

Availability Service
Programmer’s Reference

6806800C44B

September 2007

2007 Motorola

All rights reserved.

Trademarks
Motorola and the stylized M logo are trademarks registered in the U.S. Patent and Trademark Office. All other product or service names
are the property of their respective owners.

Intel® is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

Java™ and all other Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Microsoft®, Windows® and Windows Me® are registered trademarks of Microsoft Corporation; and Windows XP™ is a trademark of
Microsoft Corporation.

PICMG®, CompactPCI®, AdvancedTCA™ and the PICMG, CompactPCI and AdvancedTCA logos are registered trademarks of the
PCI Industrial Computer Manufacturers Group.

UNIX® is a registered trademark of The Open Group in the United States and other countries.

Notice
While reasonable efforts have been made to assure the accuracy of this document, Motorola assumes no liability resulting from any
omissions in this document, or from the use of the information obtained therein. Motorola reserves the right to revise this document
and to make changes from time to time in the content hereof without obligation of Motorola to notify any person of such revision or
changes.

Electronic versions of this material may be read online, downloaded for personal use, or referenced in another document as a URL to
a Motorola website. The text itself may not be published commercially in print or electronic form, edited, translated, or otherwise altered
without the permission of Motorola,

It is possible that this publication may contain reference to or information about Motorola products (machines and programs),
programming, or services that are not available in your country. Such references or information must not be construed to mean that
Motorola intends to announce such Motorola products, programming, or services in your country.

Limited and Restricted Rights Legend
If the documentation contained herein is supplied, directly or indirectly, to the U.S. Government, the following notice shall apply unless
otherwise agreed to in writing by Motorola.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical
Data clause at DFARS 252.227-7013 (Nov. 1995) and of the Rights in Noncommercial Computer Software and Documentation clause
at DFARS 252.227-7014 (Jun. 1995).

Contact Address
Motorola GmbH

ECC Embedded Communications Computing

Lilienthalstr. 15

85579 Neubiberg-Munich/Germany

Availability Service Programmer’s Reference (6806800C44B) 3

About this Manual . 9

1 Introduction . 13

1.1 Overview . 13
1.2 Models and Concepts . 14

1.2.1 Service Structure Overview . 14
1.2.1.1 Availability Manager . 15
1.2.1.2 Availability Director . 15
1.2.1.3 Availability Node Director . 16
1.2.1.4 Availability Agent . 16
1.2.1.5 Cluster Membership Agent . 16

1.2.2 Compliance Report. 16
1.2.3 Dependencies . 21

1.2.3.1 Service Dependencies . 21
1.2.3.2 Library Dependencies . 21

1.2.4 Service Definition Documents . 21
1.2.5 Service Extensions. 22
1.2.6 Implementation Notes . 22
1.2.7 Configuration . 22

2 Management Interface . 23

2.1 Overview . 23
2.2 Management Information Base (MIB) . 23

2.2.1 NCS-AVSV-MIB . 23
2.2.2 NCS-AVM-MIB . 24

2.2.2.1 Example . 24
2.2.3 SAF-AMF-MIB . 25
2.2.4 SAF-CLM-MIB . 25
2.2.5 Example MIB Operations . 26
2.2.6 AvSv Traps. 28
2.2.7 XML . 29

2.3 Command Line Interface . 29
2.3.1 set. 29
2.3.2 admin reset. 30
2.3.3 admin lock . 31
2.3.4 admswitch . 33

Contents

Availability Service Programmer’s Reference (6806800C44B)

Contents

4

A Sample Application. 35

A.1 Overview . 35
A.1.1 Sequence of Events in the Sample Application . 35

A.2 Configuration for the Sample Application . 36
A.3 Building the Sample Application . 37
A.4 Running the Sample Application . 37
A.5 Sample Application Output . 38

B Related Documentation . 53

B.1 Motorola Embedded Communications Computing Documents . 53
B.2 Related Specifications . 54

Availability Service Programmer’s Reference (6806800C44B) 5

Table 1-1 Compliance Table - Availability Service, SAI-AIS Volume 1: Overview and Models . . . 16
Table 1-2 Compliance Table - Availability Service, SAI-AIS Volume 2: Availability Management
Framework . 17
Table 1-3 Compliance Table - Availability Service, SAI-AIS Volume 3: Cluster Membership Service
20
Table 1-4 Availability Service - Dependencies . 21
Table 2-1 NCS-AVSV-MIB . 23
Table 2-2 NCS-AVM-MIB . 24
Table 2-3 SAF-AMF-MIB . 25
Table 2-4 SAF-CLM-MIB . 26
Table 2-5 AvSv Traps . 28
Table B-1 Motorola Publications . 53
Table B-2 Related Specifications . 54

List of Tables

Availability Service Programmer’s Reference (6806800C44B)

List of Tables

6

Availability Service Programmer’s Reference (6806800C44B) 7

Figure 1-1 Availability Service - Subparts . 15

List of Figures

Availability Service Programmer’s Reference (6806800C44B)

List of Figures

8

Availability Service Programmer’s Reference (6806800C44B) 9

About this Manual

Overview of Contents
This manual is divided into the following chapters and appendices.

Chapter 1: Introduction
Describes the functionality and main features of the Availability Service

Chapter 2: Management Interface
Describes how to configure the functionality of the Availability Service

Appendix A: Sample Application
Describes the sample application which illustrates the functionality of the Availability
Service. The sample application is delivered with the Avantellis software.

Appendix B: Related Documentation
Provides references to further documentation and specifications that are related to NCS
and the Availability Service.

Abbreviations
This document uses the following abbreviations:

Abbreviation Definition

AMC Alarm Management Controller

AMF Availability Management Framework

API Application Programming Interface

ARP Address Resolution Protocol

AvA Availability Agent

AvD Availability Director

AvM Availability Manager

AvSv Availability Service

BOM Bill of Material

CLI Command Line Interface

Cluster Membership Agent CLA

CSI Component Service Interface

DTSv Distributed Tracing Service

Event Distribution Service EDSv

FRU Field Replaceable Unit

HISv Hardware Interface Service

Availability Service Programmer’s Reference (6806800C44B)

About this Manual

10

Conventions
The following table describes the conventions used throughout this manual.

HPI Hardware Platform Interface

LEAP Layered Enhanced Accelerated Portability

MASv Management Access Service

MBCSv Message Based Checkpoint Service

MDS Message Distribution Service

MIB Management Information Base

NCS Netplane Core Services

PCAP Payload Construction and Availability Service

SAF Service Availability Forum

SCAP System Construction and Availability Process

SG Service Group

SI Service Instance

SNMP System Network Management Protocol

SRMSv System Resource Monitoring Service

SU Service Unit

XML Extended Markup Language

Abbreviation Definition

Notation Description

0x00000000 Typical notation for hexadecimal numbers (digits
are 0 through F), for example used for addresses
and offsets

0b0000 Same for binary numbers (digits are 0 and 1)

bold Used to emphasize a word

Screen Used for on-screen output and code related
elements or commands in body text

Courier + Bold Used to characterize user input and to separate it
from system output

Reference Used for references and for table and figure
descriptions

File > Exit Notation for selecting a submenu

<text> Notation for variables and keys

[text] Notation for software buttons to click on the screen
and parameter description

... Repeated item for example node 1, node 2, ...,
node 12

About this Manual

Availability Service Programmer’s Reference (6806800C44B) 11

Summary of Changes
This manual has been revised and replaces all prior editions.

Comments and Suggestions
We welcome and appreciate your comments on our documentation. We want to know what you
think about our manuals and how we can make them better.

Mail comments to:

Motorola GmbH
Embedded Communications Computing
Lilienthalstrasse 15
85579 Neubiberg

.

.

.

