
Tru64 UNIX
Writing Network Device Drivers

Part Number: AA-RNG2A-TE

December 2000

Product Version: Device Driver Kit Version 2.0

Operating System and Version: Tru64 UNIX Version 5.0A or higher

This manual contains information that systems engineers need to write
network device drivers that operate on any bus.

Compaq Computer Corporation
Houston, Texas

© 2000 Compaq Computer Corporation

Compaq and the Compaq logo Registered in U.S. Patent and Trademark Office. Tru64 is a trademark of
Compaq Information Technologies Group, L.P. in the United States and other countries.

UNIX and X/Open are trademarks of The Open Group in the United States and other countries. All other
product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The information
in this document is provided “as is” without warranty of any kind and is subject to change without
notice. The warranties for Compaq products are set forth in the express limited warranty statements
accompanying such products. Nothing herein should be construed as constituting an additional warranty.

Contents

About This Manual

1 Network Device Driver Environment
1.1 Include Files Section for a Network Driver 1–3
1.2 Declarations Section for a Network Driver 1–4
1.2.1 External and Forward Declarations 1–5
1.2.2 Declaring softc and controller Data Structure Arrays 1–6
1.2.3 Declaring and Initializing the driver Data Structure 1–7
1.2.4 Defining Driver-Specific Macros 1–7
1.3 Configure Section for a Network Driver 1–10
1.4 Autoconfiguration Support Section for a Network Driver 1–10
1.5 Initialization Section for a Network Driver 1–10
1.6 Start Section for a Network Driver 1–10
1.7 Watchdog Section for a Network Driver 1–11
1.8 Reset Section for a Network Driver 1–11
1.9 ioctl Section for a Network Driver 1–11
1.10 Interrupt Section for a Network Driver 1–11
1.11 Output Section for a Network Driver 1–11

2 Defining Device Register Offsets
2.1 Interrupt and Status Register Offset Definitions 2–1
2.2 Command Port Register Offset Definitions 2–2
2.3 Window 0 Configuration Register Offset Definitions 2–4
2.4 Window 3 Configuration Register Offset Definitions 2–7
2.5 Window 1 Operational Register Offset Definitions 2–9
2.6 Window 4 Diagnostic Register Offset Definitions 2–11
2.7 EEPROM Data Structure Definition 2–13

3 Defining the softc Data Structure
3.1 Defining Common Information 3–2
3.2 Enabling Support for Enhanced Hardware Management 3–4
3.3 Defining Media State Information 3–4
3.4 Defining the Base Register 3–6
3.5 Defining Multicast Table Information 3–6

Contents iii

3.6 Defining the Interrupt Handler ID 3–6
3.7 Defining CSR Pointer Information 3–6
3.8 Defining FIFO Maintenance Information 3–7
3.9 Defining Bus-Specific Information 3–7
3.10 Defining the Broadcast Flag 3–8
3.11 Defining the Debug Flag 3–8
3.12 Defining Interrupt and Timeout Statistics 3–8
3.13 Defining Autosense Kernel Thread Context Information 3–9
3.14 Defining the Polling Context Flag 3–9
3.15 Defining a Copy of the w3_eeprom Data Structure 3–10
3.16 Declaring the Simple Lock Data Structure 3–10

4 Implementing the Configure Section
4.1 Declaring Configure-Related Variables and the

cfg_subsys_attr_t Data Structure 4–1
4.2 Setting Up the el_configure Routine 4–3

5 Implementing the Autoconfiguration Support Section (probe)
5.1 Implementing the el_probe Routine 5–1
5.1.1 Setting Up the el_probe Routine 5–2
5.1.2 Checking the Maximum Number of Devices That the

Driver Supports 5–4
5.1.3 Performing Bus-Specific Tasks 5–4
5.1.4 Allocating Memory for the softc Data Structure 5–6
5.1.5 Allocating the ether_driver Data Structure 5–7
5.1.6 Initializing the Enhanced Hardware Management Data

Structure 5–8
5.1.7 Computing the CSR Addresses 5–8
5.1.8 Setting Bus-Specific Data Structure Members 5–8
5.1.9 Handling First-Time Probe Operations 5–10
5.1.10 Handling Subsequent Probe Operations 5–12
5.1.11 Registering the Interrupt Handler 5–14
5.1.12 Saving the controller and softc Data Structure Pointers . . 5–16
5.1.13 Trying to Allocate Another controller Data Structure 5–16
5.1.14 Registering the shutdown Routine 5–17
5.2 Implementing the el_shutdown Routine 5–17
5.3 Implementing the el_autosense_thread Routine 5–17
5.3.1 Setting Up the el_autosense_thread Routine 5–19
5.3.2 Blocking Until Awakened 5–19
5.3.3 Testing for the Termination Flag 5–20
5.3.4 Starting Up Statistics 5–20

iv Contents

5.3.5 Entering the Packet Transmit Loop 5–20
5.3.6 Saving Counters Prior to the Transmit Operation 5–21
5.3.7 Allocating Memory for a Test Packet 5–21
5.3.8 Using the Default from the ROM 5–21
5.3.9 Setting the Media in the Hardware 5–22
5.3.10 Building the Test Packet 5–22
5.3.11 Transmitting the Test Packet 5–22
5.3.12 Setting a Timer for the Current Kernel Thread 5–23
5.3.13 Testing for Loss of Carrier 5–23
5.3.14 Determining Whether Packets Were Transmitted

Successfully 5–24
5.3.15 Printing Debug Information 5–24
5.3.16 Setting Up New Media 5–24
5.3.17 Establishing the Media 5–25

6 Implementing the Autoconfiguration Support Section (attach)
6.1 Setting Up the el_attach Routine 6–1
6.2 Initializing the Media Address and Media Header Lengths .. . 6–2
6.3 Setting Up the Media 6–3
6.4 Initializing Simple Lock Information 6–5
6.5 Printing a Success Message 6–6
6.6 Specifying the Network Driver Interfaces 6–6
6.7 Setting the Baud Rate 6–8
6.8 Attaching to the Packet Filter and the Network Layer 6–8
6.9 Setting Network Attributes and Registering the Adapter 6–9
6.10 Handling the Reinsert Operation 6–9
6.11 Enabling the Interrupt Handler 6–10
6.12 Starting the Polling Process 6–10

7 Implementing the unattach Routine
7.1 Setting Up the el_unattach Routine 7–1
7.2 Verifying That the Interface Has Shut Down 7–2
7.3 Obtaining the Simple Lock and Shutting Down the Device 7–2
7.4 Disabling the Interrupt Handler 7–3
7.5 Terminating the Autosense Kernel Thread 7–3
7.6 Unregistering the PCMCIA Event Callback Routine 7–4
7.7 Stopping the Polling Process 7–4
7.8 Unregistering the Shutdown Routine 7–4
7.9 Terminating the Simple Lock 7–4

Contents v

7.10 Unregistering the Card from the Hardware Management
Database 7–5

7.11 Freeing Resources 7–5

8 Implementing the Initialization Section
8.1 Implementing the el_init Routine 8–1
8.1.1 Setting Up the el_init Routine 8–1
8.1.2 Determining Whether the PCMCIA Card Is Present 8–2
8.1.3 Setting the IPL and Obtaining the Simple Lock 8–2
8.1.4 Calling the el_init_locked Routine 8–3
8.1.5 Releasing the Simple Lock and Resetting the IPL 8–3
8.1.6 Returning the Status from the el_init_locked Routine 8–3
8.2 Implementing the el_init_locked Routine 8–3
8.2.1 Resetting the Transmitter and Receiver 8–4
8.2.2 Clearing Interrupts 8–4
8.2.3 Starting the Device 8–5
8.2.4 Ensuring That the 10Base2 Transceiver Is Off 8–5
8.2.5 Setting the LAN Media 8–6
8.2.6 Setting a LAN Attribute 8–7
8.2.7 Selecting Memory Mapping 8–7
8.2.8 Resetting the Transmitter and Receiver Again 8–7
8.2.9 Setting the LAN Address 8–8
8.2.10 Processing Special Flags 8–8
8.2.11 Setting the Debug Flag 8–9
8.2.12 Enabling TX and RX 8–9
8.2.13 Enabling Interrupts 8–10
8.2.14 Setting the Operational Window 8–10
8.2.15 Marking the Device as Running 8–10
8.2.16 Starting the Autosense Kernel Thread 8–11
8.2.17 Starting the Transmit of Pending Packets 8–11

9 Implementing the Start Section
9.1 Implementing the el_start Routine 9–1
9.1.1 Setting the IPL and Obtaining the Simple Lock 9–1
9.1.2 Calling the el_start_locked Routine 9–2
9.1.3 Releasing the Simple Lock and Resetting the IPL 9–2
9.2 Implementing the el_start_locked Routine 9–3
9.2.1 Discarding All Transmits After the User Removes the

PCMCIA Card 9–3
9.2.2 Removing Packets from the Pending Queue and Preparing

the Transmit Buffer 9–4

vi Contents

9.2.3 Transmitting the Buffer 9–6
9.2.4 Accounting for Outgoing Bytes 9–7
9.2.5 Updating Counters, Freeing the Transmit Buffer, and

Marking the Output Process as Active 9–7
9.2.6 Indicating When to Start the Watchdog Routine 9–8

10 Implementing a Watchdog Section
10.1 Setting the IPL and Obtaining the Simple Lock 10–1
10.2 Incrementing the Transmit Timeout Counter and Resetting

the Unit 10–2
10.3 Releasing the Simple Lock and Resetting the IPL 10–2

11 Implementing the Reset Section
11.1 Implementing the el_reset Routine 11–1
11.2 Implementing the el_reset_locked Routine 11–2

12 Implementing the ioctl Section
12.1 Setting Up the el_ioctl Routine 12–2
12.2 Determining Whether the User Has Removed the PCMCIA

Card from the Slot 12–3
12.3 Setting the IPL and Obtaining the Simple Lock 12–3
12.4 Enabling Loopback Mode (SIOCENABLBACK ioctl

Command) 12–4
12.5 Disabling Loopback Mode (SIOCDISABLBACK ioctl

Command) 12–4
12.6 Reading Current and Default MAC Addresses

(SIOCRPHYSADDR ioctl Command) 12–5
12.7 Setting the Local MAC Address (SIOCSPHYSADDR ioctl

Command) 12–5
12.8 Adding the Device to a Multicast Group (SIOCADDMULTI

ioctl Command) 12–6
12.9 Deleting the Device from a Multicast Group (SIOCDELMULTI

ioctl Command) 12–7
12.10 Accessing Network Counters (SIOCRDCTRS and

SIOCRDZCTRS ioctl Commands) 12–8
12.11 Bringing Up the Device (SIOCSIFADDR ioctl Command) 12–9
12.12 Using Currently Set Flags (SIOCSIFFLAGS ioctl Command) 12–10
12.13 Setting the IP MTU (SIOCSIPMTU ioctl Command) 12–10
12.14 Setting the Media Speed (SIOCSMACSPEED ioctl

Command) 12–10

Contents vii

12.15 Resetting the Device (SIOCIFRESET ioctl Command) 12–11
12.16 Setting Device Characteristics (SIOCIFSETCHAR ioctl

Command) 12–11
12.17 Releasing the Simple Lock and Resetting the IPL 12–13

13 Implementing the Interrupt Section
13.1 Implementing the el_intr Routine 13–1
13.1.1 Setting the IPL and Obtaining the Simple Lock 13–2
13.1.2 Rearming the Next Timeout 13–2
13.1.3 Reading the Interrupt Status 13–3
13.1.4 Processing Completed Receive and Transmit Operations . 13–3
13.1.5 Acknowledging the Interrupt 13–4
13.1.6 Transmitting Pending Frames 13–4
13.1.7 Releasing the Simple Lock and Resetting the IPL 13–4
13.1.8 Indicating That the Interrupt Was Serviced 13–5
13.2 Implementing the el_rint Routine 13–5
13.2.1 Counting the Receive Interrupt and Reading the Receive

