemAlloc Local Resource
Access

✔ ✔ ✔ ✔

VXImemCopy Local Resource
Access

✔ ✔ ✔ ✔

VXImemFree Local Resource
Access

✔ ✔ ✔ ✔

VXImove High-Level
VXI/VMEbus Access

✔ ✔ ✔ ✔

VXIout High-Level
VXI/VMEbus Access

✔ ✔ ✔ ✔

VXIoutLR Local Resource
Access

✔ ✔ ✔ ✔

VXIoutReg High-Level
VXI/VMEbus Access

✔ ✔ ✔

VXIpeek Low-Level
VXI/VMEbus Access

✔ ✔ ✔ ✔

VXIpoke Low-Level
VXI/VMEbus Access

✔ ✔ ✔ ✔

WaitForSignal VXI Signal ✔ ✔ ✔ ✔

WaitForTrig Triggers ✔ ✔ ✔

WSabort Commander Word
Serial Protocol

✔ ✔ ✔

WSclr Commander Word
Serial Protocol

✔ ✔ ✔

WScmd/ WSEcmd/ WSLcmd Commander Word
Serial Protocol

✔ ✔ ✔

WSgetTmo Commander Word
Serial Protocol

✔ ✔ ✔

WSresp/ WSLresp Commander Word
Serial Protocol

✔ ✔ ✔

WSrd / WSrdi / WSrdl Commander Word
Serial Protocol

✔ ✔ ✔

Appendix A Function Classification Reference

© National Instruments Corporation A-13 NI-VXI User Manual

Table A-2. Function Listing by Name

Function Group VXI VME C/C++ BASIC

WSrdf Commander Word
Serial Protocol

✔ ✔ ✔

WSSabort Servant Word Serial
Protocol

✔ ✔

WSSdisable Servant Word Serial
Protocol

✔ ✔

WSSenable Servant Word Serial
Protocol

✔ ✔

WSsetTmo Word Serial Protocol ✔ ✔ ✔

WSSnoResp/ WSSLnoResp Servant Word Serial
Protocol

✔ ✔

WSSrd / WSSrdi / WSSrdl Servant Word Serial
Protocol

✔ ✔

WSSsendResp/ WSSLsendResp Servant Word Serial
Protocol

✔ ✔

WSSwrt / WSSwrti / WSSwrtl Servant Word Serial
Protocol

✔ ✔

WStrg Commander Word
Serial Protocol

✔ ✔ ✔

WSwrt / WSwrti / WSwrtl Commander Word
Serial Protocol

✔ ✔ ✔

WSwrtf Commander Word
Serial Protocol

✔ ✔ ✔

© National Instruments Corporation B-1 NI-VXI User Manual

Customer Communication
B

Appendix

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve technical problems you might have as well as a form you can use to comment on
the product documentation. Filling out a copy of the Technical Support Form before contacting
National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In the U.S.
and Canada, applications engineers are available Monday through Friday from 8:00 a.m. to
6:00 p.m. (central time). In other countries, contact the nearest branch office. You may fax
questions to us at any time.

Electronic Services

Bulletin Board Support
National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
files and documents to answer most common customer questions. From these sites, you can also
download the latest instrument drivers, updates, and example programs. For recorded instructions
on how to use the bulletin board and FTP services and for BBS automated information, call
(512) 795-6990. You can access these services at:

United States: (512) 794-5422 or (800) 327-3077
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 1 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support
To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and use
your Internet address, such as joesmith@anywhere.com , as your password. The support files
and documents are located in the /support directories.

FaxBack Support
FaxBack is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access FaxBack from a touch-tone telephone at
(512) 418-1111.

E-Mail Support (currently U.S. only)
You can submit technical support questions to the appropriate applications engineering team
through e-mail at the Internet addresses listed below. Remember to include your name, address, and
phone number so we can contact you with solutions and suggestions.

GPIB: gpib.support@natinst.com LabVIEW: lv.support@natinst.com
DAQ: daq.support@natinst.com HiQ: hiq.support@natinst.com
VXI: vxi.support@natinst.com VISA: visa.support@natinst.com
LabWindows: lw.support@natinst.com Lookout: lookout.support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country, contact
the source from which you purchased your software to obtain support.

Telephone Fax
Australia 03 9 879 9422 03 9 879 9179
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 519 622 9310
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 90 527 2321 90 502 2930
France 1 48 14 24 24 1 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 95 800 010 0793 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and
use the completed copy of this form as a reference for your current configuration. Completing this
form accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Title ___

Company ___

Address __

__

Fax (____) _________________________ Phone (____) ___________________________

Computer brand ___________________ Model ______________ Processor ________________

Operating system (include version number) __

RAM _____________ MB Display adapter ______________________________________

Mouse ____ yes _____ no Other adapters installed _____________________________

Hard disk capacity ________ MB Brand __

Instruments used __

National Instruments hardware product model _____________________ Revision ____________

Configuration __

National Instruments software product ___________________________ Version ____________

Configuration __

The problem is ___

__

__

__

List any error messages __

__

__

The following steps will reproduce the problem ___

__

__

 Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our products.
This information helps us provide quality products to meet your needs.

Title: NI-VXI™ User Manual

Edition Date: July 1996

Part Number: 371702A-01

Please comment on the completeness, clarity, and organization of the manual.

__

__

__

__

__

__

__

If you find errors in the manual, please record the page numbers and describe the errors.

__

__

__

__

__

__

__

Thank you for your help.

Name __

Title ___

Company ___

Address __

__

Phone (____) ___

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678
Austin, TX 78730-5039

© National Instruments Corporation G-1 NI-VXI User Manual

Glossary

Prefix Meaning Value

n- nano- 10-9

m- milli- 10-3

K- kilo- 103

M- mega- 106

G- giga- 109

A

A16 space One of the VXIbus address spaces. Equivalent to the VME 64 KB
short address space. In VXI, the upper 16 KB of A16 space is
allocated for use by VXI devices configuration registers. This 16 KB
region is referred to as VXI configuration space.

A24 space One of the VXIbus address spaces. Equivalent to the VME 16 MB
standard address space.

A32 space One of the VXIbus address spaces. Equivalent to the VME 4 GB
extended address space.

ACFAIL* A VMEbus backplane signal that is asserted when a power failure has
occurred (either AC line source or power supply malfunction), or if it is
necessary to disable the power supply (such as for a high temperature
condition).

address Character code that identifies a specific location (or series of locations)
in memory.

Glossary

NI-VXI User Manual G-2 © National Instruments Corporation

address modifier One of six signals in the VMEbus specification used by
VMEbus masters to indicate the address space and mode
(supervisory/nonprivileged, data/program/block) in which a data
transfer is to take place.

address space A set of 2n memory locations differentiated from other such sets in
VXI/VMEbus systems by six signal lines known as address modifiers.
n is the number of address lines required to uniquely specify a byte
location in a given space. Valid numbers for n are 16, 24, and 32.

address window A range of address space that can be accessed from the application
program.

ANSI American National Standards Institute

ASCII American Standard Code for Information Interchange. A 7-bit
standard code adopted to facilitate the interchange of data among
various types of data processing and data communications equipment.

ASIC Application-Specific Integrated Circuit (a custom chip)

asserted A signal in its active true state.

asynchronous Not synchronized; not controlled by periodic time signals, and
therefore unpredictable with regard to the timing of execution of
commands.

ASYNC Protocol A two-device, two-line handshake trigger protocol using two
consecutive even/odd trigger lines (a source/acceptor line and an
acknowledge line).