Omission of information from example/command
that is necessary at the time being

.. Ranges, for example: 0..4 means one of the
integers 0,1,2,3, and 4 (used in registers)

| Logical OR

Indicates a hazardous situation which, if not
avoided, could result in death or serious injury

Indicates a hazardous situation which, if not
avoided, may result in minor or moderate injury

Indicates a property damage message

No danger encountered. Pay attention to important
information

Notation Description

Part Number Publication Date Description

6806800A44A February 2007 First edition

6806800A44B September 2007 Minor text updates for Avantellis Release
3.0.2

Availability Service Programmer’s Reference (6806800C44B)

About this Manual

12

Germany

eccrc@motorola.com

In all your correspondence, please list your name, position, and company. Be sure to include
the title, part number, and revision of the manual and tell how you used it.

1

Availability Service Programmer’s Reference (6806800C44B) 13

Introduction

1.1 Overview
The NCS Availability Service (AvSv) is the core service of the NetPlane software. It provides
service availability to applications by coordinating the redundant resources in a cluster to
provide a system with no single point of failure. It provides high-availability mechanisms to the
application software it manages. These include life-cycle management of application software,
fault detection, fault isolation, escalation, recovery, and repair.

The AvSv functionality is a highly compliant implementation of Service Availability Forum’s
Application Interface Specification of Availability Management Framework (SAI-AIS-AMF-
B.01.01) and Cluster Membership Service (SAI-AIS-CLM-B.01.01).

The Availability Service (AvSv) provides the following functionality:

Leverage the SAF "System Description and Conceptual Model"

Honour the Availability Management Framework" API

Honour the SA Cluster membership Service API

House the MIB tables corresponding to the hardware portion of the deployment system
description which includes entity containment and fault domain hierarchy information

House the MIB tables corresponding to the software portion of the deployment system
description which include configuration of AMF-defined logical entities and their
relationship

Perform blade validation on receipt of HPI hot swap insertion events

Handle fault events such as HPI hot swap extraction events, threshold crossing events etc.

The AvSv maintains a software system model database which captures SAF-described logical
entities and their relationships to each other. The software system model database is initially
configured from data contained in the System Description file. Through time the system model
will modify due to changing system realities and administrative actions.

The SAF logical entities related in the system model include components which normalize the
view of physical resources such as processes, drivers or devices. Components are grouped into
Service Units according to fault dependencies that exist among them. A Service Unit is also
scoped to one or more (physical) fault domains. Service Units of the same type are grouped
into Service Groups (SG) which exhibit particular redundancy modelling characteristics.
Service Units within a SG are assigned to Service Instances (SI) and given a High Availability
state of active and standby.

The hardware database maintained by AvSv includes hardware entity containment information
and the hardware fault domain hierarchy. All hardware entities are represented by their HPI
entity paths. The hardware entity containment tree only includes managed FRUs which may or
may not include processor environments., and non-FRU resources which include processor
environments. The fault domain data includes dependency relationships between parent-child

Availability Service Programmer’s Reference (6806800C44B)

Introduction Models and Concepts

14

entities as well as non-parent child entities. The hardware system model also includes
validation data for managed FRUs and the linkages between entities and AMF logical nodes.
All the processor environment entities in the hardware entity containment tree, which
correspond to AMF nodes, contain the node name of the associated node. The node name
provides the linkage between the hardware and the software system models.

Further functionality provided by AvSv includes:

Automatic and administrative means to instantiate, terminate and restart resources

Automatic and administrative means to manage or reflect Service Group, Service Unit,
Service Instance and Resource state

Administrative means to perform switch-over

Administrative means to reset (but not power cycle) nodes

Heartbeat and event subscription schemes for fault detection, isolation and identification

Health-check services to probe and prevent system trauma that lead to faults

Fault recovery mechanisms to fail-over SIs which maintain service availability in case of
system trauma

Fault repair mechanisms to restore failed components

Validation of hardware resources (managed FRUs) entering the system

The AsVs itself cannot be a single-point of failure. It provides its own internal scheme and
mechanisms to protect itself from its own failure.

1.2 Models and Concepts
This chapter provides information on:

Service Structure and architecture

Compliancy to SAF standard

Service Dependencies

References to SAF documents which provide details about the service functionality

Service Extensions

Implementation Notes

Configuration

1.2.1 Service Structure Overview

Availability Service is made up of the following distributed sub-parts:

Availability Manager

Availability Director

Availability Node Director

Service Structure Overview Introduction

Availability Service Programmer’s Reference (6806800C44B) 15

Availability Agent

Cluster Membership Agent

1.2.1.1 Availability Manager

NetPlane Core Services’ Availability Manager (AvM) maintains the hardware model of the
system above. It acts as a bridge between the Availability Management Framework (AMF) and
the Hardware Platform Interface (HPI). It supports activation and deactivation of field-
replaceable units (FRUs), Reset Management, Lock Management, and Fault Management.
AvM interacts with internal role distribution and fault management mechanisms to capture the
role of system manager hosts and propagate it to the AMF. It is also used to trigger
administrative switchovers of system manager hosts. AvM resides on both the active and
standby system manager hosts.

1.2.1.2 Availability Director

The Availability Director (AvD) maintains the entire system model, consisting of nodes, the
Service Groups (SG), their constituent Service Units (SUs), their constituent components, and
their corresponding component service instance (CSI) and service instances (SIs) that are in
the system. There is an active and a standby instance of the AvD in a system. The AvD runs as
part of a System Construction and Availability Process (SCAP) on the system manager host.

Its main tasks include fault detection, isolation and recovery procedures as defined in the SAF
AMF. Any problems and failures on a component that cannot be handled locally, are prompted
to the Availability Director which controls and triggers the isolation of the affected component
and, if possible, the activation of a stand-by component.

Figure 1-1 Availability Service - Subparts

Availability Service Programmer’s Reference (6806800C44B)

Introduction Compliance Report

16

1.2.1.3 Availability Node Director

The Availability Node Director (AvND) resides on each system node and its main task is to
maintain the node-scoped part of the software system model described above.

The AvND coordinates local fault identification and repair of components and furthermore
facilitates any wishes it receives from the Availability Director.

The AvND watches for components arriving or leaving the system and summarizes this
information in a Service Unit (SU) presence state, and keeps the AvD informed about the
current status and changes. The AvND is capable of disengaging, restarting and destroying any
component within its scope. This may occur according to AvD instructions or as a result of an
administrative action or automatically triggered by policies.

1.2.1.4 Availability Agent

The Availability Agent (AvA) is the linkable library that provides a means for the AvSv to
exchange information with system components overseen by the process in which this library is
planted. It does not run as a separate thread.

The AvA implements the SAF Availability Management Framework API and provides the entry-
point for accessing AMF functionality.

1.2.1.5 Cluster Membership Agent

The Cluster Membership Agent (CLA) is a linkable library that enables AvSv to provide
information about nodes in the cluster to the process in which it is linked. It does not run as a
separate thread.

The CLA implements the SAF Cluster Membership Service Library functionality and provides
an entry point to the SAF CLM functionality.

1.2.2 Compliance Report

Availability Service conforms to the Application Interface specifications mentioned in the
following SAF documents:

SAI-AIS Volume 1: Overview and Models (SAI-AIS-B.01.01)

SAI-AIS Volume 2: Availability Management Framework (SAI-AIS-AMF-B.01.01)

SAI-AIS Volume 3: Cluster Membership Service (SAI-AIS-CLM-B.01.01)

Table 1-1 Compliance Table - Availability Service, SAI-AIS Volume 1: Overview and Models

Section Description Supported Notes

1 Document Introduction NA Informational

2 Overview of the AIS NA Informational

3 Programming Model and Naming
Conventions

Yes

Compliance Report Introduction

Availability Service Programmer’s Reference (6806800C44B) 17

4 System Description and Conceptual
Model

Yes

4.1 Physical Entities Yes AvSv supports management
of hardware resources only
when they are modeled using
proxy components

4.2 Logical Entities Yes

5 AIS Abbreviations, Concepts, and
Terminology

NA Informational

Table 1-2 Compliance Table - Availability Service, SAI-AIS Volume 2: Availability Management
Framework

Section Description Support Notes

1 Document Introduction NA Informational

2 Overview NA Informational

3 System Description and
System Model

Yes

3.1 Logical Entities Yes Constituent sub-sections that
are only partially supported
or not supported are
mentioned below. Note that
the rest of the sub-sections
are fully supported.