Status 13–5
13.2.2 Pulling the Packets from the FIFO Buffer 13–6
13.2.3 Examining the First Part of the Packet 13–7
13.2.4 Copying the Received Packet into the mbuf 13–8
13.2.5 Discarding a Packet 13–9
13.3 Implementing the el_tint Routine 13–10
13.3.1 Counting the Transmit Interrupt 13–10
13.3.2 Reading the Transmit Status and Counting All Significant

Events 13–10
13.3.3 Managing Excessive Data Collisions 13–11
13.3.4 Writing to the Status Register to Obtain the Next Value . . 13–11
13.3.5 Queuing Other Transmits 13–12
13.4 Implementing the el_error Routine 13–12

14 Network Device Driver Configuration

Index

Figures
1–1 Sections of a Network Device Driver 1–2
2–1 Window 0 Configuration Registers 2–5
2–2 Window 3 Configuration Registers 2–8
2–3 Window 1 Operational Registers 2–9

viii Contents

2–4 Window 4 Diagnostic Registers 2–11
3–1 Typical softc Data Structure 3–2
3–2 Mapping Alternate Names 3–4

Tables
1–1 Driver-Specific Macros 1–9
12–1 Network ioctl Commands 12–1
12–2 Network Interface Counter Types 12–9

Contents ix

About This Manual

This manual discusses how to write network device drivers for computer
systems that run the Compaq Tru64™ UNIX operating system.

Audience

This manual is intended for systems engineers who:

• Use standard library routines to develop programs in the C language

• Know the Bourne shell or some other shell that is based on the UNIX
operating system

• Understand basic Tru64 UNIX concepts such as kernel, shell, process,
configuration, and autoconfiguration

• Understand how to use the Tru64 UNIX programming tools, compilers,
and debuggers

• Develop programs in an environment that involves dynamic memory
allocation, linked list data structures, and multitasking

• Understand the hardware device for which the driver is being written

• Understand the basics of the CPU hardware architecture, including
interrupts, direct memory access (DMA) operations, and I/O

Before you write a network device driver, we recommend that you be familiar
with the networking subsystem that the Tru64 UNIX operating system
provides. This manual assumes that you are familiar with the following
network interface types:

• Ethernet

• Fiber Distributed Data Interface (FDDI)

• Token Ring

See the Tru64 UNIX Technical Overview for descriptions of the data link
media.

This manual also assumes that you have some knowledge of the Tru64 UNIX
network programming environment, particularly:

• Data link provider interface

• X/Open transport interface

• Sockets

About This Manual xi

• Socket and XTI programming examples

• TCP specific programming information

• Information for Token Ring driver developers

• Data link interface

See the Tru64 UNIX Network Programmer’s Guide for descriptions of these
topics.

Scope of this Manual

This manual builds on the concepts and topics that are presented in Writing
Device Drivers, which is the core manual for developing device drivers on
Tru64 UNIX. It introduces topics that are specific to writing a device driver
for a local area network (LAN) device and that are beyond the scope of the
core manual.

In this manual, you can study a network driver called if_el. The if_el
driver supports the driver interface requirements for a LAN device,
specifically the 3Com 3C589C series PCMCIA adapter. The if_el driver
was implemented according to the specifications detailed in Ethernet III
Parallel Tasking ISA, EISA, Micro Channel, and PCMCIA Adapter Drivers
Technical Reference . This specification is published by 3Com Corporation,
and the manual part number is 09-0398-002B.

You can access the if_el source code in the device driver examples directory
(if you have installed it on your system). Ethernet is the network interface
type that is associated with the if_el driver. However, the explanations
point out where differences exist between Ethernet and other network
interfaces, including fiber distributed data interface (FDDI) and Token Ring.

The example network driver operates on multiple buses (specifically, the
PCMCIA bus and the ISA bus). It uses the common ifnet interface to
communicate with the upper layers of the Tru64 UNIX operating system.
The example does not emphasize any specific types of network device
drivers. However, mastering the concepts presented in this manual is useful
preparation for writing network device drivers that operate on a variety
of buses.

The manual does not discuss:

• How to write STREAMS network device drivers

• Topics associated with wide area networks (WANs)

• How to write an asynchronous transfer mode (ATM) device driver

• Details related to the network programming environment

xii About This Manual

New and Changed Features

This revision of the manual documents the following new features:

• Enabling support for enhanced hardware management

Enhanced hardware management (EHM) allows you to modify hardware
attributes, such as the type of LAN device, on either a local or a remote
system. See Section 3.2 for more information about how a network device
driver uses routines to define and export hardware attributes.

• The unattach() routine

The unattach() routine stops the network device and frees resources
prior to unloading the device driver or powering off the bus to which the
device is attached. See Chapter 7 for more information.

Organization

This manual is organized as follows:

Chapter 1 Describes the sections that make up a
network driver and compares them to
the sections that are associated with
block and character drivers.

Chapter 2 Describes the device register offset
definitions for the if_el device driver’s
associated LAN device, the 3Com 3C5x9
series Ethernet adapter.

Chapter 3 Describes how to define a softc data
structure, using the if_el device driver’s
el_softc structure as an example.

Chapter 4 Describes how to implement a
configure interface, using the if_el
device driver’s el_configure()
routine as an example.

Chapter 5 Describes how to implement a probe
interface and associated routines, using
the if_el device driver’s el_probe()
routine as an example.

Chapter 6 Describes how to implement an attach
interface, using the if_el device driver’s
el_attach() routine as an example.

Chapter 7 Describes how to implement an
unattach() routine to stop the device.

About This Manual xiii

Chapter 8 Describes how to implement an init
interface and associated routines, using
the if_el device driver’s el_init()
routine as an example.

Chapter 9 Describes how to implement a start
interface and associated routines, using
the if_el device driver’s el_start()
routine as an example.

Chapter 10 Describes how to implement a watchdog
interface, using the if_el device driver’s
el_watch() routine as an example.

Chapter 11 Describes how to implement a reset
interface and associated routines, using
the if_el device driver’s el_reset()
routine as an example.

Chapter 12 Describes how to implement an ioctl
interface, using the if_el device driver’s
el_ioctl() routine as an example.

Chapter 13 Describes how to implement an
interrupt handler, using the if_el
device driver’s el_intr interrupt
handler as an example.

Chapter 14 Describes the sysconfigtab option
entries necessary for configuring network
device drivers on different bus types.

Related Documentation

The following examples and documents supplement information in this
manual.

Examples

The directory /usr/examples/ddk/src/network includes the example
source files that are used throughout this manual: if_el.c, if_elreg.h,
files, and sysconfigtab.

Manuals

The following documents provide important information that supplements
the information in this manual:

• Installation Instructions and Release Notes contains instructions on how
to install the Device Driver Kit Version 2.0 product, including source
code with examples and user manuals. It also describes changes to the
product and documentation since the Device Driver Kit Release 1.0.

xiv About This Manual

• Writing Device Drivers contains information that you need to develop
device drivers on the Compaq Tru64 UNIX operating system.

• Writing Kernel Modules describes topics for all kernel modules
such as kernel threads and writing kernel modules in a symmetric
multiprocessing (SMP) environment.

• Writing PCI Bus Device Drivers describes PCI bus-specific topics,
including PCI bus architecture and data structures that PCI bus device
drivers use.

• Writing VMEbus Device Drivers describes VMEbus-specific topics,
including VMEbus architecture and routines that VMEbus device
drivers use.

• The Guide to Preparing Product Kits describes how to create kernel
(device driver) product kits and layered product kits.

• Kernel Debugging describes how to use the dbx, kdbx, and kdebug
debuggers to find problems in kernel code. It also describes how to write
a kdbx utility extension and how to create and analyze a crash dump file.

• Programming Support Tools describes several commands and utilities in
the Tru64 UNIX system, including facilities for text manipulation, macro
and program generation, and source file management.

• The Programmer’s Guide describes the programming environment of the
Tru64 UNIX operating system, with an emphasis on the C programming
language.

• The Network Programmer’s Guide describes the Tru64 UNIX network
programming environment and provides information on STREAMS
programming.

• System Administration describes how to configure, use, and maintain
the Tru64 UNIX operating system.

Reference Pages

Tru64 UNIX reference pages (also called manpages) contain descriptions of
the routines (Section 9r), data structures (Section 9s), loadable services
routines (Section 9u), and global variables (Section 9v) that apply to device
drivers.

Reader’s Comments
Compaq welcomes any comments and suggestions you have on this and
other Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

About This Manual xv

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems
or technical support inquiries. Please address technical questions to your
local system vendor or to the appropriate Compaq technical support office.
Information provided with the software media explains how to send problem
reports to Compaq.

Conventions

This manual uses the following conventions:

...
A vertical ellipsis indicates that a portion of an
example that would normally be present is not
shown.

. . .
In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

file Italic (slanted) type indicates variable values,
placeholders, and function parameter names.

buf In function definitions and syntax definitions used in
driver configuration, this typeface indicates names
that you must type exactly as shown.

[] In formal parameter declarations in function
definitions and in structure declarations, brackets
indicate arrays. Brackets also specify ranges for
device minor numbers and device special files in
file fragments. However, for the syntax definitions

xvi About This Manual

that are used in driver configuration, these brackets
indicate items that are optional.

| Vertical bars separating items that appear in the
syntax definitions used in driver configuration
indicate that you choose one item from among those
listed.

About This Manual xvii

1
Network Device Driver Environment

A network device is responsible for both transmitting and receiving frames
over the network media. Network devices have network device drivers
associated with them. A network device driver attaches a network subsystem
to a network interface, prepares the network interface for operation, and
governs the transmission and reception of network frames over the network
interface. Examples of network interface types include Ethernet, Fiber
Distributed Data Interface (FDDI), and Token Ring.

Similar to the character and block device drivers that are discussed in
Writing Device Drivers, a network device driver has the following sections:

• An include files section (Section 1.1)

• A declarations section (Section 1.2)

• A configure section (Section 1.3)

• An autoconfiguration support section (Section 1.4)

• An ioctl section (Section 1.9)

• An interrupt section (Section 1.10)

Similar to a character device driver, a network device driver can also have a
reset section (Section 1.8).

Unlike a character or block device driver, a network device driver contains
the following network driver-specific sections:

• An initialization section (Section 1.5)

• A start transmit section (Section 1.6)

• A watchdog section (Section 1.7)

• An output section (Section 1.11)

Figure 1–1 shows the sections that a typical network device driver can
contain. Network device drivers are not required to have all of these
sections, and more complex network drivers can have additional sections.
However, all network drivers must have a configure section, and because
network device drivers are associated with some device, they also must have
a device register header file.

Network Device Driver Environment 1–1

Figure 1–1: Sections of a Network Device Driver

/* Include Files Section */

/* Configure Section */

/* Autoconfiguration Support Section */

/* Start Transmit Section */

Network Device Driver

/* Declarations Section */

/* Initialization Section */

/* Ioctl Section */

/* Interrupt Section */

/* Reset Section */

/* Watchdog Section */

ZK-0818U-AI

Unlike for block and character drivers, you do not specify network driver
entry points in the dsent data structure. This means that a network
driver has no exposure into the file system and, therefore, has no entry in
the /dev directory. Thus, network drivers do not have block and character
driver-specific interfaces such as open, close, read, write, and strategy.