B

backplane An assembly, typically a PCB, with 96-pin connectors and signal paths
that bus the connector pins. A C-size VXIbus system will have two
sets of bused connectors called the J1 and J2 backplanes. A D-size
VXIbus system will have three sets of bused connectors called the J1,
J2, and J3 backplane.

base address A specified address that is combined with a relative address (or offset)
to determine the absolute address of a data location. All VXI address
windows have an associated base address for their assigned VXI
address spaces.

Glossary

© National Instruments Corporation G-3 NI-VXI User Manual

BAV Word Serial Byte Available command. Used to transfer 8 bits of data
from a Commander to its Servant under the Word Serial Protocol.

BERR* Bus error signal. This signal is asserted by either a slave device or the
bus time out (BTO) unit when an incorrect transfer is made on the Data
Transfer Bus (DTB). The BERR* signal is also used in VXI for certain
protocol implementations such as writes to a full Signal register and
synchronization under the Fast Handshake Word Serial Protocol.

binary A numbering system with a base of 2.

bit Binary digit. The smallest possible unit of data: a two-state, yes/no,
0/1 alternative. The building block of binary coding and numbering
systems. Several bits make up a byte.

bit vector A string of related bits in which each bit has a specific meaning.

BREQ Word Serial Byte Request query. Used to transfer 8 bits of data from a
Servant to its Commander under the Word Serial Protocol.

BTO See bus timeout unit.

buffer Temporary memory/storage location for holding data before it can be
transmitted elsewhere.

bus master A device that is capable of requesting the Data Transfer Bus (DTB) for
the purpose of accessing a slave device.

bus timeout unit A VMEbus functional module that times the duration of each data
transfer on the Data Transfer Bus (DTB) and terminates the DTB cycle
if the duration is excessive. Without the termination capability of this
module, a bus master could attempt to access a nonexistent slave,
resulting in an indefinitely long wait for a slave response.

byte A grouping of adjacent binary digits operated on by the computer as a
single unit. A byte consists of 8 bits.

byte order How bytes are arranged within a word or how words are arranged
within a longword. Motorola ordering stores the most significant byte
(MSB) or word first, followed by the least significant byte (LSB) or
word. Intel ordering stores the LSB or word first, followed by the
MSB or word.

Glossary

NI-VXI User Manual G-4 © National Instruments Corporation

C

clearing Replacing the information in a register, storage location, or storage unit
with zeros or blanks.

CLK10 A 10 MHz, ± 100 ppm, individually buffered (to each module slot),
differential ECL system clock that is sourced from Slot 0 and
distributed to Slots 1 through 12 on P2. It is distributed to each slot
as a single-source, single-destination signal with a matched delay of
under 8 ns.

command A directive to a device. In VXI, three types of commands are as
follows:

• In Word Serial Protocol, a 16-bit imperative to a servant from its
Commander (written to the Data Low register);

• In Shared Memory Protocol, a 16-bit imperative from a client to a
server, or vice versa (written to the Signal register);

• In Instrument devices, an ASCII-coded, multi-byte directive.

Commander A message-based device which is also a bus master and can control one
or more Servants.

communications In message-based devices, a set of registers that are accessible to the
registers device’s Commander and are used for performing Word Serial Protocol

communications.

configuration registers A set of registers through which the system can identify a module
device type, model, manufacturer, address space, and memory
requirements. In order to support automatic system and memory
configuration, the VXIbus specification requires that all VXIbus
devices have a set of such registers.

controller A device that is capable of controlling other devices. A desktop
computer with a MXI interface board, an embedded computer in a
VXI chassis, a VXI-MXI, and a VME-MXI may all be controllers
depending on the configuration of the VXI system.

CR Carriage Return; the ASCII character 0Dh.

Glossary

© National Instruments Corporation G-5 NI-VXI User Manual

D

Data Transfer Bus One of four buses on the VMEbus backplane. The DTB is used by a
bus master to transfer binary data between itself and a slave device.

decimal Numbering system based upon the 10 digits 0 to 9. Also known as
base 10.

de-referencing Accessing the contents of the address location pointed to by a pointer.

default handler Automatically installed at startup to handle associated interrupt
conditions; the software can then replace it with a specified handler.

DIR Data In Ready. This is a bit in the Response register of a message-
based device that indicates that the device is ready to accept data from
its Commander.

DIRviol Data In Ready violation. A type of word serial protocol error that
occurs when the Commander attempts to write data to the device when
the device is not ready.

DOR Data Out Ready. This is a bit in the Response register of a
message-based device that indicates that the device is ready to output
data to its Commander.

DORviol Data Out Ready violation. A type of word serial protocol error that
occurs when the Commander attempts to read data from the device
when the device is not ready.

DRAM Dynamic RAM (Random Access Memory); storage that the computer
must refresh at frequent intervals.

DTB See Data Transfer Bus.

E

ECL Emitter-Coupled Logic

embedded controller A computer plugged directly into the VXI backplane. An example is
the National Instruments VXIpc-850.

END Signals the end of a data string.

Glossary

NI-VXI User Manual G-6 © National Instruments Corporation

EOS End Of String; a character sent to designate the last byte of a data
message.

ERR Protocol error

Event signal A 16-bit value written to a message-based device’s Signal register in
which the most significant bit (bit 15) is a 1, designating an Event (as
opposed to a Response signal). The VXI specification reserves half of
the Event values for definition by the VXI Consortium. The other half
are user defined.

Extended Class device A class of VXIbus device defined for future expansion of the VXIbus
specification. These devices have a subclass register within their
configuration space that defines the type of extended device.

extended controller The external controller plus all of the extending controllers to which it
is directly connected. An example is an AT-MXI connected to a
VXI-MXI.

Extended Longword A form of Word Serial communication in which Commanders and
Serial Protocol Servants communicate with 48-bit data transfers.

extending controller A mainframe extender that has additional VXIbus controller
capabilities. An example is the VXI-MXI.

external controller A desktop computer or workstation connected to the VXI system via a
MXI interface board. An example is a standard personal computer with
a PCI-MXI-2 installed.

F

FHS Fast Handshake; a mode of the Word Serial Protocol which uses the
VXIbus signals DTACK* and BERR* for synchronization instead of
the Response register bits.

FIFO First In-First Out; a method of data storage in which the first element
stored is the first one retrieved.

G

GPIB General-Purpose Interface Bus; the industry-standard IEEE 488 bus.

Glossary

© National Instruments Corporation G-7 NI-VXI User Manual

GPIO General-Purpose Input Output, a module within the National
Instruments TIC chip which is used for two purposes. First, GPIOs
are used for connecting external signals to the TIC chip for
routing/conditioning to the VXIbus trigger lines. Second, GPIOs
are used as part of a crosspoint switch matrix.

H

handshaking A type of protocol that makes it possible for two devices to
synchronize operations.

hardware context The hardware setting for address space, access privilege, and byte
ordering.

hex Hexadecimal; the numbering system with base 16, using the digits 0 to
9 and letters A to F.

high-level Programming with instructions in a notation more familiar to the user
than machine code. Each high-level statement corresponds to several
low-level machine code instructions and is machine-independent,
meaning that it is portable across many platforms.

Hz Hertz; a measure of cycles per second.

I

I/O Input/output; the techniques, media, or devices used to achieve
communication between entities.