3.1.2 Components Yes AvSv currently does not
support external components

3.1.2.3 Proxy and Proxied
Components

Yes AvSv currently supports only
the model in which proxied
and their proxy components
are on the the same Node.

3.1.4 Service Units Yes AvSv currently does not
support External Service
Units.

3.2 State Models Yes

3.3 Fail-over and Switch-
over

Yes AvSv supports switchover of
service instances caused
due to administrative
operations specified in SA-
AIS-AMF-B.01.01 and some
proprietary switchover
mechanisms not specified in
the document.

3.4 Administrative
Operations

Yes

3.5 Possible Combination of
States for Service Units

Yes

Table 1-1 Compliance Table - Availability Service, SAI-AIS Volume 1: Overview and Models

Section Description Supported Notes

Availability Service Programmer’s Reference (6806800C44B)

Introduction Compliance Report

18

3.6 Component Capability
Model

Yes

3.7 Service Group
Redundancy Model

Yes Constituent sub-sections that
are only partially supported
or not supported are
mentioned below. Note that
the rest of the sub-sections
are fully supported.

3.7.1 Common Characteristics Yes AvSv currently does not
support the failback option.

3.7.2 2N Redundancy Model Yes

3.7.3 N+M Redundancy Model Yes SIs based on saAmfSIRank
are assigned to SUs based
on saAmfSURank till each
SU is assigned
saAmfSGMaxActiveSIspe
rSU number of SIs. If there
are SIs still left without
assignments than the SUs
will be assigned with SIs up
to their capability level. The
standby assignments of all
the SIs assigned to an active
SU will be assigned to the
same standby SU. The
saAmfSGMaxActiveSIspe
rSU can be leveraged by the
configurator to get the
required spread of SI
assignments to the SUs.

Table 1-2 Compliance Table - Availability Service, SAI-AIS Volume 2: Availability Management
Framework (continued)

Section Description Support Notes

Compliance Report Introduction

Availability Service Programmer’s Reference (6806800C44B) 19

3.7.4 N-Way Redundancy
Model

Yes SIs based on saAmfSIRank
are assigned to SU based on
saAmfSUsperSIRankTabl
e till all the SIs are assigned
an active assignment. Then
each SI based on
saAmfSIRank is assigned
fully to SUs as standby before
the next SI is assigned as
standby. When an SU fails
and the system is in a
degraded state, AvSv may
ignore the
saAmfCompNumMaxActive
Csi attribute of a component
and assign more active
assignments than the
permitted number. This policy
has been adopted to maintain
service continuity for as many
SIs as possible even when
the system is in a degraded
state.

3.7.5 N-Way Active
Redundancy Model

Yes AvSv assigns an SI to SU
only after the SI with better
saAmfSIRank is fully
assigned.

3.7.6 No Redundancy Model Yes

3.7.7 The Effect of
Administrative
Operations on Service
Instance Assignments

Yes

3.8 Component Capability
Model and Service
Group Redundancy
Model

Yes

3.9 Dependencies Among
SIs, Component Service
Instances, and
Components

Yes Constituent sub-sections that
are only partially supported
or not supported are
mentioned below. Note that
the rest of the sub-sections
are fully supported.

3.9.1.1 Dependencies Between
SIs when Assigning a
Service Unit Active for a
Service Instance

No

3.9.1.2 Impact of Disabling a
Service Instance on the
Dependent Service
Instances

No

Table 1-2 Compliance Table - Availability Service, SAI-AIS Volume 2: Availability Management
Framework (continued)

Section Description Support Notes

Availability Service Programmer’s Reference (6806800C44B)

Introduction Compliance Report

20

3.10 Component Monitoring Yes

3.11 Error Detection,
Recovery, Repair, and
Escalation Policy

Yes Constituent sub-sections that
are only partially supported
or not supported are
mentioned below. Note that
the rest of the sub-sections
are fully supported.

3.11.1.3 Recovery Yes AvSv currently does both the
component failover and SU
failover after doing quiesced
of the enabled active
components in the SU. Node
failover and switch over are
done after doing quiesced of
all the enabled active
components in the node. In
all the above cases the
components that did not fail
in the SUs are not
terminated.

3.11.1.4 Repair Yes Only automatic repair by
restart is supported.

3.11.1.5 Recovery Escalation Yes

3.11.2.1 Recommended
Recovery Action

Yes Cluster Reset is not
supported.

3.11.2.2 Escalations of Levels 1
and 2

Yes

3.11.2.3 Escalations of Levels 3 Yes

4 Local Component Life
Cycle Management
Interfaces

Yes

5 Availability Management
Framework API

Yes

6 Basic Operational
Scenarios

Yes

Appendix A Implementation of CLC
Interfaces

Yes

Table 1-3 Compliance Table - Availability Service, SAI-AIS Volume 3: Cluster Membership
Service

Section Description Support Notes

1 Document Introduction N/A Informational

2 Overview Yes

3 SA Cluster Membership Service API Yes

Table 1-2 Compliance Table - Availability Service, SAI-AIS Volume 2: Availability Management
Framework (continued)

Section Description Support Notes

Dependencies Introduction

Availability Service Programmer’s Reference (6806800C44B) 21

1.2.3 Dependencies

This section describes dependencies between the AvS and other services and between the Avs
and libraries.

1.2.3.1 Service Dependencies

The following table lists other NCS services and how the Availability Service depends on them.

1.2.3.2 Library Dependencies

The AvSv library, libSaAmf.so, and Cluster Membership library, libSaClm.so, depend on:

libncs_core.so

libavsv_common.so

libsaf_common.so

1.2.4 Service Definition Documents

The documents available at the following links are SAF-standard documents. They provide the
service definition for the Availability Service.

http://www.saforum.org/apps/org/workgroup/twg/ais/download.php/1451/aisOverview.B0101
.pdf

http://www.saforum.org/apps/org/workgroup/twg/ais/download.php/1449/aisAmf.B0101.pdf

http://www.saforum.org/apps/org/workgroup/twg/ais/download.php/1446/aisClm.B0101.pdf

Table 1-4 Availability Service - Dependencies

Service Dependency

Layered Enhanced Accelerated
Portability (LEAP)

Availability Service uses LEAP for portability. It uses
the memory manager, timers, encode-decode utility,
and handle manager services provided by LEAP.

Message Distribution Service (MDS) Interaction between the subparts of AvSv takes place
using MDS messaging.

Distributed Tracing Service (DTSv) Availability Service uses DTSv to log debug messages
and to report informational events.

System Resource Monitoring Service
(SRMSv)

Availability Service uses SRMSv for passive health
monitoring of components.

Event Distribution Service (EDSv) Availability Service uses EDSv to receive all fault
events related to resources it manages.

Hardware Interface Service (HISv) AvM uses HISv to issue hardware platform (HPL)
commands for managing nodes.

Management Access Service (MASv) AvD and AvM use MASv to manage the MIB objects
defined in the AvSv MIBs.

Message Based Checkpoint Service
(MBCSv)

The active AvD uses MBCSv to checkpoint the state
information with a standby AvD.

Availability Service Programmer’s Reference (6806800C44B)

Introduction Service Extensions

22

The following information can be found in the referenced document:

Service concept definitions and descriptions

Functional behaviors and relationships

A complete set of service data types exposed to the service user

The set of Service APIs available to the service user

An application managed by AvSv is provided with APIs to perform the following:

Component registration and unregistration

Passive monitoring of processes of a component

Component health monitoring

Component service instance management

Component life cycle management

Protection group management

Error reporting

An application also provides certain "Component Life Cycle" commands that are used by AvSv
to instantiate, terminate, and clean it up. Applications can also use the APIs specified in Section
3 of the SAI-AIS-CLM-B.01.01 document to track and get information related to the nodes in the
cluster.

1.2.5 Service Extensions

AvSv’s AvM service is proprietary to Motorola. All functionality and associated behaviors
identified in this documentation are supported, as explained in this document.

1.2.6 Implementation Notes

The MIB rows whose "row status" is "not active" are lost on failover or switchover of the active
system management host. The configuration being performed when the failover/switchover
occurs should be redone.