1–2 Network Device Driver Environment

Instead of registering its entry points in a dsent data structure, a network
driver registers its entry points with the upper layers of the Tru64 UNIX
operating system in an ifnet data structure. For example, a network driver
registers entry points for queueing data for transmission and for starting
data transmission.

In addition to storing the entry points for a network driver’s associated
interfaces, the ifnet data structure stores parameter-related information
such as the transmission medium and statistics to track the performance of
the interface and network.

The ifnet data structure also contains a queue of data packets that the
network driver sends to the network device. These packets are linked lists
of mbuf data structures. Each such linked list represents one data packet.
Depending on how a network driver fills in certain members of the ifnet
data structure, the upper-level network code fragments the data to be sent
out over a network. In the case of the Ethernet network interface, the
upper-level code never hands off to the driver a single packet that exceeds
1514 bytes.

1.1 Include Files Section for a Network Driver
A network device driver includes header files that define data structures
and constant values that the driver references. A network device driver
includes some of the same files as a block or character device driver, such as
errno.h. It can also include the header files that are specific to network
device drivers. For example:
#include <net/net_globals.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_types.h>

The following code shows the include files section for the if_el device driver:
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/buf.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/vmmac.h>
#include <vm/vm_kern.h>
#include <sys/ioctl.h> 1
#include <sys/errno.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/sysconfig.h> 2
#include <net/if.h>
#include <net/netisr.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>

Network Device Driver Environment 1–3

#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/if_ether.h> 3
#include <net/ether_driver.h>
#include <io/common/devdriver.h> 4
#include <hal/cpuconf.h>
#include <kern/thread.h>
#include <kern/sched_prim.h>
#include <kern/lock.h>

#include <io/dec/eisa/eisa.h> 5
#include <io/dec/pcmcia/pcmcia.h> 6
#include <io/dec/pcmcia/cardinfo.h>

#include <io/dec/netif/lan_common.h> 7

#include <io/dec/netif/if_elreg.h> 8

1 Includes the ioctl.h include file, which defines common ioctl com-
mands. The ioctl.h file is located in /usr/include/sys/ioctl.h.

2 Includes the sysconfig.h header file, which defines the constants that
all device drivers use during configuration. The sysconfig.h file is
located in /usr/include/sys/sysconfig.h.

3 Includes the if_ether.h header file, which defines the ether_header
data structure. All network drivers typically include this file.

If you are writing the network driver for FDDI media, you also include
the header file if_fddi.h. If you are writing the network driver for
Token Ring media, you also include the header file if_trn.h.

4 Includes the devdriver.h header file, which defines common device
driver data structures and constants. The devdriver.h file is located
in /usr/include/io/common/devdriver.h.

5 Includes the header file eisa.h, which is associated with the ISA bus.

If you are writing the driver to operate on multiple bus architectures,
you must include the bus-specific header file. The if_el device driver
is implemented to operate on two buses: the ISA and the PCMCIA.

6 Includes the header files pcmcia.h and cardinfo.h, which are
associated with the PCMCIA bus.

7 Includes the lan_common.h file, which contains definitions that all
local area network (LAN) device drivers need.

8 Includes the device register header file. The directory specification you
make here depends on where you put the device register header file.

1.2 Declarations Section for a Network Driver

The declarations section for a network device driver contains the following
categories of information:

1–4 Network Device Driver Environment

• External and forward declarations (Section 1.2.1)

• Declaration of softc and controller data structure arrays
(Section 1.2.2)

• Declaration of the driver data structure (Section 1.2.3)

• Definitions of driver-specific macros (Section 1.2.4)

The following sections discuss each of these categories of declarations, using
the if_el device driver as an example.

The declarations section also contains the definition of the softc data
structure and declarations for configure-related variables and data
structures. Chapter 3 discusses the definition of a network driver’s softc
data structure. Section 4.1 discusses the declarations that are related to
configuration.

1.2.1 External and Forward Declarations

The following code shows the external and forward declarations for the
if_el device driver:

int el_configure(cfg_op_t, cfg_attr_t *, size_t, cfg_attr_t *, size_t); 1

static int el_probe (io_handle_t, struct controller *); 2
static int el_attach(struct controller *);
static int el_unattach(struct bus *, struct controller *);
static int el_init_locked(struct el_softc *, struct ifnet *, int);
static int el_init(int);
static void el_start_locked(struct el_softc *, struct ifnet *);
static void el_start(struct ifnet *);
static int el_watch(int);
static void el_reset_locked(struct el_softc *, struct ifnet *, int);
static void el_reset(int);
static int el_ioctl(struct ifnet *, u_int, caddr_t);
static int el_intr(int);
static void el_rint(struct el_softc *, struct ifnet *);
static void el_tint(struct el_softc *, struct ifnet *);
static void el_error(struct el_softc *, struct ifnet *);
static void el_shutdown(struct el_softc *);
static void el_card_remove(int, struct el_softc *);
static int el_isa_reset_all(io_handle_t, int *, struct controller *);
static int el_isa_activate(io_handle_t, int *, struct controller *);
static unsigned short el_isa_read_offset(io_handle_t, int);
static void el_wait(struct el_softc *);
static void el_autosense_thread(struct el_softc *);
static int el_card_out(struct el_softc *);
extern struct timeval time; 3
extern task_t first_task; 4

1 Declares the function prototype definitions for all exported functions.

2 Declares the driver interfaces for the if_el device driver.

3 Declares the external timeval data structure called time. Various
ioctl commands use this data structure.

Network Device Driver Environment 1–5

4 Declares a pointer to the external task_t data structure called
first_task. The task_t data structure is an opaque data structure;
that is, all of its associated members are referenced and manipulated by
the Tru64 UNIX operating system and not by the user of kernel threads.
Every kernel thread must be part of a task.

The if_el driver’s el_probe interface uses this data structure when
it creates a kernel thread.

1.2.2 Declaring softc and controller Data Structure Arrays

The following code shows the declarations for the el_softc and
controller data structure arrays. The system uses these arrays to find out
which softc and controller data structures are associated with a specific
3Com 3C5x9 device. The driver’s el_probe interface initializes these arrays
if the probe operation is successful.

The arrays of el_softc and controller data structures need to be static
for the if_el device driver. Be aware that static arrays fix the maximum
number of devices that the user can configure on the system.

#define el_MAXDEV 7 1
static struct el_softc *el_softc[el_MAXDEV]={0}; 2
static struct controller *el_info[el_MAXDEV]={0}; 3

static int el_isa_tag = 0; 4
static int el_isa_reset = 0; 5
decl_simple_lock_info(static, el_lock_info); 6

1 Defines a constant called el_MAXDEV, which allocates data structures
that the if_el device driver needs. A maximum of seven instances of
the 3C5x9 controller can be on the system. This means that el_MAXDEV
is the maximum number of controllers that the if_el driver can
support. This is a small number of instances of the driver, and the data
structures themselves are not large, so it is acceptable to allocate for the
maximum configuration.

2 Declares an array of pointers to el_softc data structures and calls it
el_softc. The el_MAXDEV constant specifies the size of this array.

3 Declares an array of pointers to controller data structures and calls
it el_info. The el_MAXDEV constant specifies the size of this array.

4 Declares a variable called el_isa_tag and initializes it to the value
0 (zero). The if_el driver’s el_isa_activate interface uses this
variable.

5 Declares a variable called el_isa_reset and initializes it to the value
0 (zero). The if_el driver’s el_probe interface uses this variable.

6 Uses the decl_simple_lock_info() routine to declare a simple lock
data structure called el_lock_info.

1–6 Network Device Driver Environment

1.2.3 Declaring and Initializing the driver Data Structure

The following code shows how the if_el device driver declares and
initializes the driver data structure with the names of its entry points:

static struct driver eldriver = { 1
el_probe,
0,
el_attach,
0,
0,
0,
0,
0,
"el",
el_info,
0,
0,
0,
0,
0,
el_unattach,
0

};

1 Declares and initializes the driver data structure called eldriver.
Because a network device driver does not have exposure to the file
system, it does not provide open, close, read, write, and strategy
interfaces. The members of the driver data structure that specify
these entry points are initialized to 0 (zero).

The if_el driver initializes the following members to nonzero values:

• probe, which specifies the driver’s probe interface, el_probe

• cattach, which specifies the driver’s controller attach interface,
el_attach

• ctlr_name, which specifies the controller name, el

• ctlr_list, which specifies a pointer to the array of pointers to
controller data structures, el_info

• ctlr_unattach, which specifies the driver’s controller unattach
interface, el_unattach

1.2.4 Defining Driver-Specific Macros

To help you write more portable device drivers, Tru64 UNIX provides the
following kernel routines, which allow you to read from and write to a
control status register (CSR) address without directly accessing its device
registers. These macros call the read_io_port() or write_io_port()
generic routines.

Network Device Driver Environment 1–7

READ_BUS_D8 Reads a byte (8 bits) from a device register.

READ_BUS_D16 Reads a word (16 bits) from a device register.

READ_BUS_D32 Reads a longword (32 bits) from a device register.

READ_BUS_D64 Reads a quadword (64 bits) from a device register.

WRITE_BUS_D8 Writes a byte (8 bits) to a device register.

WRITE_BUS_D16 Writes a word (16 bits) to a device register.

WRITE_BUS_D32 Writes a longword (32 bits) to a device register.

WRITE_BUS_D64 Writes a quadword (64 bits) to a device register.

The following code shows how the if_el driver uses the READ_BUS_D16,
READ_BUS_D32, WRITE_BUS_D16, and WRITE_BUS_D32 kernel routines to
construct driver-specific macros to perform read and write operations on the
3Com 3C5x9 device:

#define READ_CCR(sc) READ_BUS_D16((sc)->reg4); mb(); 1
#define WRITE_CCR(sc, val) WRITE_BUS_D16((sc)->reg4, (val)); mb();
#define READ_ACR(sc) READ_BUS_D16((sc)->reg6); mb();
#define WRITE_ACR(sc, val) WRITE_BUS_D16((sc)->reg6, (val)); mb();
#define WRITE_RCR(sc, val) WRITE_BUS_D16((sc)->reg8, (val)); mb();
#define WRITE_ECR(sc, val) WRITE_BUS_D16((sc)->regA, (val)); mb();
#define READ_EDR(sc) READ_BUS_D16((sc)->regC); mb();
#define WRITE_CMD(sc, val) WRITE_BUS_D16((sc)->regE, (val)); \

mb(); el_wait((sc))
#define READ_STS(sc) READ_BUS_D16((sc)->regE); mb();
#define WRITE_DATA(sc, val) WRITE_BUS_D32((sc)->data, (val)); mb();
#define READ_DATA(sc) READ_BUS_D32((sc)->data); mb();
#define READ_ND(sc) READ_BUS_D16((sc)->reg6); mb();
#define WRITE_ND(sc, val) WRITE_BUS_D16((sc)->reg6, (val)); mb();
#define READ_MD(sc) READ_BUS_D16((sc)->regA); mb();
#define WRITE_MD(sc, val) WRITE_BUS_D16((sc)->regA, (val)); mb();
#define READ_TXF(sc) READ_BUS_D16((sc)->regC); mb();
#define READ_RXF(sc) READ_BUS_D16((sc)->regA); mb();
#define WRITE_AD1(sc, val) WRITE_BUS_D16((sc)->reg0, (val)); mb();
#define WRITE_AD2(sc, val) WRITE_BUS_D16((sc)->reg2, (val)); mb();
#define WRITE_AD3(sc, val) WRITE_BUS_D16((sc)->reg4, (val)); mb();
#define READ_TXS(sc) READ_BUS_D16((sc)->regA); mb();
#define WRITE_TXS(sc, val) WRITE_BUS_D16((sc)->regA, (val)); mb();
#define READ_RXS(sc) READ_BUS_D16((sc)->reg8); mb();
#define READ_FDP(sc) READ_BUS_D16((sc)->reg4); mb();

1 Constructs driver-specific macros to read from and write to the 3Com
3C5x9 device’s CSRs.

The first argument to these macros specifies an I/O handle that
references a device register or memory that is located in bus address
space (either I/O space or memory space). You can perform standard
C mathematical operations (addition and subtraction only) on the I/O
handle. The READ_CCR, WRITE_CCR, and the other macros construct
the first argument by referencing the I/O handle that is defined in the
el_softc data structure.