IACK Interrupt Acknowledge

IEEE Institute of Electrical and Electronics Engineers

IEEE 1014 The VME specification. Its full title is ANSI/IEEE 1014-1987, IEEE
Standard for a Versatile Backplane Bus: VMEbus.

IEEE 1155 The VXI specification. Its full title is ANSI/IEEE 1155-1992, VMEbus
Extensions for Instrumentation: VXIbus.

IEEE 488 Standard 488-1978, which defines the GPIB. Its full title is IEEE
Standard Digital Interface for Programmable Instrumentation. Also
referred to as IEEE 488.1 since the adoption of IEEE 488.2.

Glossary

NI-VXI User Manual G-8 © National Instruments Corporation

IEEE 488.2 A supplemental standard for GPIB. Its full title is Codes, Formats,
Protocols and Common Commands.

INT16 A 16-bit signed integer; may also be called a short integer or word.

INT32 A 32-bit signed integer; may also be called a long or longword.

INT8 An 8-bit signed integer; may also be called a char.

interrupt A means for a device to notify another device that an event occurred.

interrupt handler A functional module that detects interrupt requests generated by
interrupters and performs appropriate actions.

interrupter A device capable of asserting interrupts and responding to an interrupt
acknowledge cycle.

INTX Interrupt and Timing Extension; a daughter card option for MXI
mainframe extenders that extends interrupt lines and reset signals on
VME boards. On VXI boards it also extends trigger lines and the
VXIbus CLK10 signal.

K

KB 1,024 or 210

kilobyte A thousand bytes.

L

LF Linefeed; the ASCII character 0Ah.

logical address An 8-bit number that uniquely identifies the location of each VXIbus
device’s configuration registers in a system. The A16 register address
of a device is C000h + Logical Address * 40h.

longword Data type of 32-bit integers.

Longword Serial A form of Word Serial communication in which Commanders and
Protocol Servants communicate with 32-bit data transfers instead of 16-bit data

transfers as in the normal Word Serial Protocol.

low-level Programming at the system level with machine-dependent commands.

Glossary

© National Instruments Corporation G-9 NI-VXI User Manual

M

MB 1,048,576 or 220

mapping Establishing a range of address space for a one-to-one correspondence
between each address in the window and an address in VXIbus
memory.

master A functional part of a MXI/VME/VXIbus device that initiates data
transfers on the backplane. A transfer can be either a read or a write.

megabyte A million bytes.

Memory Class device A VXIbus device that, in addition to configuration registers, has
memory in VME A24 or A32 space that is accessible through addresses
on the VME/VXI data transfer bus.

message-based device An intelligent device that implements the defined VXIbus registers and
communication protocols. These devices are able to use Word Serial
Protocol to communicate with one another through communication
registers.

MODID A set of 13 signal lines on the VXI backplane that VXI systems use to
identify which modules are located in which slots in the mainframe.

MQE Multiple Query Error; a type of Word Serial Protocol error. If a
Commander sends two Word Serial queries to a Servant without
reading the response to the first query before sending the second query,
a MQE is generated.

multitasking The ability of a computer to perform two or more functions
simultaneously without interference from one another. In operating
system terms, it is the ability of the operating system to execute
multiple applications/processes by time-sharing the available CPU
resources.

MXIbus Multisystem eXtension Interface Bus; a high-performance
communication link that interconnects devices using round, flexible
cables.

ms Milliseconds

Glossary

NI-VXI User Manual G-10 © National Instruments Corporation

N

NI-VXI The National Instruments bus interface software for VME/VXIbus
systems.

nonprivileged access One of the defined types of VMEbus data transfers; indicated by
certain address modifier codes. Each of the defined VMEbus address
spaces has a defined nonprivileged access mode.

NULL A special value to denote that the contents (usually of a pointer) are
invalid or zero.

O

octal Numbering system with base 8, using numerals 0 to 7.

P

parse The act of interpreting a string of data elements as a command to
perform a device-specific action.

peek To read the contents.

pointer A data structure that contains an address or other indication of storage
location.

poke To write a value

ppm Parts per million

privileged access See Supervisory Access.

propagation Passing of signal through a computer system.

protocol Set of rules or conventions governing the exchange of information
between computer systems.

Q

query Like command, causes a device to take some action, but requires a
response containing data or other information. A command does not
require a response.

Glossary

© National Instruments Corporation G-11 NI-VXI User Manual

queue A group of items waiting to be acted upon by the computer. The
arrangement of the items determines their processing priority. Queues
are usually accessed in a FIFO fashion.

R

read To get information from any input device or file storage media.

register A high-speed device used in a CPU for temporary storage of small
amounts of data or intermediate results during processing.

register-based device A Servant-only device that supports only the four basic VXIbus
configuration registers. Register-based devices are typically controlled
by message-based devices via device-dependent register reads and
writes.

remote controller A device in the VXI system that has the capability to control the
VXIbus, but has no intelligent CPU installed. An example is the
VXI-MXI-2.

REQF Request False; a VXI Event condition transferred using either VXI
signals or VXI interrupts, indicating that a Servant no longer has a need
for service.

REQT Request True; a VXI Event condition transferred using either VXI
signals or VXI interrupts, indicating that a Servant has a need for
service.

resman The name of the National Instruments Resource Manager application in
the NI-VXI bus interface software. See Resource Manager.

Resource Manager A message-based Commander located at Logical Address 0, which
provides configuration management services such as address map
configuration, Commander and Servant mappings, and self-test and
diagnostic management.

Response signal Used to report changes in Word Serial communication status between a
Servant and its Commander.

ret Return value.

RM See Resource Manager

Glossary

NI-VXI User Manual G-12 © National Instruments Corporation

ROAK Release On Acknowledge; a type of VXI interrupter which always
deasserts its interrupt line in response to an IACK cycle on the VXIbus.
All message-based VXI interrupters must be ROAK interrupters.

ROR Release On Request; a type of VME bus arbitration where the current
VMEbus master relinquishes control of the bus only when another bus
master requests the VMEbus.

RORA Release On Register Access; a type of VXI/VME interrupter which
does not deassert its interrupt line in response to an IACK cycle on the
VXIbus. A device-specific register access is required to remove the
interrupt condition from the VXIbus. The VXI specification
recommends that VXI interrupters be only ROAK interrupters.

RR Read Ready; a bit in the Response register of a message-based device
used in Word Serial Protocol indicating that a response to a previously
sent query is pending.

RRviol Read Ready protocol violation; a type of Word Serial Protocol error. If
a Commander attempts to read a response from the Data Low register
when the device is not Read Ready (does not have a response pending),
a Read Ready violation may be generated.

rsv Request Service; a bit in the status byte of an IEEE 488.1 and 488.2
device indicating a need for service. In VXI, whenever a new need for
service arises, the rsv bit should be set and the REQT signal sent to the
Commander. The rsv bit should be automatically deasserted when the
Word Serial Read Status Byte query is sent.

S

s Seconds

SEMI-SYNC Protocol A one-line, open collector, multiple-device handshake trigger protocol.

Servant A device controlled by a Commander.

setting To place a binary cell into the 1 (non-zero) state.

Shared Memory Protocol A communications protocol for message-based devices that uses a
block of memory that is accessible to both a client and a server. The
memory block acts as the medium for the protocol transmission.

short integer Data type of 16 bits, same as word.

Glossary

© National Instruments Corporation G-13 NI-VXI User Manual

signal Any communication between message-based devices consisting of a
write to a Signal register. Sending a signal requires that the sending
device have VMEbus master capability.

signed integer n bit pattern, interpreted such that the range is from -2(n-1) to
+2(n-1) -1.

slave A functional part of a MXI/VME/VXIbus device that detects data
transfer cycles initiated by a VMEbus master and responds to the
transfers when the address specifies one of the device’s registers.