1.2.7 Configuration

An application managed by AvSv to provide high service availability must be modeled in terms
of logical entities in accordance with the structure of the "System Model". Further, the
application must implement the state models and callback interfaces according to the AMF
specification.

Availability Service provides a management interface to configure the System Model and to
perform runtime administrative operations. The System Model configuration can be done either
using SNMP or XML, while the runtime administrative operations can be performed using
SNMP or CLI.

2

Availability Service Programmer’s Reference (6806800C44B) 23

Management Interface

2.1 Overview
The Availability Service is configured using SNMP or XML. Runtime administrative operations
are performed using SNMP or CLI.

2.2 Management Information Base (MIB)
This section provides information about two standard MIBs (SAF-AMF-MIB and SAF-CLM-MIB)
and two enterprise MIBs (NCS-AVSV-MIB and NCS-AVM-MIB) that AvSv supports.

2.2.1 NCS-AVSV-MIB

This proprietary MIB contains managed object definitions for NCS Availability Service. This MIB
contains NCS enhancements beyond the SAF AMF and CLM MIBs. The MIB is in the
development tar installation directory.

The following table describes the objects and traps supported by this MIB.

Table 2-1 NCS-AVSV-MIB

MIB Table ID\Trap ID Description

Scalar objects ncsAvDHeartbeatSendInt and ncsAvDHeartbeatDownInt are
configuration objects used for heartbeating between the AvSv’s distributed
entities. The ncsCLAdminState object is not currently supported.

ncsNDTable This table contains the proprietary configuration required for the node.The
ncsNDNodeId in this table must be filled for each of the nodes configured
in saAmfNodeTable.

ncsSGTable This table contains the proprietary configuration required for the SGs
specific to the NCS services that are managed by AvSv.

ncsSUTable This table contains the MIB objects through which proprietary admin
operations can be performed on the SU.

ncsSITable This table contains the MIB objects through which proprietary admin
operations can be performed on the SI.

ncsSNDTable This table contains status information on the cluster nodes.

ncsSSUTable This table contains status information of the SUs.

Availability Service Programmer’s Reference (6806800C44B)

Management Interface NCS-AVM-MIB

24

2.2.2 NCS-AVM-MIB

This proprietary MIB is used to manage hardware deployment system configuration. It is in the
development tar installation directory.

The following table describes the objects and traps supported by this MIB.

2.2.2.1 Example

To issue a lock on a node in physical slot 9 on chassis 2, the SNMP-SET would be:

snmpset -v2c rwcommunity ip-address
1.3.6.1.4.1.161.10.3.1.13.1.1.1.1.12.\”\{\{7,9\},\{23,2\},\{65535,0\}
\}\” i 2

In this SNMP-SET:

{{7,9},{23,2},{65535,0}} refers to the index.

{7,9} refers to the blade in physical slot 9 (the entity type of the blade is 7 and its entity
instance is 9).

{23,2} refers to the chassis in location 2 (the entity type of the chassis is 23 and its entity
instance is 2).

{65535,0} is the default root entity in the system.

ncsSCompTable This table contains status information of the components in the cluster.

ncsInitSuccessOnNode This trap will be generated when NCS initialization is successful on a
particular node.

ncsAlarmCompFailOn
Node

This trap notifies the system administrator about a component failure as well
as reason of component failure.

ncsAlarmStateChgStar
tSUHaState

This trap will be generated whenever SUSI HA state starts changing.

Table 2-1 NCS-AVSV-MIB (continued)

MIB Table ID\Trap ID Description

Table 2-2 NCS-AVM-MIB

MIB Table ID/Object ID Description

ncsAvmEntDepolyTable This table contains the hardware deployment
configuration.

ncsAvmAdmSwitch This is the scalar used to perform switchover of
system manager hosts.

ncsAvmEntFaultDomainTable Not supported

SAF-AMF-MIB Management Interface

Availability Service Programmer’s Reference (6806800C44B) 25

2.2.3 SAF-AMF-MIB

NCS 06A Availability Service supports an intermediate draft version of the SAF AMF MIB. This
MIB for the Availability Service is compliant with the SAI-AIS-AMF-B.01.01 specification.The
following table describes the standard AMF MIB tables and objects that are not implemented
by Availability Service or have an anomaly in implementation.

2.2.4 SAF-CLM-MIB

NCS 2.0 Availability Service supports an intermediate draft version of the SAF Cluster Member
Service MIB. This MIB for the Availability Service is compliant with the SAI-AIS-CLA-B.01.01
specification.

Table 2-3 SAF-AMF-MIB

MIB Table ID/Object ID Description

saAmfServiceState This AMF scalar is optional. Not supported

saAmfCompDelayBetweenInstantiateAttemp
ts mib object

Not supported

saAmfCompNodeRebootCleanupFail mib
object

Not supported

saAmfCompNumMaxInstantiateWithDelay
mib object

Not supported

saAmfCompNumMaxAmStopAttempts mib
object

Not supported

saAmfCompPresenceState Mib object Orphaned presence State(8) will returned in case of a
orphaned component which is not there in the SAF-
AMF-MIB.

saAmfCompInstantiateTimeout Default value will be 2000000000 nano seconds.

saAmfCompTerminateTimeout Default value will be 2000000000 nano seconds.

saAmfCompCleanupTimeout Default value will be 2000000000 nano seconds.

saAmfCompAmStartTimeout Default value will be 2000000000 nano seconds.

saAmfCompAmStopTimeout Default value will be 2000000000 nano seconds.

saAmfSGFailbackOption mib object This MIB object value can not be set to TRUE, it will be
always FALSE.

saAmfSUFailOver mib object Not supported

saAmfSISIDepTable Table Not supported

saAmfAlarmServiceImpaired Not supported

saAmfAlarmClusterReset Not supported

saAmfCompQuiescingCompleteTimeout Not supported

Availability Service Programmer’s Reference (6806800C44B)

Management Interface Example MIB Operations

26

The following table describes the standard CLM MIB tables and objects that are not
implemented by Availability Service.

2.2.5 Example MIB Operations

This section describes the steps required to completely uninstall an application component on
a sample node and then install it again.

Uninstalling an Application Component on a Sample Node

To uninstall all application SUs from a node, take the steps below.

Assume there is only one application SU (safSu=Su_app,safNode=PL_2_2) and only one
application component on the node (safComp=Comp_app,
safSu=Su_app,safNode=PL_2_2).

1. Perform an SNMP Set of SAF-AMF-MIB table saAmfSUTable index=
”safSu=Su_app,safNode=PL_2_2”, object saAmfSUAdminState value= locked(1).

2. Perform an SNMP Set of NCS-AVSV-MIB table ncsSUTable index=
”safSu=Su_app,safNode=PL_2_2”, object ncsSUTermState value= True(1).

3. Perform an SNMP Set of SAF-AMF-MIB table saAmfCompCSTypeSupportedTable
index1= ” safComp=Comp_app, safSu=Su_app,safNode=PL_2_2”,
index2=”CSI_TYPE_1”object saAmfCompRowStatus value= RowDestroy(6).

4. Perform an SNMP Set of SAF-AMF-MIB table saAmfCompTable index= ”
safComp=Comp_app, safSu=Su_app,safNode=PL_2_2”, object
saAmfCompRowStatus value= RowDestroy(6).

5. Perform an SNMP Set of SAF-AMF-MIB table saAmfSUTable index= ”
safSu=Su_app,safNode=PL_2_2”, object saAmfSURowStatus value=
RowDestroy(6).

After this, the application can be uninstalled from the node.

Table 2-4 SAF-CLM-MIB

MIB Table ID/Object ID Description

saClmServiceState This CLM scalar is not supported

saClmNodeAddressType mib object Not Supported

 saClmNodeAddress mib object Not Supported

saClmNodeHPIEntityPath mib object Not Supported

saClmAlarmServiceImpaired Not Supported

saClmStateChgClusterNodeReconfigured Not Supported

Example MIB Operations Management Interface

Availability Service Programmer’s Reference (6806800C44B) 27

Install an Application Component on a Sample Node

 Assume there is only one application SU (safSu=Su_app,safNode=PL_2_2) and only one
application component (safComp=Comp_app, safSu=Su_app,safNode=PL_2_2) to be
installed on the node. Assume that this SU should be part of the SG “safSg=SG_app”.