1–8 Network Device Driver Environment

The second argument to the WRITE_CCR and the other write macros
specifies the data to be written to the device register in bus address
space. These write macros construct the second argument by referencing
the val variable. For the if_el driver, this data is typically one of the
device register offsets that is defined in the if_elreg.h file.

The read and write driver-specific macros call the mb() kernel routine
to perform a memory barrier. The mb() kernel routine ensures that
the read or write operation is issued before the CPU executes any
subsequent code. See Section 7.5 of the Tru64 UNIX Writing Device
Drivers manual for more information about the mb() routine and
when to use it.

Table 1–1 provides information on the driver-specific macros.

Table 1–1: Driver-Specific Macros
Macro Description

READ_CCR and WRITE_CCR Read from and write to the 3Com 3C5x9 device’s
configuration control register.

READ_ACR and WRITE_ACR Read from and write to the 3Com 3C5x9 device’s
address control register.

WRITE_RCR Write to the 3Com 3C5x9 device’s resource
configuration register.

WRITE_ECR Write to the 3Com 3C5x9 device’s EEPROM command
register.

READ_EDR Read from the 3Com 3C5x9 device’s EEPROM data
register.

WRITE_CMD Write to the 3Com 3C5x9 device’s command port
registers.

READ_STS Read from the 3Com 3C5x9 device’s I/O status register.

READ_DATA and
WRITE_DATA

Read from and write to the 3Com 3C5x9 device’s
receive data and transmit data registers.

READ_ND and WRITE_ND Read from and write to the 3Com 3C5x9 device’s
network diagnostic register.

READ_MD and WRITE_MD Read from and write to the 3Com 3C5x9 device’s media
type and status register.

READ_TXF and READ_RXF Read from the 3Com 3C5x9 device’s transmit and
receive FIFO registers.

WRITE_AD1, WRITE_AD2,
and WRITE_AD3

Set the LAN physical address for the 3Com 3C5x9
device.

READ_TXS and WRITE_TXS Read from and write to the 3Com 3C5x9 device’s
transmit status register.

Network Device Driver Environment 1–9

Table 1–1: Driver-Specific Macros (cont.)

Macro Description

READ_RXS Read from the 3Com 3C5x9 device’s receive status
register.

READ_FDP Read from the 3Com 3C5x9 device’s FIFO diagnostic
port register.

1.3 Configure Section for a Network Driver

The configure section for a network device driver contains a configure
interface. The cfgmgr framework calls the driver’s configure interface
at system startup to handle static configuration requests. The cfgmgr
framework can also call the driver’s configure interface to handle
user-level requests to dynamically configure, unconfigure, query, and
reconfigure a device driver at run time. If you implement the driver as a
single binary module, the configure interface can handle both static and
dynamic configuration.

1.4 Autoconfiguration Support Section for a Network Driver

The autoconfiguration support section for a network device driver contains
the following entry points:

• A probe interface, which determines if the network device exists and is
functional on the system

• An attach interface, which establishes communication with the device
and initializes the driver’s ifnet data structure.

You define the entry point for each of these interfaces in the driver data
structure.

1.5 Initialization Section for a Network Driver

The initialization section for a network device driver prepares the network
to transmit and receive data packets.

1.6 Start Section for a Network Driver

The start section for a network device driver contains a start interface,
which transmits data packets on the network interface. You define the
entry point for the start interface in the ifnet data structure. However,
before this interface can be called, the network adapter must be enabled for
data packet transmission and reception. You enable the network adapter
by invoking the SIOCSIFADDR ioctl command.

1–10 Network Device Driver Environment

1.7 Watchdog Section for a Network Driver

The watchdog section for a network device driver contains a watchdog
interface, which attempts to restart the adapter. The watchdog interface is
optional in a network device driver. If the network device driver implements
it, watchdog is called by a kernel thread if the driver’s interrupt handler has
not shut down the countdown timer within a certain number of seconds of
queueing a data packet for transmission from the upper layer. This indicates
that the adapter is no longer on line.

1.8 Reset Section for a Network Driver
The reset section for a network device driver contains a reset interface.
The reset interface resets the LAN adapter. This interface is called to
restart the device following a network failure. This interface resets all of the
counters and local variables. It can also free up and reallocate all of the
buffers that the network driver uses.

1.9 ioctl Section for a Network Driver
The ioctl section for network device drivers performs miscellaneous tasks
that have nothing to do with data packet transmission and reception.
Typically, these tasks relate to turning specific features of the hardware
on or off.

The ioctl section contains an ioctl interface. You define this entry point in
the ifnet data structure.

1.10 Interrupt Section for a Network Driver
The interrupt section for a network device driver contains an interrupt
handler. The interrupt handler processes network device interrupts. You
define the entry point for the interrupt handler by calling the handler
interfaces. The interrupt handler is called each time that the network
interface receives an interrupt. After identifying which type of interrupt was
received — transmit or receive — the interrupt handler calls the appropriate
routine to process the interrupt.

1.11 Output Section for a Network Driver
The output section for a network device driver formats a data packet for
transmission on the network. The ether_output() routine formats
data packets for Tru64 UNIX network drivers. Despite its name,
ether_output() handles the frame formats for Ethernet, token ring, and
FDDI. After it has properly formatted the data packet, ether_output()
enqueues the packet on the driver’s send queue and calls the driver’s start

Network Device Driver Environment 1–11

interface to transmit the data. All network drivers must set the output
member of the ifnet data structure to ether_output.

1–12 Network Device Driver Environment

2
Defining Device Register Offsets

The device register header file defines the device register offsets for the
device. The if_elreg.h file is the device register header file for the if_el
device driver. It defines the device register offsets for the 3Com 3C5x9 series
Ethernet adapter. Specifically, the if_elreg.h file contains the following
categories of device registers:

• Interrupt and status register (Section 2.1)

• Command port registers (Section 2.2)

• Window 0 configuration registers (Section 2.3)

• Window 3 configuration registers (Section 2.4)

• Window 1 operational registers (Section 2.5)

• Window 4 diagnostic registers (Section 2.6)

• EEPROM data structure definition (Section 2.7)

Your network device might have different device registers. However, this
device register header file can serve as an example of how to set up device
register offset definitions. See your network device documentation to learn
about control and status registers for your device.

2.1 Interrupt and Status Register Offset Definitions
The following code shows the offset definitions for the interrupt and status
register. The if_el device driver reads these offsets from the interrupt
and status register. The CMD_ACKINT, CMD_SINTMASK, and CMD_ZINTMASK
commands either set or clear the bits.
#define STS_PORT 0xe 1

#define S_IL (1) 2
#define S_AF (1<<1) 3
#define S_TC (1<<2) 4
#define S_TA (1<<3) 5
#define S_RC (1<<4) 6
#define S_RE (1<<5) 7
#define S_IR (1<<6) 8
#define S_US (1<<7) 9
#define S_IP (1<<12) 10
#define CURWINDOW(x) ((x>>13)&0x7) 11

1 Defines the offset for the I/O port of the interrupt and status register.
This register can be set to one or more of the bit values.

Defining Device Register Offsets 2–1

2 Defines the interrupt latch bit position.

3 Defines the adapter failure bit position.

4 Defines the transmit complete bit position.

5 Defines the transmit available bit position.

6 Defines the receive complete bit position.

7 Defines the receive early bit position.

8 Defines the interrupt request bit position.

9 Defines the update statistics bit position.

10 Defines the command in-progress bit position.

11 Defines the current window number bit position.

2.2 Command Port Register Offset Definitions

The following code shows the offset definitions for the command port
register. Bits 0:10 contain optional parameter bits and bits 11:15 contain
the command.

#define CMD_PORT 0xe 1

#define CMD_RESET (0x0) 2
#define CMD_WINDOW0 ((0x1<<11)+0x0) 3
#define CMD_WINDOW1 ((0x1<<11)+0x1) 4
#define CMD_WINDOW2 ((0x1<<11)+0x2) 5
#define CMD_WINDOW3 ((0x1<<11)+0x3) 6
#define CMD_WINDOW4 ((0x1<<11)+0x4) 7
#define CMD_WINDOW5 ((0x1<<11)+0x5) 8
#define CMD_WINDOW6 ((0x1<<11)+0x6) 9
#define CMD_START2 (0x2<<11) 10
#define CMD_RXDIS (0x3<<11) 11
#define CMD_RXENA (0x4<<11) 12
#define CMD_RXRESET (0x5<<11) 13
#define CMD_RXDTP (0x8<<11) 14
#define CMD_TXENA (0x9<<11) 15
#define CMD_TXDIS (0xa<<11) 16
#define CMD_TXRESET (0xb<<11) 17
#define CMD_REQINT (0xc<<11) 18
#define CMD_ACKINT (0xd<<11) 19
#define CMD_SINTMASK (0xe<<11) 20
#define CMD_ZINTMASK (0xf<<11) 21
#define CMD_FILTER (0x10<<11) 22
enum rx_filter { 23

RF_IND =0x1,
RF_GRP =0x2,
RF_BRD =0x4,
RF_PRM =0x8

};
#define CMD_RXEARLY (0x11<<11) 24
#define CMD_TXAVAILTHRESH (0x12<<11) 25
#define CMD_TXSTARTTHRESH (0x13<<11) 26
#define CMD_STATSENA (0x15<<11) 27
#define CMD_STATSDIS (0x16<<11) 28
#define CMD_STOP2 (0x17<<11) 29
#define CMD_RXRECTHRESH (0x18<<11) 30

2–2 Defining Device Register Offsets

#define CMD_POWERUP (0x1b<<11) 31
#define CMD_POWERDOWN (0x1c<<11) 32
#define CMD_POWERAUTO (0x1d<<11) 33

1 Defines the offset for the I/O port of the command port register.

2 Defines the reset command bit position.

3 Defines the window selector for commands that are used to set up the
device.

4 Defines the window selector for commands that control the operation of
the device.

5 Defines the window selector for specifying the hardware address of
the device.

6 Defines the window selector for the device’s first-in/first-out (FIFO)
buffer.

7 Defines the window selector for commands that are used for diagnostic
purposes.

8 Defines a second window selector for commands that are used for
diagnostic purposes.

9 Defines the window selector for commands that are related to gathering
device statistics.

10 Defines the start 10Base2 Ethernet cable command.

11 Defines the receive (RX) disable command.

12 Defines the receive (RX) enable command.

13 Defines the receive (RX) reset command.

14 Defines the receive (RX) discard top packet command.

15 Defines the transmit (TX) enable command.

16 Defines the transmit (TX) disable command.

17 Defines the transmit (TX) reset command.

18 Defines the request interrupt command.

19 Defines the acknowledge interrupt command.

20 Defines the set interrupt mask command.

21 Defines the clear interrupt command.

22 Defines the receive (RX) filter command.

Defining Device Register Offsets 2–3

23 Defines an enumerated data type called rx_filter. The if_el device
driver can assign one of the following values to CMD_FILTER:

RF_IND Individual address

RF_GRP Group address

RF_BRD Broadcast address

RF_PRM Promiscuous address

24 Defines the receive (RX) early threshold command.

25 Defines the transmit (TX) available threshold command.

26 Defines the transmit (TX) start threshold command.

27 Defines the statistics enable command.

28 Defines the statistics disable command.

29 Defines the stop 10Base2 Ethernet cable command.

30 Defines the receive (RX) reclaim threshold command.

31 Defines the power-up command.

32 Defines the power-down command.

33 Defines the power-auto command.

2.3 Window 0 Configuration Register Offset Definitions

The window 0 configuration registers include such registers as manufacturer
ID and adapter ID, as shown in Figure 2–1.