SMP See Shared Memory Protocol.

SRQ Service Request

status/ID A value returned during an IACK cycle. In VME, usually an 8-bit
value which is either a status/data value or a vector/ID value used by
the processor to determine the source. In VXI, a 16-bit value used as a
data; the lower 8 bits form the VXI logical address of the interrupting
device and the upper 8 bits specify the reason for interrupting.

STST START/STOP trigger protocol; a one-line, multiple-device protocol
that can be sourced only by the VXI Slot 0 device and sensed by any
other device on the VXI backplane.

supervisory access One of the defined types of VMEbus data transfers; indicated by
certain address modifier codes.

synchronous A communications system that follows the command/response cycle
communications model. In this model, a device issues a command to another device;

the second device executes the command and then returns a response.
Synchronous commands are executed in the order they are received.

SYNC Protocol The most basic trigger protocol, simply a pulse of a minimum duration
on any one of the trigger lines.

SYSFAIL* A VMEbus signal that is used by a device to indicate an internal
failure. A failed device asserts this line. In VXI, a device that fails
also clears its PASSed bit in its Status register.

SYSRESET* A VMEbus signal that is used by a device to indicate a system reset or
power-up condition.

system clock driver A VMEbus functional module that provides a 16 MHz timing signal on
the utility bus.

Glossary

NI-VXI User Manual G-14 © National Instruments Corporation

System Controller A functional module that has arbiter, daisy-chain driver, and MXIbus
cycle timeout responsibility. Always the first device in the MXIbus
daisy-chain.

system hierarchy The tree structure of the Commander/Servant relationships of all
devices in the system at a given time. In the VXIbus structure, each
Servant has a Commander. A Commander can in turn be a Servant to
another Commander.

T

TIC Trigger Interface Chip; a proprietary National Instruments ASIC used
for direct access to the VXI trigger lines. The TIC contains a 16-bit
counter, a dual 5-bit tick timer, and a full crosspoint switch.

tick The smallest unit of time as measured by an operating system.

trigger Either TTL or ECL lines used for intermodule communication.

tristated Defines logic that can have one of three states: low, high, and
high-impedance.

TTL Transistor-Transistor Logic

U

unasserted A signal in its inactive false state.

UINT8 An 8-bit unsigned integer; may also be called an unsigned char.

UINT16 A 16-bit unsigned integer; may also be called an unsigned short or
word.

UINT32 A 32-bit unsigned integer; may also be called an unsigned long or
longword.

unsigned integer n bit pattern interpreted such that the range is from 0 to 2n -1.

UnSupCom Unsupported Command; a type of Word Serial Protocol error. If a
Commander sends a command or query to a Servant which the Servant
does not know how to interpret, an Unsupported Command protocol
error is generated.

Glossary

© National Instruments Corporation G-15 NI-VXI User Manual

V

VIC VXI Interactive Control program, a part of the NI-VXI bus interface
software package. Used to program VXI devices, and develop and
debug VXI application programs. Called VICtext when used on text-
based platforms.

VME Versa Module Eurocard or IEEE 1014

VMEbus Class device Also called non-VXIbus or foreign devices when found in VXIbus
systems. They lack the configuration registers required to make them
VXIbus devices.

void In the C language, a generic data type that can be cast to any specific
data type.

VXIbus VMEbus Extensions for Instrumentation

VXIedit VXI Resource Editor program, a part of the NI-VXI bus interface
software package. Used to configure the system, edit the manufacturer
name and ID numbers, edit the model names of VXI and non-VXI
devices in the system, as well as the system interrupt configuration
information, and display the system configuration information
generated by the Resource Manager. Called vxitedit when used on
text-based platforms.

VXItedit Text based version of VXIedit

W

Word Serial Protocol The simplest required communication protocol supported by
message-based devices in the VXIbus system. It utilizes the A16
communication registers to perform 16-bit data transfers using a simple
polling handshake method.

word A data quantity consisting of 16 bits.

write Copying data to a storage device.

WR Write Ready; a bit in the Response register of a message-based device
used in Word Serial Protocol indicating the ability for a Servant to
receive a single command/query written to its Data Low register.

Glossary

NI-VXI User Manual G-16 © National Instruments Corporation

WRviol Write Ready protocol violation; a type of Word Serial Protocol error.
If a Commander attempts to write a command or query to a Servant
that is not Write Ready (already has a command or query pending), a
Write Ready protocol violation may be generated.

WSP See Word Serial Protocol

© National Instruments Corporation I-1 NI-VXI User Manual

Index

A
acceptor trigger functions

AcknowledgeTrig, 3-55
DefaultTrigHandler, 3-55
DefaultTrigHandler2, 3-55
DisableTrigSense, 3-55
EnableTrigSense, 3-55
GetTrigHandler, 3-56
overview, 3-54
SetTrigHandler, 3-56
WaitForTrig, 3-56

access functions. See high-level
VXI/VMEbus access functions; local
resource access functions; low-level
VXI/VMEbus access functions.

Access-Only Privilege, 3-28 to 3-29
AcknowledgeTrig function, 3-55
AcknowledgeVXIint function, 3-46 to 3-47
AssertSysreset function, 3-60
AssertVXIint function, 3-47
ASYNC trigger protocol, 3-51
asynchronous events, 1-4 to 1-5

B
bulletin board support, B-1
busacc.h file, 2-10
Byte Available (BAV) Word Serial

commands, 3-6, 3-15
Byte Request (BREQ) Word Serial

queries, 3-6, 3-15

C
callback handlers

handling signals or interrupts, 2-18
system-dependent behavior (note), 2-19

CloseVXIlibrary function
description, 3-2
requirements for NI-VXI programs,

2-10 to 2-11
Commander/Servant hierarchies, 1-4
Commander Word Serial communication

Extended Longword Serial Protocol, 3-7
Longword Serial Protocol, 3-7
overview, 2-13, 3-5 to 3-7
polling operations, 3-6
special cases, 3-7
types of transfers, 3-5 to 3-6
Word Serial Protocol, 3-6

Commander Word Serial Protocol functions
alphabetical list (table), A-2
cooperative multitasking support,

3-7 to 3-8
interrupt service routine support,

3-7 to 3-8
multitasking support (preemptive

operating system), 3-8 to 3-10
overview, 2-3
programming considerations, 3-7
single-tasking operating system support,

3-7 to 3-8
WSabort, 3-8, 3-10
WSclr, 3-10

Index

NI-VXI User Manual I-2 © National Instruments Corporation

WScmd, 3-10
WSEcmd, 3-11
WSgetTmo, 3-11
WSLcmd, 3-11
WSLresp, 3-11 to 3-12
WSrd, 3-12
WSrdf, 3-12
WSresp, 3-12 to 3-13
WSsetTmo, 3-13
WStrg, 3-13
WSwrt, 3-13
WSwrtf, 3-14

configuration functions. See system
configuration functions; trigger
configuration functions.

controller parameters, 2-7 to 2-8
controllers, 2-5 to 2-7

definition, 2-5
embedded controller, 2-5
external controller, 2-6 to 2-7
remote controller, 2-5 to 2-6

cooperative multitasking support,
Commander Word Serial Protocol
functions, 3-7 to 3-8