1. Install the component on the node.

2. Perform an SNMP Set of SAF-AMF-MIB table saAmfSUTable index=
”safSu=Su_app,safNode=PL_2_2”, object saAmfSURank value= 3.

3. Perform an SNMP Set of SAF-AMF-MIB table saAmfSUTable index=
”safSu=Su_app,safNode=PL_2_2”, object saAmfSUNumComponents value= 1.

4. Perform an SNMP Set of SAF-AMF-MIB table saAmfSUTable index=
”safSu=Su_app,safNode=PL_2_2”, object saAmfSUParentSGName value=
“safSg=SG_app”.

5. Perform an SNMP Set of SAF-AMF-MIB table saAmfSUTable index=
”safSu=Su_app,safNode=PL_2_2”, object saAmfSURowStatus value=
RowActive(1).

6. Perform an SNMP Set of SAF-AMF-MIB table saAmfCompTable index= ”
safComp=Comp_app, safSu=Su_app,safNode=PL_2_2”, object
saAmfCompCapability value= oneactiveoronestandby (4).

7. Perform an SNMP Set of SAF-AMF-MIB table saAmfCompTable index= ”
safComp=Comp_app, safSu=Su_app,safNode=PL_2_2”, object
saAmfCompCategory value= saAware(0).

8. Perform an SNMP Set of SAF-AMF-MIB table saAmfCompTable index= ”
safComp=Comp_app, safSu=Su_app,safNode=PL_2_2”, object
saAmfCompInstantiateCmd value= “The command to start the component”.

9. Perform an SNMP Set of SAF-AMF-MIB table saAmfCompTable index= ”
safComp=Comp_app, safSu=Su_app,safNode=PL_2_2”, object
saAmfCompCleanupCmd value= “The command to cleanup the component”.

10.Perform an SNMP Set of SAF-AMF-MIB table saAmfCompTable index= ”
safComp=Comp_app, safSu=Su_app,safNode=PL_2_2”, object
saAmfCompInstantiationLevel value= 1.

11.Perform an SNMP Set of SAF-AMF-MIB table saAmfCompTable index= ”
safComp=Comp_app, safSu=Su_app,safNode=PL_2_2”, object
saAmfCompInstantiateTimeout value= 2000000000(2 seconds)

12.Perform an SNMP Set of SAF-AMF-MIB table saAmfCompTable index= ”
safComp=Comp_app, safSu=Su_app,safNode=PL_2_2”, object
saAmfCompCleanupTimeout value= 2000000000(2 seconds).

Availability Service Programmer’s Reference (6806800C44B)

Management Interface AvSv Traps

28

13.Perform an SNMP Set of SAF-AMF-MIB table saAmfCompTable index= ”
safComp=Comp_app, safSu=Su_app,safNode=PL_2_2”, object
saAmfCompTerminateCallbackTimeOut value= 2000000000(2 seconds).

14.Perform an SNMP Set of SAF-AMF-MIB table saAmfCompTable index= ”
safComp=Comp_app, safSu=Su_app,safNode=PL_2_2”, object
saAmfCompRecoveryOnError value= componentrestart(2).

15.Perform an SNMP Set of SAF-AMF-MIB table saAmfCompTable index= ”
safComp=Comp_app, safSu=Su_app,safNode=PL_2_2”, object
saAmfCompNumMaxInstantiate value=2.

16.Perform an SNMP Set of SAF-AMF-MIB table saAmfCompTable index= ”
safComp=Comp_app, safSu=Su_app,safNode=PL_2_2”, object
saAmfCompDisableRestart value= False(2).

17.Perform an SNMP Set of SAF-AMF-MIB table saAmfCompCSTypeSupportedTable
index1= ” safComp=Comp_app, safSu=Su_app,safNode=PL_2_2”,
index2=”CSI_TYPE_1”object saAmfCompRowStatus value= RowActive(1).

18.Perform an SNMP Set of SAF-AMF-MIB table saAmfCompTable index= ”
safComp=Comp_app, safSu=Su_app,safNode=PL_2_2”, object
saAmfCompRowStatus value= RowActive(1).

2.2.6 AvSv Traps

Traps are defined in SAF-AMF-MIB, SAF-CLM-MIB and NCS-AVSV-MIB files. NCS defines a
SAF Event Service channel called the NCS_TRAP channel. NCS services publish TRAPs as
events on the NCS_TRAP channel. AvSv defines various Event filters that allow applications to
subscribe to

AMF TRAP events

CLM TRAP events

NCS-proprietary AvSv TRAP events

or any combination of the above.

Users can subscribe for all AvSv traps and partially subscribe for AMF traps, CLM traps and
NCS traps. The following table describes the filters for AvSv traps.

Table 2-5 AvSv Traps

Filter Description

AVSV_TRAPS Common filter of all AvSv traps

SAF_AMF_MIB_TRAPS Filter for AMF specific traps

SAF_CLM_MIB_TRAPS Filter for CLM specific traps

NCS_AVSV_MIB_TRAPS Filter for NCS Specific traps

XML Management Interface

Availability Service Programmer’s Reference (6806800C44B) 29

The subscriber should use a combination of these filters, based on the requirements. For
example, if a subscriber wants to receive all AvSv traps, AVSV_TRAPS filter should be used. If
a subscriber wants to receive only AMF traps, the array of AVSV_TRAPS and
SAF_AMF_MIB_TRAPS filters should be used.

2.2.7 XML

Motorola uses a proprietary XML schema for configuring entities in the AMF system model. The
XML syntax is described in the XSD (the schema file) and the NCS System Description
Programer’s Reference. This schema has been developed to support the four MIBs described
in the section Management Information Base (MIB) on page 23. The files in XML format the
system description file, and the application config file is used only once during the initial system
boot. The system description file also contains the hardware deployment configuration that AvM
uses.

2.3 Command Line Interface
The Availability Service supports CLI commands for admin operations on Service Groups,
Service Units, Service instances, and nodes.

To issue AvSv CLI commands the file cli_cefslib_conf should be updated with the entry:
libavsv_clicef.so ncsavsv_cef_load_lib_req

Only users with Admin permissions can access these commands. (Refer to the Command Line
Interface Programmer’s Reference for further intormation.)

2.3.1 set

Description

This command sets the admin state of the Service Group (SG), Service Unit (SU), Service
instance (SI), or node to locked, unlocked, or shutting down.

Synopsis

set index (SG Name | SU Name |

SI Name | Node Name) adminstate value

(locked | unlocked | shuttingdown)

Parameters

index

Name of SG, SU, SI or node

value

Possible values are: locked|unlocked|shuttingdown

Availability Service Programmer’s Reference (6806800C44B)

Management Interface admin reset

30

Example

Example Commands:

set safSg=SG_NCS_DIRECTORS adminstate locked

The previous command will lock the Service Group NCS DIRECTORS.

set safNode=PL_2_6 adminstate unlocked

The previous command will unlock the node PL_2_6.

set safSu=SuT_NCS_Payload adminstate shuttingdown

The previous command will shut down the Service Unit NCS_Payload

2.3.2 admin reset

Description

This command resets nodes at the location mentioned within.

AvSv supports two types of resets: soft and hard. With soft resets, applications on a node are
first failed over, then gracefully shut down, and then an HPI command to gracefully reset the
processor is issued.

Soft resets are not allowed on active system manager hosts.

With hard resets, an HPI command to abruptly reset the processor is issued.

Synopsis

reset /Shelf-id/Slot-id/Subslot-id/

operation softreset | hardreset

 /Shelf-Type/Blade-Type/Blade-Type

Parameters

Shelf-id

ID of the chassis.

Slot-id

ID of the physical slot.