2–4 Defining Device Register Offsets

Figure 2–1: Window 0 Configuration Registers

Register

Manufacturer ID Register

ZK-1267U-AI

Constant

W0_MID

Adapter ID Register W0_AID

Configuration Control Register W0_CCR

Address Control Register W0_ACR

Resource Configuration Register W0_RCR

EEPROM Command Register W0_ECR

EEPROM Data Register W0_EDR

The following code shows the offset definitions for the registers that make
up the window 0 configuration register:

#define W0_MID 0x0 1
#define W0_AID 0x2 2
#define W0_CCR 0x4 3
enum w0_ccr { 4

CCR_PCMCIA=0x4000,
CCR_AUI=0x2000,
CCR_10B2=0x1000,
CCR_ENDEC=0x0100,
CCR_RESET=0x4,
CCR_ENA=0x1

};
#define W0_ACR 0x6 5
enum w0_acr { 6

ACR_10BT=0x0000,
ACR_10B5=0x4000,
ACR_10B2=0xc000,
ACR_ROMS=0x3000,
ACR_ROMB=0x0f00,
ACR_ASE= 0x0080,
ACR_BASE=0x001f

};
#define W0_RCR 0x8 7
enum w0_rcr { 8

RCR_IRQ=0xf000,
RCR_RSV=0x0f00

};
#define W0_ECR 0xa 9
enum w0_ecr { 10

ECR_EBY=0x8000,
ECR_TST=0x4000,
ECR_CMD=0x00ff,
ECR_READ= 0x0080,

Defining Device Register Offsets 2–5

ECR_WRITE=0x0040,
ECR_ERASE=0x00c0,
ECR_EWENA=0x0030,
ECR_EWDIS=0x0000,
ECR_EAR= 0x0020,
ECR_WAR= 0x0010

};
#define W0_EDR 0xc 11

1 Defines the offset for the manufacturer ID register.

2 Defines the offset for the adapter ID register.

3 Defines the offset for the configuration control register.

4 Defines an enumerated data type called w0_ccr. The if_el
device driver can assign one of the following values to W0_CCR (the
configuration control register):

CCR_PCMCIA If set, this is a PCMCIA bus. Otherwise, it is an ISA bus.

CCR_AUI If set, the attachment unit interface (AUI) is available.

CCR_10B2 If set, the 10Base2 receiver is available.

CCR_ENDEC If set, the internal encode/decode (ENDEC)
loopback is used.

CCR_RESET Reset adapter.

CCR_ENA Enable adapter.

5 Defines the offset for the address control register.

6 Defines an enumerated data type called w0_acr. The if_el device
driver can assign one of the following values to W0_ACR (the address
control register):

ACR_10BT If set, the information transmission rate is at
10 Mb/sec for the Ethernet unshielded
twisted-pair cable wires.

ACR_10B5 If set, the information transmission rate is at
10 Mb/sec for the Ethernet thick coaxial cable wire.
The length between repeaters is 500 meters.

ACR_10B2 If set, the information transmission rate is at 10
Mb/sec for the Ethernet thin coaxial cable wire. The
length between repeaters is 200 meters.

ACR_ROMS Represents the read-only memory size for the ISA bus.

ACR_ROMB Represents the read-only memory base for the ISA bus.

ACR_ASE Represents the autoselect mode.

ACR_BASE Represents the I/O base address.

7 Defines the offset for the resource configuration register.

2–6 Defining Device Register Offsets

8 Defines an enumerated data type called w0_rcr. The if_el device
driver can assign one of the following bits to W0_RCR (the resource
configuration register):

RCR_IRQ Represents the interrupt request (IRQ).

RCR_RSV Represents a reserved field.

9 Defines the offset for the EEPROM command register.

10 Defines an enumerated data type called w0_ecr. The if_el device
driver can assign one of the following bits to W0_ECR (the EEPROM
command register):

ECR_EBY Indicates that the EEPROM is busy.

ECR_TST Indicates that the EEPROM is in test mode.

ECR_CMD Represents EEPROM command bits.

ECR_READ Represents an EEPROM read command.

ECR_WRITE Represents an EEPROM write command.

ECR_ERASE Represents an EEPROM erase command.

ECR_EWENA Represents an EEPROM enable erase or
write command.

ECR_EWDIS Represents an EEPROM disable erase or
write command.

ECR_EAR Represents an EEPROM erase all registers command.

ECR_WAR Represents an EEPROM write all registers command.

11 Defines the offset for the EEPROM data register.

2.4 Window 3 Configuration Register Offset Definitions

The window 3 configuration registers consist of the additional setup
information registers shown in Figure 2–2.

Defining Device Register Offsets 2–7

Figure 2–2: Window 3 Configuration Registers

Register

Additional Setup Information
2 Register

ZK-1268U-AI

Constant

W3_ASI2

Additional Setup Information
0 Register

W3_ASI0

The following code shows the offset definitions for the registers that are
associated with the window 3 configuration registers:

#define W3_ASI2 0x2 1
#define W3_ASI0 0x0 2
enum w3_asi { 3

ASI_IAS_ISA=0x00040000,
ASI_IAS_PNP=0x00080000,
ASI_IAS_BOT=0x000c0000,
ASI_IAS_NON=0x00000000,
ASI_PAR_35 =0x00000000,
ASI_PAR_13 =0x00010000,
ASI_PAR_11 =0x00020000,
ASI_RS =0x00000030,
ASI_RW =0x00000008,
ASI_RSIZE8 =0x00000001,
ASI_RSIZE32=0x00000002

};

1 Defines the offset for the additional setup information register 2.

2 Defines the offset for the additional setup information register 0.

3 Defines an enumerated data type called w3_asi. The if_el device
driver can assign one of the following values to w3_ASI2 and w3_ASI0
(the additional setup information registers):

ASI_IAS_ISA Activates ISA bus contention.

ASI_IAS_PNP Activates ISA bus PNP.

ASI_IAS_BOT Activates ISA bus contention and PNP.

ASI_IAS_NON Indicates neither ISA nor PNP activation.

ASI_PAR_35 Uses the RAM partition 3 TX to 5 RX (3:5).

ASI_PAR_13 Uses the RAM partition 1 TX to 3 RX (1:3).

ASI_PAR_11 Uses the RAM partition 1 TX to 1 RX (1:1).

ASI_RS Indicates the RAM speed.

ASI_RW Indicates the RAM width (which will always
be 0 to 8 bits).

2–8 Defining Device Register Offsets

ASI_RSIZE8 Indicates a RAM size of 8 kilobytes (the default).

ASI_RSIZE32 Indicates a RAM size of 32 kilobytes.

2.5 Window 1 Operational Register Offset Definitions

The window 1 operational registers include such registers as the receive
status, the transmit status, and the request interrupt registers, as shown in
Figure 2–3.

Figure 2–3: Window 1 Operational Registers

Register

Receive Status Register

ZK-1269U-AI

Constant

W1_RXSTAT

Transmit Status Register W1_TXSTAT

Request Interrupt After
Transmit Completion Register TX_INT

Receive Data Register W1_RXDATA

Transmit Data Register W1_TXDATA

Free Transmit Bytes Register W1_FREETX

The following code shows the offset definitions for the window 1 operational
registers:

#define W1_RXSTAT 0x8 1
enum w1_rxstat { 2

RX_IC=0x8000,
RX_ER=0x4000,
RX_EM=0x3800,
RX_EOR=0x0000,
RX_ERT=0x1800,
RX_EAL=0x2000,
RX_ECR=0x2800,
RX_EOS=0x0800,
RX_BYTES=0x7ff

};
#define W1_TXSTAT 0xb 3
enum w1_txstat { 4

TX_CM=0x80,
TX_IS=0x40,
TX_JB=0x20,
TX_UN=0x10,
TX_MC=0x08,
TX_OF=0x04,
TX_RE=0x02

Defining Device Register Offsets 2–9

};
#define TX_INT 0x8000 5
#define W1_RXDATA 0x0 6
#define W1_TXDATA 0x0 7
#define W1_FREETX 0xc 8

1 Defines the offset for the receive status register.

2 Defines an enumerated data type called w1_rxstat. The if_el device
driver can assign one of the following values to W1_RXSTAT (the receive
status register):

RX_IC Indicates an incomplete operation.

RX_ER Indicates an error in the operation.

RX_EM If any of the bits are set in the mask, indicates
that an error has occurred.

RX_EOR Indicates an overrun error in the operation.

RX_ERT Indicates a run-time error.

RX_EAL Indicates an alignment error.

RX_ECR Indicates a CRC error.

RX_EOS Indicates an oversize error.

RX_BYTES Mask used to determine the number of bytes received.

3 Defines the offset for the transmit status register.

4 Defines an enumerated data type called w1_txstat. The if_el
device driver can assign one of the following values to W1_TXSTAT (the
transmit status register):

TX_CM Indicates that the transmission completed.

TX_IS Indicates that the device should interrupt when a
transmission is successfully completed.

TX_JB Indicates a jabber error.

TX_UN Indicates an underrun. This is a serious error
that requires a reset.

TX_MC Indicates the maximum number of colli-
sions that occurred.

TX_OF Indicates an overflow error.

TX_RE Not currently used.

5 Defines the offset for the request interrupt after completion register.

6 Defines the offset for the receive data register.

7 Defines the offset for the transmit data register.

2–10 Defining Device Register Offsets

8 Defines the offset for the free transmit bytes register.

2.6 Window 4 Diagnostic Register Offset Definitions

The window 4 operational registers include such registers as the media type
and status register and the network diagnostic port register, as shown in
Figure 2–4.

Figure 2–4: Window 4 Diagnostic Registers

Register

Media Type and Status Register

ZK-1270U-AI

Constant

W4_MEDIA

Network Diagnostic and
Status Register

W4_NET

The following code shows the definitions for the window 4 diagnostic
registers:

#define W4_MEDIA 0xa 1
enum w4_media { 2

MD_TPE =0x8000,
MD_COAXE =0x4000,
MD_RES1 =0x2000,
MD_SQE =0x1000,
MD_VLB =0x0800,
MD_PRD =0x0400,
MD_JAB =0x0200,
MD_UNSQ =0x0100,
MD_LBE =0x0080,
MD_JABE =0x0040,
MD_CS =0x0020,
MD_COLL =0x0010,
MD_SQEE =0x0008,
MD_NCRC =0x0004

};
#define W4_NET 0x6 3
enum w4_net { 4

ND_EXT =0x8000,
ND_ENDEC =0x4000,
ND_ECL =0x2000,
ND_LOOP =0x1000,
ND_TXE =0x0800,
ND_RXE =0x0400,
ND_TXB =0x0200,
ND_TXRR =0x0100,
ND_STATE =0x0080,
ND_REV =0x003e,
ND_LOW =0x0001

};

1 Defines the offset for the media type and status register.

Defining Device Register Offsets 2–11

2 Defines an enumerated data type called w4_media. The if_el device
driver can assign one of the following values to W4_MEDIA (the media
type and status register):

MD_TPE Indicates that 10BaseT cable is enabled.