CreateDevInfo function, 3-2
customer communication, xv, B-1 to B-2

D
Data in Ready (DIR) bit, 3-6, 3-15
Data Out Ready (DOR) bit, 3-6, 3-15
datasize.h file, 2-9
DeAssertVXIint function, 3-47
DefaultACfailHandler function, 3-60
DefaultBusErrorHandler, 3-60 to 3-61
DefaultSignalHandler function, 3-40
DefaultSoftResetHandler function, 3-61
DefaultSysfailHandler function, 3-61 to 3-63
DefaultTrigHandler function, 3-55
DefaultTrigHandler2 function, 3-55
DefaultVXIntHandler function, 3-47 to 3-48

DefaultWSScmdHandler function, 3-17
DefaultWSSEcmdHandler function, 3-17
DefaultWSSLcmdHandler function,

3-17 to 3-18
DefaultWSSrdHandler function, 3-18
DefaultWSSwrtHandler function, 3-18
devinfo.h file, 2-10
DisableSignalInt function

description, 3-40
signal queuing considerations, 3-38

DisableSysreset function, 3-63
DisableTrigSense function, 3-55
DisableVXIint function, 3-48
DisableVXItoSignalInt function

description, 3-48
signal queuing considerations, 3-38

documentation
conventions used in manual, xiv
organization of manual, xiii-xiv
related documentation, xv

E
e-mail support, B-2
electronic support services, B-1 to B-2
embedded controller, 2-5
EnableACfail function, 3-63
EnableSignalInt function, 3-40
EnableSoftReset function, 3-63
EnableSysfail function, 3-63 to 3-64
EnableSysreset function, 3-64
EnableTrigSense function, 3-55
EnableVXIint function, 3-48 to 3-49
EnableVXItoSignalInt function, 3-49
ERR* bit, 3-6, 3-15
Event signals, 3-37
Event status/IDs, 3-43
Extended Longword Serial Protocol,

3-7, 3-15
extender parameters, 2-7 to 2-8

Index

© National Instruments Corporation I-3 NI-VXI User Manual

external controllers, 2-6 to 2-7
definition, 2-6
embeddded controller connected to other

frames (figure), 2-6
embeddded controller connected using

MXI-2 (figure), 2-7

F
fax and telephone support, B-2
FaxBack support, B-2
FindDevLA function, 3-2
FTP support, B-1
functions. See NI-VXI functions; specific

groups of functions.

G
GenProtError function, 3-18
GetACfailHandler function, 3-64
GetBusErrorHandler function, 3-64
GetByteOrder function, 3-30
GetContext function, 3-30
GetDevInfo function, 3-3
GetDevInfoLong function, 3-3
GetDevInfoShort function, 3-3
GetDevInfoStr function, 3-3
GetMyLA function, 3-34
GetPrivilege function, 3-30
GetSignalHandler function, 3-41
GetSoftResetHandler function, 3-65
GetSysfailHandler function, 3-65
GetSysresetHandler function, 3-65
GetTrigHandler function, 3-56
GetVXIbusStatus function, 3-30
GetVXIbusStatusInd function, 3-31
GetVXIintHandler function, 3-49
GetWindowRange function, 3-31
GetWSScmdHandler function, 3-18
GetWSSEcmdHandler function, 3-19
GetWSSLcmdHandler function, 3-19

GetWSSrdHandler function, 3-19
GetWSSwrtHandler function, 3-19
global signal queue, 3-38

H
hardware context

high-level VXI/VMEbus access
functions, 3-23

low-level VXI/VMEbus access
functions, 3-27

header files, 2-9 to 2-10
busacc.h file, 2-10
datasize.h file, 2-9
devinfo.h file, 2-10

high-level VXI/VMEbus access functions
alphabetical list (table), A-3
overview, 2-1, 3-23
programming considerations,

3-23 to 3-24
VXIin, 3-24
VXIinReg, 3-24
VXImove, 3-24 to 3-25
VXIout, 3-25
VXIoutReg, 3-25

I
InitVXIlibrary function

description, 3-4
requirements for NI-VXI programs,

2-10 to 2-11
interrupt functions. See system interrupt

handler functions; VXI interrupt
functions.

interrupt handling
C/C++ example, 2-18
overview, 2-17 to 2-18

Index

NI-VXI User Manual I-4 © National Instruments Corporation

interrupts
interrupt service routine support,

Commander Word Serial Protocol
functions, 3-7 to 3-8

interrupts and asynchronous
events, 1-4 to 1-5

L
LabWindows/CVI software, 2-4 to 2-5

C/C++ example, 2-4
input versus output parameters,

2-4 to 2-5
return values and system errors,

2-4 to 2-5
type definitions, 2-4

local resource access functions
alphabetical list (table), A-4
GetMyLA, 3-34
overview, 2-2, 3-34
ReadMODID, 3-34
SetMODID, 3-34
VXIinLR, 3-35
VXImemAlloc, 3-35
VXImemCopy, 3-35
VXImemFree, 3-35
VXIoutLR, 3-36

Longword Serial Protocol, 3-7, 3-15
low-level VXI/VMEbus access functions

alphabetical list (table), A-3 to A-4
GetByteOrder, 3-30
GetContext, 3-30
GetPrivilege, 3-30
GetVXIbusStatus, 3-30
GetVXIbusStatusInd, 3-31
GetWindowRange, 3-31
MapVXIAddress, 3-28, 3-29, 3-31
MapVXIAddressSize, 3-32
multiple-pointer access for window,

3-28 to 3-29
Access-Only Privilege, 3-28 to 3-29

Owner Privilege, 3-28
overview, 2-2, 3-26 to 3-27
programming considerations, 3-27
SetByteOrder, 3-32
SetContext, 3-32
SetPrivilege, 3-33
UnMapVXIAddress, 3-33
VXIpeek, 3-28, 3-33
VXIpoke, 3-28, 3-33

M
manual. See documentation.
map trigger functions

MapTrigToTrig, 3-56 to 3-57
overview, 3-56
UnMapTrigToTrig, 3-57

MapECLtrig function, 3-67
MapTrigToTrig function, 3-56 to 3-57
MapTTLtrig function, 3-67 to 3-68
MapUtilBus function, 3-68
MapVXIAddress function

description, 3-31
MITE-based platforms (note), 3-29
obtaining Access-Only privilege, 3-28
requesting owner privilege, 3-28

MapVXIAddressSize function, 3-32
MapVXIint function, 3-68
master memory access

C/C++ example, 2-14 to 2-15
functions versus macros (note), 2-16
overview, 2-14

memory access. See master memory access;
slave memory access.

message-based devices, 1-3
MITE-based platforms (note), 3-29
multiple mainframe support, 2-5 to 2-8

controllers, 2-5 to 2-7
extender and controller parameters,

2-7 to 2-8

Index

© National Instruments Corporation I-5 NI-VXI User Manual

multiple-pointer access for window,
3-28 to 3-29

Access-Only Privilege, 3-28 to 3-29
Owner Privilege, 3-28

multitasking support, Commander Word
Serial Protocol functions

cooperative, 3-7 to 3-8
preemptive operating system, 3-8 to 3-10

MXI-2 overview, 1-5 to 1-6
MXIbus overview, 1-5

N
NI-VXI

Commander/Servant hierarchies, 1-4
interrupts and asynchronous events,

1-4 to 1-5
message-based devices, 1-3
MXI-2 overview, 1-5 to 1-6
MXIbus overview, 1-5
register-based devices, 1-2
VXIbus overview, 1-1 to 1-2
Word Serial Protocol, 1-3 to 1-4