Subslot-id

ID of the subslot. This field is optional. Users have to provide the ID only if there is any entity at
level 3.

softreset

admin lock Management Interface

Availability Service Programmer’s Reference (6806800C44B) 31

To reset a node gracefully.

hardreset

To reset a node abruptly.

Shelf-Type

The shelf type of the chassis in Shelf-Id. Default value: 23

Blade-Type

The type of blade in Slot-Id. Default value: 7.

Blade-Type

The type of blade in Subslot-Id.

Example

The following example commands illustrate the usage of this command.

[reset /2/9/ operation softreset

This command resets the node on chassis 2, physical slot 9.

Users can also issue this command as:

reset /2/9 operation softreset /23/7

This would reset the node on chassis 2, physical slot 9, shelf type 23, and blade type 7.

Note that the default entity types are supported only for shelf-type and first blade-type, i.e., 23
for shelf and 7 for blade. If there is a valid entry in the Subslot-Id, then users have to provide all
the three entity types at the end.

2.3.3 admin lock

Description

This command locks or unlocks the node at the location mentioned within.

Three operations are supported: shutdown, lock, and unlock.

In the case of shutdown, applications are failed over and then shut down gracefully. The AvM
deactivates the relevant blade gracefully using an HPI command and sets the state of the blade
to "locked" The blade can then be brought up only when an administrator performs an explicit
"unlock" operation. Shutdown cannot be performed on active system manager hosts.

In the case of a lock operation, the AvM deactivates the blade abruptly using an HPI command
and sets the state of the blade to "locked" The blade cannot then be brought up unless an
administrator performs an "unlock" operation.

An "unlock" operation is performed to bring up a blade that has been locked because of a
shutdown or lock operation.

Availability Service Programmer’s Reference (6806800C44B)

Management Interface admin lock

32

Synopsis

admreq /Shelf-id/Slot-id/Subslot-id/ operation

shutdown | lock | unlock

/Shelf-Type/Blade-Type/Blade-Type

Parameters

Shelf-id

ID of the chassis.

Slot-id

ID of the physical slot.

Subslot-id

ID of the subslot. This field is optional. Users have to provide the ID only if there is an entity at
level 3. Default value: 0.

shutdown

To deactivate a node gracefully.

lock

To deactivate a node abruptly.

unlock

To unlock a node (if it has been shut down or locked).

Shelf-Type

The type of chassis corresponding to the chassis in Shelf-Id. Default value: 23.

Blade-Type

The type of blade corresponding to the blade in Slot-id. Default value: 7.

Blade-Type

The type of blade at the level corresponding to the blade in Subslot-id.

Example

Example Commands

admreq /2/9/ operation shutdown

This command deactivates the node on chassis 2, physical slot 9.

Users can also issue this command as:

admswitch Management Interface

Availability Service Programmer’s Reference (6806800C44B) 33

admreq /2/9 operation shutdown /23/7

This command deactivates the node on chassis 2, physical slot 9, Shelf-Type 23, and Blade-
Type 7.

Note that the default values are supported only for entities up to two levels of hierarchy, starting
from Shelf, i.e., 23 for Shelf-Type and 7 for First Blade-Type. If there is a valid entry in Subslot-
id, users should provide all the three entity types at the end.

2.3.4 admswitch

Description

This command performs a switchover of two system manager hosts. If the switchover is
successful, the active host becomes a standby while the standby host becomes active.

Synopsis

admswitch

Availability Service Programmer’s Reference (6806800C44B)

Management Interface admswitch

34

A

Availability Service Programmer’s Reference (6806800C44B) 35

A Sample Application

A.1 Overview
The sample AvSv application is a 'counter' application that is run in a 2N-redundancy model.
The active entity counts periodically. When it fails, the standby entity becomes active and
resumes counting from where the previous active entity failed.

The sample application shows you how to use some APIs defined in the SAI-AIS AMF service.
It also demonstrates the following features:

Passive monitoring

Protection Group tracking

Component failover (triggered by a component-generated error report) followed by
component restart repair.

AMF-invoked health check

A.1.1 Sequence of Events in the Sample Application

When the demo is started, AvSv instantiates two instances of the sample application per the
configuration in the BOM. The sequence of events in both the applications is described below

Create 3 threads (one each for the counter application, AMF-INTF, and CKPT-INTF)

In the AMF-INTF thread:

1. Initialize with AMF

2. Call the AMF selection object

3. Call the API to get the component name

4. Register the component

5. Wait on the AMF selection object for callback events.

In the CKPT-INTF thread:

Open the local checkpoint

 Initialize with CKPT

Register the arrival callback

Call the CKPT selection object

Wait on the CKPT selection object for callback events

AMF dispatches CsiSetCallback with active/standby HA state.

Availability Service Programmer’s Reference (6806800C44B)

Sample Application Configuration for the Sample Application

36

In the active application:

1. Invoke the HA state handling callback function

2. Increment the counter and write it to the local checkpoint

3. Start the AMF initiated health check (as a result, the health check callbacks are dispatched
by AMF periodically)

4. Stop responding to the health check after certain number of health checks

5. Send an error report with "component failover" as the recommended recovery

In the standby application:

1. Read the local checkpoint and update the counter value when standby assignment
happens

2. Each update to the local checkpoint by the active results in a callback to the standby

3. Start tracking the protection group associated with the assigned CSI

4. Start and stop passive monitoring of the component

When the active application sends an error report, the standby application receives the active
assignment

The new active application resumes incrementing the counter value

The new active application receives the protection group callback and stops tracking this
protection group.

The previous active application is terminated

A new application is instantiated (as a part of repair)

 The new active component then unregisters and finalizes with AMF

A.2 Configuration for the Sample Application
The configuration for the sample application is captured in the System Description File. It
comprises of the following entities:

A service group (SG) that comprises 2 service units (SU) in a 2N-redundancy model
Each SU contains a single component.

 A single service instance (SI) is configured to be assigned to the SG

 The two SUs come up in the payload nodes (safNode=PL_2_3 and safNode=PL_2_4
respectively).

The sample application also provides scripts (available in
/opt/motorola/ncs/dev/source/avsv directory on the development host) to control the
component life cycle. These are:

 comp_inst.sh script (to instantiate the sample application)

comp_term.sh script (to terminate the sample application).

Building the Sample Application Sample Application

Availability Service Programmer’s Reference (6806800C44B) 37

A.3 Building the Sample Application
On the development host the sample application should be crosscompiled for the target
architecture. To build the AvSv sample application, use the following command:

./make_env.sh <target-architecture> avsv_demo

This will generate a sample executable file avsv_demo.out in the bin/<target-
architecture>/ directory.

A.4 Running the Sample Application
To run the sample application on the target architecture:

Procedure

1. Install NCS on the System Manager Node and two payload nodes
(safNode=PL_2_3 and safNode=PL_2_4 respectively).

2. Transfer/install the sample application inventory on the target machine as follows.
Transfer the sample program executable file (avsv_demo.out) to the payload
nodes. Place it in /etc/ncs/ folder.
Transfer the sample program scripts (comp_inst.sh and comp_term.sh) to the
payload nodes. Place them in /etc/ncs/ folder.

3. Ensure that the scripts have executable permission. Use the following command:
chmod +x comp_inst.sh
chmod +x comp_term.sh

4. Update the BOM on the system manager host. The configuration for the sample
application is captured in AppConfig.xml file that is supplied along with the
sample applications. They can be found (along with sample program scripts) in the
/opt/motorola/ncs/dev/source/avsv directory on the development host.

5. Copy this BOM to the /etc/ncs folder on the System Manager Node. The sample
application specific configuration attributes are commented in the
AppConfig.xml. Remove the comments (the commented portions begin with a
“<!--” and end with a “-->”).

6. Verify if the /etc/ncs/pssv_spcn_list file on the System Manager Node
contains the string PSS. Replace it with an XML file. This is required to force initial
configuration data read from the BOM file.

7. Remove the avsv_demo.log file, if any, from the /ncs/log/stdouts folder on
the payload nodes. This file contains the output of the sample application.

Availability Service Programmer’s Reference (6806800C44B)

Sample Application Sample Application Output

38

Reboot the chassis. The entire system will come up with the sample application along with the
NCS infrastructure elements. The avsv_demo.log file captures the output of the sample
application on each payload node.