MD_COAXE Indicates that 10Base2 cable is enabled.

MD_RES1 Reserved.

MD_SQE Indicates that SQE is present.

MD_VLB Indicates that a valid link beat was detected.

MD_PRD Indicates that polarity reversal was detected.

MD_JAB Indicates that jabber was detected.

MD_UNSQ Indicates unsequelch.

MD_LBE Indicates that link beat was enabled.

MD_JABE Indicates that jabber was enabled.

MD_CS Indicates that carrier sense was detected.

MD_COLL Indicates that collisions occurred.

MD_SQEE Indicates that SQE stats were enabled.

MD_NCRC Indicates that the CRC strip was disabled.

3 Defines the offset for the network diagnostic port register.

4 Defines an enumerated data type called w4_net. The if_el device
driver can assign one of the following values to W4_NET (the network
diagnostic port register):

ND_EXT Indicates external loopback.

ND_ENDEC Indicates encode/decode (ENDEC) loopback.

ND_ECL Indicates Ethernet controller loopback.

ND_LOOP Indicates FIFO loopback.

ND_TXE Indicates that TX is enabled.

ND_RXE Indicates that RX is enabled.

ND_TXB Indicates that TX is busy.

ND_TXRR Indicates that TX reset is required.

ND_STATE Indicates that statistics are enabled.

ND_REV Indicates the ASIC revision.

ND_LOW Not currently used.

2–12 Defining Device Register Offsets

2.7 EEPROM Data Structure Definition

The following code shows the definition for the w3_eeprom data structure.
This data structure stores information about the 3Com 3C5x9 device.

struct w3_eeprom { 1
unsigned short addr[3];
unsigned short pid;
unsigned short mandata[3];
unsigned short mid;
unsigned short addrconf;
unsigned short resconf;
unsigned short oem[3];
unsigned short swinfo;
unsigned short compat;
unsigned short cs1;
unsigned short cw2;
unsigned short res1;
unsigned int icw;
unsigned short swinfo2;
unsigned short res[2];
unsigned short cs2;
unsigned short pnp[40];

};

1 Defines an EEPROM data structure called w3_eeprom. This data
structure has the following members:

addr Contains the local area network (LAN) address.

pid Contains the product ID.

mandata Contains manufacturing data.

mid Contains the manufacturer ID.

addrconf Contains the address configuration.

resconf Contains the resource configuration.

oem Contains original equipment manufacturer
(OEM) address fields.

swinfo Contains software information.

compat Contains a compatibility word.

cs1 Contains the first part of the checksum.

cw2 Contains a second compatibility word.

res1 Reserved.

icw Contains an internal configuration word.

swinfo2 Contains secondary software information.

res Reserved.

cs2 Contains the second part of the checksum.

pnp Contains plug-and-play data.

Defining Device Register Offsets 2–13

3
Defining the softc Data Structure

All network device drivers define a softc data structure to contain the
software context of the network device driver and to allow the driver
interfaces to share information.

A softc data structure contains the following information:

• Common information (Section 3.1)

• Enhanced hardware management (EHM) support (Section 3.2)

• Media state information (Section 3.3)

• Base register definition (Section 3.4)

• Multicast table information (Section 3.5)

• Interrupt handler ID declaration (Section 3.6)

• CSR pointer information (Section 3.7)

• FIFO maintenance information (Section 3.8)

• Bus-specific information (Section 3.9)

• Broadcast flag definition (Section 3.10)

• Debug flag definition (Section 3.11)

• Interrupt and timeout statistics (Section 3.12)

• Autosense kernel thread context information (Section 3.13)

• Polling context flag definition (Section 3.14)

• w3_eeprom data structure definition (Section 3.15)

• Simple lock data structure declaration (Section 3.16)

Figure 3–1 shows a typical softc data structure.

Defining the softc Data Structure 3–1

Figure 3–1: Typical softc Data Structure

Common Information

Media State Information

Enhanced Hardware Management Information

Base Register

Multicast Table Information

Interrupt Handler ID

CSR Pointer Information

FIFO Maintenance Information

Bus-Specific Information

Broadcast Flag

Debug Flag

Autosense Kernel Thread
Context Information

Polling Context Flag

w3_eeprom Structure

Simple Lock Structure

ZK-1273U-AI

*

**

*

*

**

Interrupt and Timeout Information**

**

**

*

*

*

*

**

**

**

**

A single asterisk denotes information that all network device drivers provide
in the associated softc data structure, and a double asterisk denotes
information that is specific to the hardware or bus.

3.1 Defining Common Information

The common information in a local area network driver’s softc data
structure is contained in the ether_driver data structure, which consists
of information such as counter blocks, media state, media values, and so
forth. The following code shows the declaration and definition of the common
information in the if_el device driver’s el_softc data structure. Make
sure that the common part of your softc data structure has the same
declaration and definitions.

struct el_softc {
struct ether_driver *is_ed; 1

3–2 Defining the softc Data Structure

#define is_ac is_ed->ess_ac 2
#define ztime is_ed->ess_ztime 3
#define ctrblk is_ed->ess_ctrblk 4
#define is_if is_ac.ac_if 5
#define is_addr is_ac.ac_enaddr 6

1 Declares an instance of the ether_driver data structure and calls
it is_ed. All network drivers must have an ether_driver data
structure. By convention, a pointer to this data structure is the first
element in the softc data structure.

2 Maps the ess_ac member of the ether_driver data structure to
the alternate name is_ac. The ess_ac member is referred to as the
“Ethernet common part” and is actually an instance of the arpcom data
structure. Figure 3–2 shows the is_ac alternate name and associated
mapping.

3 Maps the ess_ztime member of the ether_driver data structure to
the alternate name ztime. The ess_ztime member stores the time
counters that were last zeroed. Figure 3–2 shows the ztime alternate
name and associated mapping.

4 Maps the ess_ctrblk member of the ether_driver data structure
to the alternate name ctrblk. The ess_ctrblk member is referred
to as the “counter block” and is actually an instance of the estat data
structure. Figure 3–2 shows the ctrblk alternate name and associated
mapping.

You must define this line in your network device driver if you plan to
use ADD_RECV_MPACKET, ADD_RECV_PACKET, ADD_XMIT_MPACKET,
and ADD_XMIT_PACKET for maintaining LAN device counters. Each of
these macros references the ctrblk alternate name.

5 Maps the ac_if member of the arpcom data structure to the alternate
name is_if. The ac_if member is referred to as the “network-visible
interface” and is actually an instance of the ifnet data structure.
Figure 3–2 shows the is_if alternate name and associated mapping.

6 Maps the ac_enaddr member of the arpcom data structure to the
alternate name is_addr. The name ac_enaddr is actually an alternate
name for ac_hwaddr, which is the name of the actual member of
the arpcom data structure that stores the hardware address. The
if_ether.h file defines the ac_enaddr alternate name. Figure 3–2
shows the is_addr alternate name and associated mapping.

Defining the softc Data Structure 3–3

Figure 3–2: Mapping Alternate Names

ZK-1274U-AI

#define is_ac ess_ac

#define ztime

#define is_if

#define ac_enaddr

#define ctrblk

#define is_addr

.

.

.

.

.

.

.

.

.

ess_ztime

ess_ctrblk

.

.

.

ac_if

ac_hwaddr

ether_driver arpcom

3.2 Enabling Support for Enhanced Hardware Management
Enhanced hardware management (EHM) is a feature of Tru64 UNIX
Version 5.0 that allows a system administrator to view, and possibly modify,
various attributes of the hardware on either a local or a remote system.
To support this facility, device drivers and bus drivers must provide their
specific, predefined attributes to a centralized management entity. Examples
of these attributes for network drivers include the type of LAN device, its
hardware address, the type of media it is attached to, and how fast it can
operate. The LAN subsystem supplies access routines for defining and
exporting these attributes.

To use these routines, a network driver must declare a net_hw_mgmt data
structure as shown by the following code:

struct net_hw_mgmt ehm; 1

1 Declares a net_hw_mgmt data structure and calls it ehm.

3.3 Defining Media State Information
The media state information contained in a network driver’s softc data
structure consists of information about the lan_media data structure.
The following code shows the declaration and definition of the media state
information in the if_el device driver’s el_softc data structure:
struct lan_media lan_media; 1
#define lm_media_mode lan_media.lan_media_mode 2
#define lm_media_state lan_media.lan_media_state 3
#define lm_media lan_media.lan_media 4

1 Declares a lan_media data structure and calls it lan_media. The
lan_media data structure contains media state values.

2 Defines an alternate name for referencing the lan_media_mode
member of the lan_media data structure. The value that is stored in

3–4 Defining the softc Data Structure

lan_media_mode usually reflects how the media is to be selected. (In
contrast, the value that is stored in the lan_media member reflects the
current setting of the device.) Typically, you set this member in the
driver’s probe interface to the media mode constant that identifies the
mode for the media.

The lan_common.h file defines two enumerated data types called
media_types and media_modes. You can set the lan_media_mode
member to one of the following values, which are defined by the
media_types and media_modes enumerated data types:

LAN_MEDIA_UTP The mode for the media is unshielded
twisted-pair cable.

LAN_MEDIA_BNC The mode for the media is thin wire.

LAN_MEDIA_STP The mode for the media is shielded
twisted pair cable.

LAN_MEDIA_FIBER The mode for the media is any
fiber-based media.

LAN_MEDIA_AUI The mode for the media is the attachment
unit interface (AUI).

LAN_MEDIA_4PAIR The mode for the media is four-pair cable.

LAN_MODE_AUTOSENSE The hardware determines the media.

3 Defines an alternate name for referencing the lan_media_state
member of the lan_media data structure. The lan_media_state
member will be set only if lan_media_mode has the value
LAN_MODE_AUTOSENSE. This member is typically set in the driver’s
probe() routine.

The lan_media_state member can be set to one of the following
constants, which are defined in the lan_common.h file:

LAN_MEDIA_STATE_SENSING The media is currently in the autosensing state.

LAN_MEDIA_STATE_DETERMINED

The media state has been determined.

4 Defines an alternate name for referencing the lan_media member
of the lan_media data structure. The lan_media member specifies
the currently set media.

The value that is stored in the lan_media member is valid in the
autosense mode only if the lan_media_state member is set to the
constant LAN_MEDIA_STATE_DETERMINED. The value that is stored in
lan_media reflects the current setting of the device. (In contrast, the
value that is stored in the lan_media_mode member usually reflects
how the media is to be selected.) Typically, you set the lan_media

Defining the softc Data Structure 3–5

member in the driver’s probe interface to the media state constant that
identifies the state for the media.

You can set the lan_media member to the same constants that are
listed for the lan_media_mode member in item 2.