NI-VXI driver software, 2-9 to 2-19
beginning and end of programs,

2-10 to 2-11
header files, 2-9 to 2-10
interrupts and signals, 2-17 to 2-19
master memory access, 2-14 to 2-16
slave memory access, 2-16 to 2-17
system configuration tools, 2-11 to 2-12
triggers, 2-19
Word Serial communication, 2-13

NI-VXI functions. See also specific groups of
functions.

alphabetical list, A-9 to A-14
calling syntax, 2-3
classification reference, A-1 to A-7
multiple mainframe support, 2-5 to 2-8

controllers, 2-5 to 2-7

extender and controller parameters,
2-7 to 2-8

using NI-VXI, 2-9 to 2-19
beginning and end of programs,

2-10 to 2-11
header files, 2-9 to 2-10
interrupts and signals, 2-17 to 2-19
master memory access, 2-14 to 2-16
slave memory access, 2-16 to 2-17
system configuration tools,

2-11 to 2-12
triggers, 2-19
Word Serial communication, 2-13

using with LabWindows/CVI, 2-4 to 2-5
C/C++ example, 2-4
input versus output parameters,

2-4 to 2-5
return values and system errors,

2-4 to 2-5
type definitions, 2-4

VXI-only function groups, 2-3
VXI/VME function groups, 2-1 to 2-3

No Cause Given event, 3-37
No Cause Given status/ID, 3-37

O
ON/OFF trigger protocol, 3-52
Owner Privilege, 3-28

R
Read Protocol Error query, 3-6, 3-15
Read Ready (RR) bit, 3-6, 3-14
ReadMODID function, 3-34
register-based devices, 1-2
Release On Acknowledge (ROAK)

interrupter, 3-46
Release On Register Access (RORA)

interrupter, 3-46
remote controller, 2-5 to 2-6

Index

NI-VXI User Manual I-6 © National Instruments Corporation

Request for Service False (REQF)
event, 3-37

Request for Service False (REQF)
status/ID, 3-37

Request for Service True (REQT) event, 3-37
Request for Service True (REQT)

status/ID, 3-37
Response signals, 3-37
Response status/IDs, 3-43
RespProtError function, 3-19
return values and system errors, 2-5
ROAK (Release On Acknowledge)

interrupter, 3-46
RORA (Release On Register Access)

interrupter, 3-46
round-robin effect of Commander Word

Serial function calls, 3-9
RouteSignal function

description, 3-41
VXI signal handling, 3-37, 3-44

RouteVXIint function
description, 3-49 to 3-50
VXI signal handling, 3-43, 3-44

S
ScrTrig function, 3-57
SEMI-SYNC trigger protocol, 3-51 to 3-52
Servant Word Serial communication

Extended Longword Serial
Protocol, 3-15

Longword Serial Protocol, 3-15
polling operations, 3-14 to 3-15
types of functions, 3-14
Word Serial Protocol, 3-14

Servant Word Serial Protocol functions
alphabetical list (table), A-2 to A-3
DefaultWSScmdHandler, 3-17
DefaultWSSEcmdHandler, 3-17
DefaultWSSLcmdHandler, 3-17 to 3-18
DefaultWSSrdHandler, 3-18

DefaultWSSwrtHandler, 3-18
GenProtError, 3-18
GetWSScmdHandler, 3-18
GetWSSEcmdHandler, 3-19
GetWSSLcmdHandler, 3-19
GetWSSrdHandler, 3-19
GetWSSwrtHandler, 3-19
overview, 2-3, 3-14 to 3-15
programming considerations,

3-15 to 3-16
RespProtError, 3-19
SetWSScmdHandler, 3-19 to 3-20
SetWSSEcmdHandler, 3-20
SetWSSLcmdHandler, 3-20
SetWSSrdHandler, 3-20
SetWSSwrtHandler, 3-20
WSSabort, 3-21
WSSdisable, 3-21
WSSenable, 3-21
WSSLnoResp, 3-21, 3-22
WSSLsendResp, 3-21
WSSrd, 3-22
WSSsendResp, 3-22
WSSwrt, 3-22

SetACfailHandler function, 3-65
SetBusErrorHandler function, 3-65 to 3-66
SetByteOrder function, 3-32
SetContext function, 3-32
SetDevInfo function, 3-4
SetDevInfoLong function, 3-4
SetDevInfoShort function, 3-5
SetDevInfoStr function, 3-5
SetMODID function, 3-34
SetPrivilege function, 3-33
SetSignalHandler function, 3-41
SetSoftResetHandler function, 3-66
SetSysfailHandler function, 3-66
SetSysresetHandler function, 3-66
SetTrigHandler function, 3-56
SetVXIintHandler function, 3-50
SetWSScmdHandler function, 3-19 to 3-20

Index

© National Instruments Corporation I-7 NI-VXI User Manual

SetWSSEcmdHandler function, 3-20
SetWSSLcmdHandler function, 3-20
SetWSSrdHandler function, 3-20
SetWSSwrtHandler function, 3-20
Shared Memory events, 3-37, 3-43
signal handling

C/C++ example, 2-18
overview, 2-17 to 2-18

signal queuing considerations, 3-38 to 3-39
SignalDeq function, 3-42
SignalEnq function, 3-42
SignalJam function, 3-42
single-tasking operating system support,

Commander Word Serial Protocol
functions, 3-7 to 3-8

slave memory access
C/C++ example, 2-16 to 2-17
overview, 2-16

source trigger functions
overview, 3-57
ScrTrig, 3-57

START/STOP trigger protocol, 3-52
SYNC trigger protocol, 3-51
system configuration functions

alphabetical list (table), A-1
CloseVXIlibrary, 2-10 to 2-11, 3-2
CreateDevInfo, 3-2
FindDevLA, 3-2
GetDevInfo, 3-3
GetDevInfoLong, 3-3
GetDevInfoShort, 3-3
GetDevInfoStr, 3-3
InitVXIlibrary, 3-4
obtaining system information,

2-11 to 2-12
C/C++ example, 2-12

overview, 2-1, 3-1
SetDevInfo, 3-4
SetDevInfoLong, 3-4
SetDevInfoShort, 3-5
SetDevInfoStr, 3-5

system interrupt handler functions
alphabetical list (table), A-6
AssertSysreset, 3-60
DefaultACfailHandler, 3-60
DefaultBusErrorHandler, 3-60 to 3-61
DefaultSoftResetHandler, 3-61
DefaultSysfailHandler, 3-61 to 3-63
DisableSysreset, 3-63
EnableACfail, 3-63
EnableSoftReset, 3-63
EnableSysfail, 3-63 to 3-64
EnableSysreset, 3-64
GetACfailHandler, 3-64
GetBusErrorHandler, 3-64
GetSoftResetHandler, 3-65
GetSysfailHandler, 3-65
GetSysresetHandler, 3-65
overview, 2-2, 3-59 to 3-60
SetACfailHandler, 3-65
SetBusErrorHandler, 3-65 to 3-66
SetSoftResetHandler, 3-66
SetSysfailHandler, 3-66
SetSysresetHandler, 3-66