A.5 Sample Application Output
For the active node:

 ##

 # #

 # You are about to witness AvSv Demo !!! #

 # #

 ##

 AVSV-APP TASK CREATION SUCCESS !!!

 CKPT :: CKPT-INTF TASK CREATION SUCCESS !!!

 AMF-INTF TASK CREATION SUCCESS !!!

 AMF Initialization Done !!!

 AmfHandle: -35651582

 CKPT Initialization Done !!!

 CkptHandle: 2

 CKPT :: Registered Arrival Callback !!!

Sample Application Output Sample Application

Availability Service Programmer’s Reference (6806800C44B) 39

 CKPT :: Checkpoint Opened !!!

 CKPT :: Ckpt Section Create being calledPASSED

 AMF Selection Object Get Successful !!!

 CKPT :: Selection Object Get Successful !!!

 Component Name Get Successful !!!

 CompName: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_3

 Component Registered !!!

 Dispatched 'CSI Set' Callback

 Component: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_3

 CSIName: safCsi=Csi_AvSvDemo,safSi=Si_AvSvDemo

 HAState: Active

 CSIFlags: Add One

 INVOKING saAmfHAStateGet() API !!!

 COUNTER VALUE: 1

 CKPT :: Wrote 1 to the CheckPoint

Availability Service Programmer’s Reference (6806800C44B)

Sample Application Sample Application Output

40

 COUNTER VALUE: 2

 CKPT :: Wrote 2 to the CheckPoint

 CompName: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_3

 CSIName: safCsi=Csi_AvSvDemo,safSi=Si_AvSvDemo

 HAState: Active

 DEMONSTRATING AMF-INITIATED HEALTHCHECK !!!

 COUNTER VALUE: 3

 CKPT :: Wrote 3 to the CheckPoint

 COUNTER VALUE: 4

 CKPT :: Wrote 4 to the CheckPoint

 Started AMF-Initiated HealthCheck (with Component Failover Recommended
Recovery)

 Comp: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_3

 HealthCheckKey: A9FD64E12C

 Dispatched 'HealthCheck' Callback

 Component: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_3

 HealthCheckKey: A9FD64E12C

Sample Application Output Sample Application

Availability Service Programmer’s Reference (6806800C44B) 41

 COUNTER VALUE: 5

 CKPT :: Wrote 5 to the CheckPoint

 COUNTER VALUE: 6

 CKPT :: Wrote 6 to the CheckPoint

 Dispatched 'HealthCheck' Callback

 Component: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_3

 HealthCheckKey: A9FD64E12C

 COUNTER VALUE: 7

 CKPT :: Wrote 7 to the CheckPoint

 COUNTER VALUE: 8

 CKPT :: Wrote 8 to the CheckPoint

 Dispatched 'HealthCheck' Callback

 Component: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_3

Availability Service Programmer’s Reference (6806800C44B)

Sample Application Sample Application Output

42

 HealthCheckKey: A9FD64E12C

 COUNTER VALUE: 9

 CKPT :: Wrote 9 to the CheckPoint

 COUNTER VALUE: 10

 CKPT :: Wrote 10 to the CheckPoint

 Dispatched 'HealthCheck' Callback

 Component: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_3

 HealthCheckKey: A9FD64E12C

 COUNTER VALUE: 11

 CKPT :: Wrote 11 to the CheckPoint

 COUNTER VALUE: 12

 CKPT :: Wrote 12 to the CheckPoint

 Dispatched 'HealthCheck' Callback

Sample Application Output Sample Application

Availability Service Programmer’s Reference (6806800C44B) 43

 Component: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_3

 HealthCheckKey: A9FD64E12C

 COUNTER VALUE: 13

 CKPT :: Wrote 13 to the CheckPoint

 COUNTER VALUE: 14

 CKPT :: Wrote 14 to the CheckPoint

 Dispatched 'HealthCheck' Callback

 Component: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_3

 HealthCheckKey: A9FD64E12C

 COUNTER VALUE: 15

 CKPT :: Wrote 15 to the CheckPoint

 COUNTER VALUE: 16

 CKPT :: Wrote 16 to the CheckPoint

Availability Service Programmer’s Reference (6806800C44B)

Sample Application Sample Application Output

44

 Dispatched 'HealthCheck' Callback

 Component: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_3

 HealthCheckKey: A9FD64E12C

 COUNTER VALUE: 17

 CKPT :: Wrote 17 to the CheckPoint

 COUNTER VALUE: 18

 CKPT :: Wrote 18 to the CheckPoint

 Dispatched 'HealthCheck' Callback

 Component: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_3

 HealthCheckKey: A9FD64E12C

 COUNTER VALUE: 19

 CKPT :: Wrote 19 to the CheckPoint

 COUNTER VALUE: 20

 CKPT :: Wrote 20 to the CheckPoint

Sample Application Output Sample Application

Availability Service Programmer’s Reference (6806800C44B) 45

 Dispatched 'HealthCheck' Callback

 Component: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_3

 HealthCheckKey: A9FD64E12C

 COUNTER VALUE: 21

 CKPT :: Wrote 21 to the CheckPoint

 COUNTER VALUE: 22

 CKPT :: Wrote 22 to the CheckPoint

 Dispatched 'HealthCheck' Callback

 Component: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_3

 HealthCheckKey: A9FD64E12C

 Stopped HealthCheck for Comp:
safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_3 with HealthCheckKey:
A9FD64E12C

 DEMONSTRATING COMPONENT FAILOVER THROUGH ERROR REPORT !!!

 COUNTER VALUE: 23

Availability Service Programmer’s Reference (6806800C44B)

Sample Application Sample Application Output

46

 CKPT :: Wrote 23 to the CheckPoint

 COUNTER VALUE: 24

 CKPT :: Wrote 24 to the CheckPoint

 Sent Error Report for Comp:
safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_3 with CompFailover as
the recommended recovery

 ##

 # #

 # You are about to witness AvSv Demo !!! #

 # #

 ##

 AVSV-APP TASK CREATION SUCCESS !!!

 CKPT :: CKPT-INTF TASK CREATION SUCCESS !!!

 AMF-INTF TASK CREATION SUCCESS !!!

Sample Application Output Sample Application

Availability Service Programmer’s Reference (6806800C44B) 47

 AMF Initialization Done !!!

 AmfHandle: -38797310

 CKPT Initialization Done !!!

 CkptHandle: 3

 CKPT :: Registered Arrival Callback !!!

 CKPT :: Checkpoint Opened !!!

 CKPT :: Ckpt Section Create being calledPASSED

 AMF Selection Object Get Successful !!!

 CKPT :: Selection Object Get Successful !!!

 Component Name Get Successful !!!

 CompName: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_3

 Component Registered !!!

 Dispatched 'CSI Set' Callback

 Component: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_3

 CSIName: safCsi=Csi_AvSvDemo,safSi=Si_AvSvDemo

 HAState: Active

 CSIFlags: Add One

 INVOKING saAmfHAStateGet() API !!!

Availability Service Programmer’s Reference (6806800C44B)

Sample Application Sample Application Output

48

 COUNTER VALUE: 1

 CKPT :: Wrote 1 to the CheckPoint

 COUNTER VALUE: 2

 CKPT :: Wrote 2 to the CheckPoint

 CompName: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_3

 CSIName: safCsi=Csi_AvSvDemo,safSi=Si_AvSvDemo

 HAState: Active

 DEMONSTRATING AMF-INITIATED HEALTHCHECK !!!

For the stand-by node:

 ##

 # #

 # You are about to witness AvSv Demo !!! #

 # #

 ##

 AVSV-APP TASK CREATION SUCCESS !!!

Sample Application Output Sample Application

Availability Service Programmer’s Reference (6806800C44B) 49

 CKPT :: CKPT-INTF TASK CREATION SUCCESS !!!

 AMF-INTF TASK CREATION SUCCESS !!!

 AMF Initialization Done !!!

 AmfHandle: -38797310

 CKPT Initialization Done !!!