3.4 Defining the Base Register

The base register in a network driver’s softc data structure is a member
that represents the base register of the device. The following code shows
the declaration of the base register in the if_el device driver’s el_softc
data structure. Most network device drivers declare a variable to store the
device’s base register.

vm_offset_t basereg; 1

1 Declares a base register member and calls it basereg.

3.5 Defining Multicast Table Information
All multicast address information in a network driver’s softc data structure
is encapsulated in the lan_multi data structure. The following code shows
the declaration of the lan_multi data structure in the if_el device driver’s
el_softc data structure. Most network device drivers declare this data
structure in their softc data structure.

struct lan_multi is_multi; 1

1 Declares a lan_multi data structure and calls it is_multi.

3.6 Defining the Interrupt Handler ID
The interrupt handler ID in a network driver’s softc data structure is a
variable that stores the interrupt handler ID that the handler_add()
routine returns. The following code shows the declaration of the interrupt
handler ID in the if_el device driver’s el_softc data structure. Make
sure that the interrupt handler ID part of your softc data structure has
a similar declaration.

ihandler_id_t *hid; 1

1 Declares a pointer to an ID that deregisters the interrupt handlers.

3.7 Defining CSR Pointer Information
The control and status register (CSR) addresses in a network driver’s
softc data structure consist of specific adapter register addresses. These
registers generally consist of the base register plus some offset, as defined
by the network adapter’s hardware specification. Make sure that you never

3–6 Defining the softc Data Structure

access a CSR directly. The driver-specific macros handle the read and write
operations that are made on these device registers.

The following code shows the declarations of the CSR addresses in the if_el
device driver’s el_softc data structure. Make sure that the CSR pointer
information part of your softc data structure has similar declarations.

io_handle_t regE; 1
io_handle_t regC;
io_handle_t regA;
io_handle_t reg8;
io_handle_t reg6;
io_handle_t reg4;
io_handle_t reg2;
io_handle_t reg0;
io_handle_t data;

1 Declares the CSR addresses for the if_el driver. These addresses are
computed during the probe() routine by adding the specified offset
(0xE, 0xC, 0xA, and so forth) to the base address.

3.8 Defining FIFO Maintenance Information

The first-in/first-out (FIFO) maintenance information in the if_el driver’s
el_softc data structure consists of a variable that stores a value that
the device keeps on board. The following code shows its declaration. This
information is hardware-specific, so you can omit it from your network
device driver’s softc data structure.

unsigned long txfree;

3.9 Defining Bus-Specific Information

The bus-specific information in a network driver’s softc data structure
consists of information about the bus or buses on which the driver operates.
The if_el driver operates on the PCMCIA and ISA buses, so that the
information in this section reflects these buses.

The following code shows the bus-specific declarations in the if_el device
driver’s el_softc data structure. The bus-specific information that is
described here may not apply to your network device driver. However, the
declarations do give you an idea of some of the information that a network
driver needs to keep when operating on the PCMCIA and ISA buses.

int irq; 1
int iobase; 2
int isa_tag; 3
int cardout; 4
int reprobe; 5
int ispcmcia; 6
struct card_info *cinfop; 7

1 Contains the interrupt request (IRQ) to use.

Defining the softc Data Structure 3–7

2 Contains the I/O base address.

3 Contains a tag value that identifies 3Com 3C5x9 devices on an ISA bus.

4 Contains a value that indicates whether the user has ejected the
PCMCIA card.

5 Contains a value that indicates whether the user has reloaded the
PCMCIA card.

6 Contains a value that indicates whether the card is a PCMCIA card.

7 Declares a pointer to the card_info data structure and calls it cinfop.
The card_info data structure contains information that is necessary
to communicate with the kernel PCMCIA subsystem.

3.10 Defining the Broadcast Flag

The broadcast flag in the if_el driver’s el_softc data structure indicates
whether the device should receive broadcast traffic. This flag is specific to
the if_el driver and, therefore, is optional in most network device drivers.
The following code shows the declaration of the broadcast flag in the if_el
device driver’s el_softc data structure:

int is_broadcast; 1

1 Contains a boolean value. If true, the broadcast address flag is set.

3.11 Defining the Debug Flag

The debug flag in a network driver’s softc data structure indicates whether
debug mode is on. The following code shows the declaration of the debug
flag in the if_el device driver’s el_softc data structure. The debug flag
is optional.

int debug; 1

1 Contains the status of the debug flag. If the if_flags member of
the ifnet data structure pointer is set to IFF_DEBUG, debug is on.
Otherwise, debug is off.

3.12 Defining Interrupt and Timeout Statistics

The interrupt and timeout statistics in the if_el driver’s el_softc data
structure consists of information about timeout and interrupt events.

3–8 Defining the softc Data Structure

The following code shows the declarations of the timeout and interrupt
information in the if_el device driver’s el_softc data structure:

unsigned long txreset; 1
unsigned long xmit_tmo; 2
unsigned long tint; 3
unsigned long rint; 4

1 Contains the number of transmitter error resets.

2 Contains the number of times that transmit timeouts occurred. The
el_watch() routine increments this member.

3 Contains the count of transmit interrupts.

4 Contains the count of receive interrupts.

3.13 Defining Autosense Kernel Thread Context Information

The autosense kernel thread context information in the if_el driver’s
el_softc data structure consists of information about the kernel thread
that performs the autosense operation. For the if_el driver, this kernel
thread is called el_autosense_thread.

The following code shows the declarations of the autosense kernel thread
variables in the if_el device driver’s el_softc data structure. The if_el
device driver uses kernel threads to perform the tasks that are related to
autosensing the media. However, you can choose other methods instead of
kernel threads.

thread_t autosense_thread; 1
int autosense_flag; 2

1 Contains the autosense kernel thread ID.

2 Contains the autosense kernel thread blocking flag.

3.14 Defining the Polling Context Flag

A LAN driver typically does not need to perform polling operations. However,
the if_el driver provides an example of how polling operations might be
accomplished.

The polling context flag in a network driver’s softc data structure indicates
whether polling is on or off. The following code shows the declaration of the
polling member in the if_el device driver’s el_softc data structure:

int polling_flag; 1

1 Declares a polling context flag member called polling_flag. This
member stores a boolean value of 1 (polling context is on) or 0 (polling
context is off).

Defining the softc Data Structure 3–9

3.15 Defining a Copy of the w3_eeprom Data Structure

The w3_eeprom data structure copy in the if_el driver’s el_softc
data structure consists of information about the hardware-specific
w3_eeprom data structure. The following code shows the declaration of this
device-specific data structure. If your device has an EEPROM, you might
want to save some or all of its contents in your softc data structure.

struct w3_eeprom eeprom; 1

1 Declares a copy of the w3_eeprom data structure and calls it eeprom.

3.16 Declaring the Simple Lock Data Structure

A network driver’s softc data structure contains the declaration of a
simple lock data structure. The if_el driver uses a simple lock to protect
the data integrity of the el_softc data structure on multiprocessor
systems. It also guarantees the sequence of register accesses that a CPU in
a multiprocessor system makes to the adapter. See Writing Kernel Modules
for more information about locking in an SMP environment.

The following code shows the declaration of the simple lock data structure
in the if_el driver’s el_softc data structure:

decl_simple_lock_data(, el_softc_lock) 1

1 Uses the decl_simple_lock_data() routine to declare a simple lock
data structure as a member of the el_softc data structure. The simple
lock data structure is called el_softc_lock.

3–10 Defining the softc Data Structure

4
Implementing the Configure Section

The configure section of a network device driver contains the code
that incorporates the device driver into the kernel, either statically or
dynamically. In a static configuration, the device driver’s configure
interface registers callback routines, which allow the cfgmgr framework
to configure the driver into the kernel at a specified point during system
startup. In a dynamic configuration, the configure interface cooperates
with the cfgmgr framework to handle user-level requests to dynamically
configure, reconfigure, and query a network device driver at run time.

Because these tasks are common to all network drivers, the code has been
consolidated into a single routine called lan_configure(). Routines with
the prefix lan_ reside in the lan_common.c source file. A network driver’s
configure() routine can simply call lan_configure() to carry out the
following tasks:

• CFG_OP_CONFIGURE

• CFG_OP_RECONFIGURE

• CFG_OP_UNCONFIGURE

• CFG_OP_QUERY

The if_el driver’s configure section contains an attributes data structure
and the el_configure() routine.

The following sections describe how to initialize the cfg_subsys_attr_t
data structure and how to set up the el_configure() routine:

• Declaring configure-related variables and initializing the
cfg_subsys_attr_t data structure (Section 4.1)

• Setting up the el_configure() routine (Section 4.2)

4.1 Declaring Configure-Related Variables and the
cfg_subsys_attr_t Data Structure

As part of implementing a device driver’s configure interface, you declare a
number of variables and initialize the cfg_subsys_attr_t data structure.

Implementing the Configure Section 4–1

The following code shows the declaration of the variables and the
initialization of the cfg_subsys_attr_t data structure for the if_el
device driver:
static unsigned char el_pcmcia_optiondata[400] = ""; 1
static unsigned char el_isa_optiondata[300] = ""; 2
static unsigned char el_unused[300] = "";
static int el_polling = 0; 3
static int el_pollint = 16; 4
static int el_configured = 0; 5
static struct lan_config_data el_data = { 6

LAN_CONFIG_VERSION_ID,
0,
&eldriver,
&el_configured

};

cfg_subsys_attr_t el_attributes[] = { 7
{"PCMCIA_Option", CFG_ATTR_STRTYPE, CFG_OP_CONFIGURE | CFG_OP_QUERY,

(caddr_t)el_pcmcia_optiondata, 0, 400, 0}, 8
{"ISA_Option", CFG_ATTR_STRTYPE, CFG_OP_CONFIGURE | CFG_OP_QUERY,

(caddr_t)el_isa_optiondata, 0, 300, 0}, 9
{"Polling", CFG_ATTR_INTTYPE, CFG_OP_QUERY | CFG_OP_CONFIGURE,

(caddr_t)&el_polling, 0, 1, sizeof(int)}, 10
{"Polls_Per_Second", CFG_ATTR_INTTYPE, CFG_OP_QUERY | CFG_OP_CONFIGURE,

(caddr_t)&el_pollint, 10, 100, sizeof(int)}, 11
{"", 0, 0, 0, 0, 0, 0} 12

};

1 Declares a character array called pcmcia_optiondata and initializes
it to the null string. The pcmcia_optiondata character array is
where the cfgmgr framework stores the value for the PCMCIA_Option
attribute. The cfgmgr framework obtains this value from the
/etc/sysconfigtab database.

2 Declares a character array called isa_optiondata and initializes it
to the null string. The isa_optiondata character array is where the
cfgmgr framework stores the value for the ISA_Option attribute. The
cfgmgr framework obtains this value from the /etc/sysconfigtab
database.

3 Declares an integer variable called el_polling and initializes it to
the value 0 (zero). The el_polling variable is where the cfgmgr
framework stores the style of interrupt processing for the Polling
attribute. The cfgmgr framework obtains this value from the
/etc/sysconfigtab database.

4 Declares an integer variable called el_pollint and initializes it to the
value 16. The el_pollint variable is where the cfgmgr framework
stores the polls per second for the Polls_Per_Second attribute. The
cfgmgr framework obtains this value from the /etc/sysconfigtab
database.

5 Declares an integer variable called el_configured and initializes it
to the value 0 (zero). The driver must increment this variable for each
successfully configured el device.

4–2 Implementing the Configure Section

6 Declares the lan_config_data structure, which contains all
information specific to the el driver. The lan_configure common
code uses this structure.

7 Declares an array of cfg_subsys_attr_t data structures and calls
it el_attributes.

8 Describes the PCMCIA_Option attribute, which specifies the option
data for the PCMCIA bus.

9 Describes the ISA_Option attribute, which specifies the option data
for the ISA bus.

10 Describes the Polling attribute, which is specific to this device driver.
It indicates the style of interrupt processing. The operation code
specifies CFG_OP_CONFIGURE and CFG_OP_QUERY. This means that the
attribute can only be set at configuration time and, after that, only
queried. You can specify a value in the sysconfigtab file fragment
(which is appended to the /etc/sysconfigtab database). The cfgmgr
framework obtains this value from the /etc/sysconfigtab database
and stores it in the el_polling variable.