T
technical support, B-1 to B-2
trigger configuration functions

overview, 3-58
TrigAssertConfig, 3-58
TrigCntrConfig, 3-58
TrigExtConfig, 3-58 to 3-59
TrigTickConfig, 3-59

trigger functions. See VXI trigger functions.
trigger lines

ECL, 3-51
TTL, 3-51

trigger protocols
ASYNC, 3-51
ON/OFF, 3-52
SEMI-SYNC, 3-51 to 3-52

Index

NI-VXI User Manual I-8 © National Instruments Corporation

START/STOP, 3-52
SYNC, 3-51

triggering hardware capabilities, 3-52 to 3-54
embedded, external MXI-2, and remote

controller, 3-54
external controller/VXI-MXI-1, 3-53

triggers
definition, 3-51
overview, 2-19

U
UnMapTrigToTrig function, 3-57
UnMapVXIAddress function, 3-33
Unrecognized Command event

interrupt service routine support, 3-8
signal queuing, 3-38
VXI interrupts, 3-43
VXI signals, 3-37

V
VXI configuration registers (figure), 1-2
VXI devices, 1-1 to 1-2
VXI interrupt functions
AcknowledgeVXIint, 3-46 to 3-47

alphabetical list (table), A-5
AssertVXIint, 3-47
DeAssertVXIint, 3-47
DefaultVXIntHandler, 3-47 to 3-48
DisableVXIint, 3-48
DisableVXItoSignalInt, 3-38, 3-48
EnableVXIint, 3-48 to 3-49
EnableVXItoSignalInt, 3-49
GetVXIintHandler, 3-49
overview, 2-2, 3-43 to 3-44
programming considerations, 3-45
ROAK versus RORA VXI/VME

interrupts, 3-46
RouteVXIint, 3-43, 3-44, 3-49 to 3-50
SetVXIintHandler, 3-50

VXIintAcknowledgeMode, 3-46, 3-50
VXI-only function groups, 2-3
VXI signal functions

alphabetical list (table), A-4
DefaultSignalHandler, 3-40
DisableSignalInt, 3-38, 3-40
EnableSignalInt, 3-40
GetSignalHandler, 3-41
overview, 2-2, 3-36 to 3-37
programming considerations,

3-38 to 3-39
RouteSignal, 3-37, 3-41, 3-44
SetSignalHandler, 3-41
SignalDeq, 3-42
SignalEnq, 3-42
SignalJam, 3-42
WaitForSignal, 3-37, 3-39 to 3-40,

3-42, 3-44
VXI signal register, 3-36
VXI signals

definition, 3-36
Event signals, 3-37
Response signals, 3-37

VXI trigger functions
acceptor trigger functions

AcknowledgeTrig, 3-55
DefaultTrigHandler, 3-55
DefaultTrigHandler2, 3-55
DisableTrigSense, 3-55
EnableTrigSense, 3-55
GetTrigHandler, 3-56
overview, 3-54
SetTrigHandler, 3-56
WaitForTrig, 3-56

alphabetical list (table), A-5
capabilities of NI triggering hardware,

3-52 to 3-54
embedded, external MXI-2, and

remote controller trigger, 3-54
external controller/VXI-MXI-1

trigger, 3-53

Index

© National Instruments Corporation I-9 NI-VXI User Manual

map trigger functions
MapTrigToTrig, 3-56 to 3-57
overview, 3-56
UnMapTrigToTrig, 3-57

overview, 2-3, 3-51 to 3-52
source trigger functions

overview, 3-57
ScrTrig, 3-57

trigger configuration functions
overview, 3-58
TrigAssertConfig, 3-58
TrigCntrConfig, 3-58
TrigExtConfig, 3-58 to 3-59
TrigTickConfig, 3-59

VXI/VME function groups, 2-1 to 2-3
VXI/VMEbus extender functions

alphabetical list (table), A-7
MapECLtrig, 3-67
MapTTLtrig, 3-67 to 3-68
MapUtilBus, 3-68
MapVXIint, 3-68
overview, 2-2 to 2-3, 3-67

VXIbus overview
VXI configuration registers (figure), 1-2
VXI devices, 1-1 to 1-2

VXIin function, 3-24
VXIinLR function, 3-35
VXIinReg function, 3-24
VXIintAcknowledgeMode function

description, 3-50
ROAK versus RORA interrupters, 3-46

VXImemAlloc function, 3-35
VXImemCopy function, 3-35
VXImemFree function, 3-35
VXImove function, 3-24 to 3-25
VXIout function, 3-25
VXIoutLR function, 3-36
VXIoutReg function, 3-25
VXIpeek function

de-referencing pointers, 3-28
description, 3-33

VXIpoke function
de-referencing pointers, 3-28
description, 3-33

W
WaitForSignal function

description, 3-42
programming considerations,

3-39 to 3-40
VXI signal handling, 3-37, 3-44

WaitForTrig function, 3-56
window-base register, 3-27
windows, definition, 3-27
Word Serial Clear command, 3-7
Word Serial Protocol. See also Commander

Word Serial communication.
Commander Word Serial Protocol

functions, 3-6
overview, 1-3 to 1-4
Servant Word Serial Protocol

functions, 3-14
Word Serial Protocol errors, 3-6, 3-15
Word Serial Trigger command, 3-7
Write Ready (WR) bit, 3-6, 3-14
WSabort function

description, 3-10
interrupt service, 3-8

WSclr, 3-10
WScmd function, 3-10
WSEcmd, 3-11
WSgetTmo function, 3-11
WSLcmd, 3-11
WSLresp function, 3-11 to 3-12
WSrd function, 3-12
WSrdf function, 3-12
WSresp function, 3-12 to 3-13
WSSabort function, 3-21
WSSdisable function, 3-21
WSSenable function, 3-21
WSsetTmo function, 3-13

Index

NI-VXI User Manual I-10 © National Instruments Corporation

WSSLnoResp function, 3-21, 3-22
WSSLsendResp function, 3-21
WSSrd function, 3-22
WSSsendResp function, 3-22
WSSwrt function, 3-22
WStrg function, 3-13
WSwrt function, 3-13
WSwrtf, 3-14

	NI-VXI ™User Manual
	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Table of Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Overview of NI-VXI
	VXIbus Overview
	VXI Devices
	Register-Based Devices
	Message-Based Devices
	Word Serial Protocol
	Commander/Servant Hierarchies
	Interrupts and Asynchronous Events
	MXIbus Overview
	MXI-2 Overview

	Chapter 2 Introduction to the NI-VXI Functions
	Function Groups
	VXI/VME Function Groups
	VXI-Only Function Groups
	Calling Syntax
	LabWindows/CVI
	Type Definitions
	Input Versus Output Parameters
	Return Values and System Errors
	Multiple Mainframe Support
	Controllers
	The extender and controller Parameters
	Using NI-VXI
	Header Files
	The datasize.h File
	The busacc.h File
	The devinfo.h File
	The Beginning and End of an NI-VXI Program
	System Configuration Tools
	Word Serial Communication
	Master Memory Access
	Slave Memory Access
	Interrupts and Signals
	Triggers