 CkptHandle: 2

 CKPT :: Registered Arrival Callback !!!

 CKPT :: Checkpoint Opened !!!

 CKPT :: Ckpt Section Create being calledPASSED

 AMF Selection Object Get Successful !!!

 CKPT :: Selection Object Get Successful !!!

 Component Name Get Successful !!!

 CompName: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_2

 Component Registered !!!

 Dispatched 'CSI Set' Callback

Availability Service Programmer’s Reference (6806800C44B)

Sample Application Sample Application Output

50

 Component: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_2

 CSIName: safCsi=Csi_AvSvDemo,safSi=Si_AvSvDemo

 HAState: Standby

 CSIFlags: Add One

 Started Protection Group Tracking

 CSI: safCsi=Csi_AvSvDemo,safSi=Si_AvSvDemo

 Track Flags: Changes Only

 CKPT :: Read 8 during initial read

 CKPT :: Read 9 from the CheckPoint

 CKPT :: Read 10 from the CheckPoint

 CKPT :: Read 11 from the CheckPoint

 CKPT :: Read 12 from the CheckPoint

 CKPT :: Read 13 from the CheckPoint

 CKPT :: Read 14 from the CheckPoint

 CKPT :: Read 15 from the CheckPoint

 CKPT :: Read 16 from the CheckPoint

 CKPT :: Read 17 from the CheckPoint

 CKPT :: Read 18 from the CheckPoint

 CKPT :: Read 19 from the CheckPoint

 CKPT :: Read 20 from the CheckPoint

 CKPT :: Read 21 from the CheckPoint

 CKPT :: Read 22 from the CheckPoint

 CKPT :: Read 23 from the CheckPoint

 CKPT :: Read 24 from the CheckPoint

 Dispatched 'Protection Group' Callback

 CSI: safCsi=Csi_AvSvDemo,safSi=Si_AvSvDemo

 No. of Members: 2

 CompName[0]: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_3

Sample Application Output Sample Application

Availability Service Programmer’s Reference (6806800C44B) 51

 Rank[0] : 1

 HAState[0] : Quiesced

 Change[0] : State Change

 Stopped Protection Group Tracking for CSI:
safCsi=Csi_AvSvDemo,safSi=Si_AvSvDemo

 Started Passive Monitoring for Comp:
safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_2

 Stopped Passive Monitoring for Comp:
safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_2

 Dispatched 'CSI Set' Callback

 Component: safComp=CompT_AvSvDemo,safSu=SuT_AvSvDemo,safNode=PL_2_2

 CSIName:

 HAState: Active

 CSIFlags: Target All

 DEMO OVER (UNREGISTER & FINALIZE THE COMPONENT) !!!

 COUNTER VALUE: 25

 CKPT :: Wrote 25 to the CheckPoint

 COUNTER VALUE: 26

Availability Service Programmer’s Reference (6806800C44B)

Sample Application Sample Application Output

52

 CKPT :: Wrote 26 to the CheckPoint

 Component UnRegistered !!!

 COUNTER VALUE: 27

 CKPT :: Wrote 27 to the CheckPoint

 COUNTER VALUE: 28

 CKPT :: Wrote 28 to the CheckPoint

 AMF Finalize Done !!!

 DEMO OVER !!!

B

Availability Service Programmer’s Reference (6806800C44B) 53

B Related Documentation

B.1 Motorola Embedded Communications
Computing Documents
The Motorola publications listed below are referenced in this manual. You can obtain electronic
copies of Embedded Communications Computing (ECC) publications by contacting your local
Motorola sales office or by visiting ECC’s World Wide Web literature site:
http://www.motorola.com/computer/literature. This site provides the most up-to-date copies of
ECC product documentation.

Table B-1 Motorola Publications

Document Title Publication Number

Availability Service Programmer’s Reference 6806800C44

Avantellis 3000 Series Rel. 3.0 User’ s Guide 6806800B91

Checkpoint Service Programmer’s Reference 6806800C47

Command Line Interface Programmer's Reference 6806800C11

Distributed Tracing Service Programmer's Reference 6806800B40

Event Distribution Service Programmer’s Reference 6806800C48

Global Lock Service Programmer’s Reference 6806800C49

HPI Integration Service Programmer’s Reference 6806800C51

Interface Service Programmer’s Reference 6806800B50

LEAP Programmer's Reference 6806800B56

Management Access Service Programmer's Reference 6806800B55

Message Based Checkpointing Service Programmer's Reference 6806800B41

Message Distribution Service Programmer's Reference 6806800B89

Message Queue Service Programmer’s Reference 6806800C50

NetPlane Core Services Overview User’s Guide 6806800C08

Persistent Store Restore Service Programmer's Reference 6806800B54

Simple Software Upgrade Programmer's Reference 6806800B19

SMIDUMP Tool Programmer's Reference 6806800B37

SNMP SubAgent Programmer's Reference 6806800B38

System Description Programmer's Reference 6806800B90

System Resource Monitoring Service Programmer's Reference 6806800B39

http://www.motorola.com/computer/literature

Availability Service Programmer’s Reference (6806800C44B)

Related Documentation Related Specifications

54

B.2 Related Specifications
For additional information, refer to the following table for related specifications. As an additional
help, a source for the listed document is provided. Please note that, while these sources have
been verified, the information is subject to change without notice.

Table B-2 Related Specifications

Document Title Version/Source

Service Availability Forum Application Interface Specification,
Volume 1, Overview and Models

SAF-AIS-B.01.01/

http://www.saforum.org

Service Availability Forum Application Interface Specification,
Volume 2, Availability Management Framework

SAF-AIS-AMF-B.01.01/

http://www.saforum.org

Service Availability Forum Application Interface Specification,
Volume 3, Cluster Membership Service

SAF-AIS-CLM-B.01.01/

http://www.saforum.org

Service Availability Forum Application Interface Specification,
Volume 4, Checkpoint Service

SAF-AIS-CKPT-B.01.01/

http://www.saforum.org

Service Availability Forum Application Interface Specification,
Volume 5, Event Service

SAF-AIS-EVT-B.01.01/

http://www.saforum.org

Service Availability Forum Application Interface Specification,
Volume 6, Message Service

SAF-AIS-MSG-B.01.01/

http://www.saforum.org

Service Availability Forum Application Interface Specification,
Volume 7, Lock Service

SAF-AIS-LCK-B.01.01/

http://www.saforum.org

	Availability Service
	Contents
	List of Tables
	List of Figures
	About this Manual
	Overview of Contents
	Abbreviations
	Conventions
	Summary of Changes
	Comments and Suggestions

	Introduction
	1.1 Overview
	1.2 Models and Concepts
	1.2.1 Service Structure Overview
	1.2.1.1 Availability Manager
	1.2.1.2 Availability Director
	1.2.1.3 Availability Node Director
	1.2.1.4 Availability Agent
	1.2.1.5 Cluster Membership Agent

	1.2.2 Compliance Report
	1.2.3 Dependencies
	1.2.3.1 Service Dependencies
	1.2.3.2 Library Dependencies

	1.2.4 Service Definition Documents
	1.2.5 Service Extensions
	1.2.6 Implementation Notes
	1.2.7 Configuration

	Management Interface
	2.1 Overview
	2.2 Management Information Base (MIB)
	2.2.1 NCS-AVSV-MIB
	2.2.2 NCS-AVM-MIB
	2.2.2.1 Example

	2.2.3 SAF-AMF-MIB
	2.2.4 SAF-CLM-MIB
	2.2.5 Example MIB Operations
	2.2.6 AvSv Traps
	2.2.7 XML

	2.3 Command Line Interface
	2.3.1 set
	2.3.2 admin reset
	2.3.3 admin lock
	2.3.4 admswitch

	A Sample Application
	A.1 Overview
	A.1.1 Sequence of Events in the Sample Application

	A.2 Configuration for the Sample Application
	A.3 Building the Sample Application
	A.4 Running the Sample Application
	A.5 Sample Application Output

	B Related Documentation
	B.1 Motorola Embedded Communications Computing Documents
	B.2 Related Specifications