	Chapter 3 Software Overview
	System Configuration Functions
	CloseVXIlibrary ()
	CreateDevInfo (la)
	FindDevLA (namepat, manid, modelcode, devclass, slot, mainframe, cmdrla, la)
	GetDevInfo (la, field, fieldvalue)
	GetDevInfoLong (la, field, longvalue)
	GetDevInfoShort (la, field, shortvalue)
	GetDevInfoStr (la, field, stringvalue)
	InitVXIlibrary ()
	SetDevInfo (la, field, fieldvalue)
	SetDevInfoLong (la, field, longvalue)
	SetDevInfoShort (la, field, shortvalue)
	SetDevInfoStr (la, field, stringvalue)
	Commander Word Serial Protocol Functions
	Programming Considerations
	Interrupt Service Routine Support
	Single-Tasking Operating System Support
	Cooperative Multitasking Support
	Multitasking Support (Preemptive Operating System)
	WSabort (la, abortop)
	WSclr (la)
	WScmd (la, cmd, respflag, response)
	WSEcmd (la, cmdExt, cmd, respflag, response)
	WSgetTmo (actualtimo)
	WSLcmd (la, cmd, respflag, response)
	WSLresp (la, response)
	WSrd (la, buf, count, modevalue, retcount)
	WSrdf (la, filename, count, modevalue, retcount)
	WSresp (la, response)
	WSsetTmo (timo, actualtimo)
	WStrg (la)
	WSwrt (la, buf, count, modevalue, retcount)
	WSwrtf (la, filename, count, modevalue, retcount)
	Servant Word Serial Protocol Functions
	Programming Considerations
	DefaultWSScmdHandler (cmd)
	DefaultWSSEcmdHandler (cmdExt, cmd)
	DefaultWSSLcmdHandler (cmd)
	DefaultWSSrdHandler (status, count)
	DefaultWSSwrtHandler (status, count)
	GenProtError (proterr)
	GetWSScmdHandler ()
	GetWSSEcmdHandler ()
	GetWSSLcmdHandler ()
	GetWSSrdHandler ()
	GetWSSwrtHandler ()
	RespProtError ()
	SetWSScmdHandler (func)
	SetWSSEcmdHandler (func)
	SetWSSLcmdHandler (func)
	SetWSSrdHandler (func)
	SetWSSwrtHandler (func)
	WSSabort (abortop)
	WSSdisable ()
	WSSenable ()
	WSSLnoResp ()
	WSSLsendResp (response)
	WSSnoResp ()
	WSSrd (buf, count, modevalue)
	WSSsendResp (response)
	WSSwrt (buf, count, modevalue)
	High-Level VXI/VMEbus Access Functions
	Programming Considerations
	VXIin (accessparms, address, width, value)
	VXIinReg (la, reg, value)
	VXImove (srcparms, srcaddr, destparms, destaddr, length, width)
	VXIout (accessparms, address, width, value)
	VXIoutReg (la, reg, value)
	Low-Level VXI/VMEbus Access Functions
	Programming Considerations
	Multiple-Pointer Access for a Window
	Owner Privilege
	Access-Only Privilege
	GetByteOrder (window, ordermode)
	GetContext (window, context)
	GetPrivilege (window, priv)
	GetVXIbusStatus (controller, status)
	GetVXIbusStatusInd (controller, field, status)
	GetWindowRange (window, windowbase, windowend)
	MapVXIAddress (accessparms, address, timo, window, ret)
	MapVXIAddressSize (size)
	SetByteOrder (window, ordermode)
	SetContext (window, context)
	SetPrivilege (window, priv)
	UnMapVXIAddress (window)
	VXIpeek (addressptr, width, value)
	VXIpoke (addressptr, width, value)
	Local Resource Access Functions
	GetMyLA
	ReadMODID (modid)
	SetMODID (enable, modid)
	VXIinLR (reg, width, value)
	VXImemAlloc (size, useraddr, vxiaddr)
	VXImemCopy (useraddr, bufaddr, size, dir)
	VXImemFree (useraddr)
	VXIoutLR (reg, width, value)
	VXI Signal Functions
	Programming Considerations
	WaitForSignal Considerations
	DefaultSignalHandler (signal)
	DisableSignalInt ()
	EnableSignalInt ()
	GetSignalHandler (la)
	RouteSignal (la, modemask)
	SetSignalHandler (la, func)
	SignalDeq (la, signalmask, signal)
	SignalEnq (signal)
	SignalJam (signal)
	WaitForSignal (la, signalmask, timeout, retsignal, retsignalmask)
	VXI Interrupt Functions
	Programming Considerations
	ROAK Versus RORA VXI/VME Interrupters
	AcknowledgeVXIint (controller, level, statusId)
	AssertVXIint (controller, level, statusId)
	DeAssertVXIint (controller, level)
	DefaultVXIintHandler (controller, level, statusId)
	DisableVXIint (controller, levels)
	DisableVXItoSignalInt (controller, levels)
	EnableVXIint (controller, levels)
	EnableVXItoSignalInt (controller, levels)
	GetVXIintHandler (level)
	RouteVXIint (controller, Sroute)
	SetVXIintHandler (levels, func)
	VXIintAcknowledgeMode (controller, modes)
	VXI Trigger Functions
	Capabilities of the National Instruments Triggering Hardware
	External Controller/VXI-MXI-1 Trigger Capabilities
	Embedded, External MXI-2, and Remote Controller Trigger Capabilities
	Acceptor Trigger Functions
	AcknowledgeTrig (controller, line)
	DefaultTrigHandler (controller, line, type)
	DefaultTrigHandler2 (controller, line, type)
	DisableTrigSense (controller, line)
	EnableTrigSense (controller, line, prot)
	GetTrigHandler (line)
	SetTrigHandler (lines, func)
	WaitForTrig (controller, line, timeout)
	Map Trigger Functions
	MapTrigToTrig (controller, srcTrig, destTrig, mode)
	UnMapTrigToTrig (controller, srcTrig, destTrig)
	Source Trigger Functions
	SrcTrig (controller, line, prot, timeout)
	Trigger Configuration Functions
	TrigAssertConfig (controller, trigline, mode)
	TrigCntrConfig (controller, mode, source, count)
	TrigExtConfig (controller, extline, mode)
	TrigTickConfig (controller, mode, source, tcount1, tcount2)
	System Interrupt Handler Functions
	AssertSysreset (controller, mode)
	DefaultACfailHandler (controller)
	DefaultBusErrorHandler ()
	DefaultSoftResetHandler ()
	DefaultSysfailHandler (controller)
	DefaultSysresetHandler (controller)
	DisableACfail (controller)
	DisableSoftReset ()
	DisableSysfail (controller)
	DisableSysreset (controller)
	EnableACfail (controller)
	EnableSoftReset ()
	EnableSysfail (controller)
	EnableSysreset (controller)
	GetACfailHandler ()
	GetBusErrorHandler ()
	GetSoftResetHandler ()
	GetSysfailHandler ()
	GetSysresetHandler ()
	SetACfailHandler (func)
	SetBusErrorHandler (func)
	SetSoftResetHandler (func)
	SetSysfailHandler (func)
	SetSysresetHandler (func)
	VXI/VMEbus Extender Functions
	MapECLtrig
	MapTTLtrig
	MapUtilBus (extender, modes)
	MapVXIint (extender, levels, directions)

	Appendix A Function Classification Reference
	Appendix B Customer Communication
	Glossary
	Index
	Figures
	Figure 1-1. VXI Configuration Registers
	Figure 1-2. VXI Software Protocols
	Figure 2-1. An Embedded Controller Connected to Other Frames via Mainframe Extenders Using MXI-2
	Figure 2-2. An External Controller Connected Using MXI-2 to a Number of Remote Controllers
	Figure 3-1. Preemptive Word Serial Mutual Exclusion (Per Logical Address)
	Figure 3-2. NI-VXI Servant Word Serial Model
	Figure 3-3. NI-VXI Interrupt and Signal Model
	Figure 3-4. NI-VXI Interrupt and Signal Model

	Tables
	Table A-1. Function Listing by Group
	Table A-2. Function Listing by Name