11 Describes the Polls_Per_Second attribute, which is specific to this
device driver. It indicates the polls per second for interrupt processing.
Similar to the Polling attribute, you can only specify a value for
this attribute at configuration time. The cfgmgr framework obtains
this value from the /etc/sysconfigtab database and stores it in
the el_pollint variable.

12 Ends the array by specifying the null string.

4.2 Setting Up the el_configure Routine

The following code shows how to set up the el_configure() routine:

int el_configure(cfg_op_t op, 1
cfg_attr_t *indata, 2
size_t indatalen, 3
cfg_attr_t *outdata, 4
size_t outdatalen) 5

{
return (lan_configure (op, &el_data)); 6

}

1 Declares an argument called op to contain a constant that describes the
configuration operation to be performed on the driver. This argument
evaluates to one of the following valid constants: CFG_OP_CONFIGURE,
CFG_OP_UNCONFIGURE, CFG_OP_QUERY, or CFG_OP_RECONFIGURE.

2 Declares a pointer to a cfg_attr_t data structure called indata,
which consists of input to the el_configure() routine. The cfgmgr
framework fills in this data structure. The cfg_attr_t data structure

Implementing the Configure Section 4–3

represents a variety of information, including the if_el driver’s
interrupt polling requirements.

3 Declares an argument called indatalen to store the size of this input
data structure. This argument represents the number of cfg_attr_t
data structures included in indata.

4 Declares an argument for user-defined configuration operations, which
can occur when the cfgmgr framework calls the driver’s configure
interface with the CFG_OP_USERDEFINED operation code. Typically,
this argument is not used.

5 Declares the size of the outdata argument. Typically, this argument
is not used.

6 Calls the LAN common driver code to configure the device (either
statically or dynamically).

4–4 Implementing the Configure Section

5
Implementing the Autoconfiguration

Support Section (probe)

The autoconfiguration support section contains the code that implements a
network device driver’s probe interface. A network device driver’s probe
interface determines whether the network device exists and is functional on
a given system. The bus configuration code calls the driver’s probe interface.

The if_el driver operates on the ISA and PCMCIA bus. For the PCMCIA
bus, it provides a driver-specific routine that is called when a user removes
the card from the slot. For the ISA bus, the driver provides routines to reset,
activate, and read from hardware registers. These routines are specific to
the if_el device driver. To learn how the driver handles these tasks, see
the source listing in the examples directory that is installed with the device
driver kit.

The following sections describe how to use the probe interface:

• Implementing the el_probe() routine (Section 5.1)

• Implementing the el_shutdown() routine (Section 5.2)

• Implementing the el_autosense_thread() routine (Section 5.3)

5.1 Implementing the el_probe Routine
The el_probe() routine performs the following tasks:

• Checks the maximum number of devices that the driver supports
(Section 5.1.2)

• Performs bus-specific tasks (Section 5.1.3)

• Allocates memory for the softc and ether_driver data structures
(Section 5.1.4 and Section 5.1.5)

• Initializes the enhanced hardware management data structure
(Section 5.1.6)

• Computes the control and status register addresses (Section 5.1.7)

• Sets bus-specific data structure members (Section 5.1.8)

• If this is the first time the device has been probed, copies data from the
EEPROM, reads and saves the device’s physical address and starts the
autosense kernel thread to determine the media type (Section 5.1.9)

Implementing the Autoconfiguration Support Section (probe) 5–1

• For subsequent probe operations, reads the EEPROM to determine if the
hardware address (and thus the adapter) has changed (Section 5.1.10)

• Registers the interrupt handler (Section 5.1.11)

• Saves the controller and softc data structure pointers
(Section 5.1.12)

• Tries to allocate another controller data structure (Section 5.1.13)

• Registers the shutdown routine (Section 5.1.14)

5.1.1 Setting Up the el_probe Routine

The following code shows how to set up the el_probe() routine:

static int el_probe (io_handle_t io_handle, 1
struct controller *ctlr) 2

{
struct el_softc *sc; 3
int unit = ctlr->ctlr_num, i, j, isatag=0, status, multi_func_flag=0; 4
struct handler_intr_info el_intr_info; 5
ihandler_t el_ihandle; 6
struct card_info *card_infop = (struct card_info *)(ctlr->card_info_ptr); 7
io_handle_t reg; 8
struct e_port port_sel; 9
struct irq irq_sel; 10
unsigned short *ed;
unsigned char *ee;
struct tuple_info *tuple_infop; 11
struct tuple_data_info tuple_data;
struct tuple_data_info *tuple_data_infop;

1 Declares an argument that specifies an I/O handle that you can use to
reference a device register or memory that is located in bus address
space (either I/O space or memory space). This I/O handle references
the device’s I/O address space for the bus where the read operation
originates (in calls to the read_io_port() routine) and where the
write operation occurs (in calls to the write_io_port() routine). The
bus configuration code passes this I/O handle to the driver’s probe
interface during device autoconfiguration.

2 Declares a pointer to a controller data structure for this controller.
This data structure contains such information as the controller type,
the controller name, and the current status of the controller. The bus
configuration code passes this initialized controller data structure
to the driver’s probe and attach interfaces. A device driver typically
uses the ctlr_num member of the controller data structure as an
index to identify the instance of the controller a request is for.

3 Declares a pointer to the el_softc data structure and calls it sc.

4 Declares a unit variable and initializes it to the controller number for
this controller. This controller number identifies the specific 3Com
3C5x9 controller that is being probed. The controller number is

5–2 Implementing the Autoconfiguration Support Section (probe)

contained in the ctlr_num member of the controller data structure
for this 3Com 3C5x9 device.

5 Declares a handler_intr_info data structure called el_intr_info.
The handler_intr_info data structure is a generic data structure
that contains interrupt handler information for buses that are connected
to a device controller. Using the handler_intr_info data structure
makes the driver more portable across different bus architectures.

6 Declares an ihandler_t data structure called el_ihandle to contain
information for the if_el device driver’s interrupt service routine
registration.

7 Declares a pointer to a card_info data structure called card_infop
and initializes it to the specific card_info data structure for this
controller. This data structure is associated with PCMCIA devices only.

The bus configuration code passes this card_info data structure
through the controller data structure’s conn_priv[2] member. The
pcmcia.h file defines card_info_ptr as conn_priv[2].

8 Declares a variable called reg that stores the I/O handle that is passed
to the driver’s el_probe() routine.

9 Declares an e_port data structure called port_sel. This data
structure is associated with the EISA and ISA buses. The e_port data
structure describes bus I/O port information. The bus configuration
code initializes the members of the e_port data structure during device
autoconfiguration. Device drivers call the get_config() routine to
obtain information from the members of the e_port data structure.

10 Declares an irq data structure called irq_sel. The irq data structure
specifies EISA/ISA bus interrupt channel characteristics that are
assigned to a device. The bus configuration code initializes the members
of the irq data structure during device autoconfiguration. Device
drivers call the get_config() routine to obtain information from the
members of the irq data structure.

11 Declares the tuple_* data structures. For more information and
definitions of the tuple_info and tuple_data_info data structures,
see the /usr/sys/include/io/dec/pcmcia/cardinfo.h file and
tuple_info() and tuple_data_info().

Implementing the Autoconfiguration Support Section (probe) 5–3

5.1.2 Checking the Maximum Number of Devices That the Driver
Supports

The following code shows how to check for the maximum number of devices
that the if_el device driver supports:

if (unit >= el_MAXDEV) { 1
printf("el%d: el_probe: unit exceeds max supported devices\n",

unit);
return(0); 2

}

1 If the unit variable exceeds the maximum number of devices that
the if_el driver supports, calls the printf() routine to display
an appropriate message on the console terminal. The printf()
routine also displays the controller number that is stored in the unit
variable. The el_probe() routine stores the controller number in
this variable by referencing the ctlr_num member of the controller
data structure pointer.

The el_MAXDEV constant defines the maximum number of controllers
that the if_el driver can support.

2 Returns the value 0 (zero) to indicate that the probe operation failed.

5.1.3 Performing Bus-Specific Tasks

The following code shows how the el_probe() routine performs tasks that
are specific to the PCMCIA and ISA buses. Only network device drivers
that operate on the PCMCIA and ISA buses perform these tasks. Your
probe interface performs tasks that are related to the bus on which your
network driver operates. See the bus-specific manual for information on
data structures for that bus.

switch (ctlr->bus_hd->bus_type) { 1
case BUS_PCMCIA: 2

reg = io_handle+card_infop->io_addr[0]; 3

multi_func_flag = card_infop->card_option->multi_func_flag; 4

if (!multi_func_flag)
{

if (READ_BUS_D16(reg+W0_MID) != 0x6d50) { 5

WRITE_BUS_D16(reg+CMD_PORT, CMD_RESET);
DELAY(1000);

if (READ_BUS_D16(reg+W0_MID) != 0x6d50) { 6
printf("el%d: EtherLink III not found on bus\n", unit);

return(0); 7
}

}
}
break;

5–4 Implementing the Autoconfiguration Support Section (probe)

case BUS_ISA: 8
if (get_config(ctlr, RES_PORT, NULL, &port_sel, 0) >= 0) { 9

reg = port_sel.base_address; 10
} else { 11

printf("el%d: Can’t get assigned IOBASE\n",unit);
return(0);

}

if (get_config(ctlr, RES_IRQ, NULL, &irq_sel, 0) < 0) { 12
printf("el%d: Can’t get assigned IRQ\n", unit);
return(0);

}

if (el_isa_reset++ == 0) 13
el_isa_reset_all(reg, &isatag, ctlr);

if (el_isa_activate(reg, &isatag, ctlr)) { 14
printf("el%d: 3C509 not present or not responding at 0x%x\n",

unit, reg);
return(0);

}
break;

default: 15
printf("el%d: Unrecognized bus type\n", unit);
return(0);
break;

}

1 Determines which bus the if_el driver operates on by examining the
constant that the bus configuration code has stored in the bus_type
member. The el_probe() routine references this value through the
controller data structure pointer’s bus_hd member. This pointer is
the data structure that is associated with this 3Com 3C5x9 device.

2 Performs tasks related to the PCMCIA bus if bus_type evaluates to
the constant BUS_PCMCIA.

3 Adds the I/O handle to the base address of the card and stores it in the
reg variable. The reg variable becomes an argument in subsequent
calls to the read and write macros.

4 Determines whether the card is a multifunction card or a single-function
card.

5 Calls the READ_BUS_D16 macro to read a word (16 bits) from a device
register that is located in the bus I/O address space. This read operation
verifies that the EtherLink III card is attached.

If the data that READ_BUS_D16 returns is not equal to 0x6d50, calls
the WRITE_BUS_D16 and DELAY macros. The WRITE_BUS_D16 macro
writes a word (16 bits) to a device register that is located in the bus
I/O address space. This specific write operation resets the card. The
DELAY macro spins, waiting the specified number of microseconds before
continuing execution.

Implementing the Autoconfiguration Support Section (probe) 5–5

6 Calls the READ_BUS_D16 macro a second time to determine whether
the EtherLink III is attached. If the data returned by READ_BUS_D16
is not 0x6d50, calls the printf() routine to display an appropriate
message on the console terminal.

7 Returns the value 0 (zero) to indicate that the probe operation failed.

8 Performs tasks related to the ISA bus if bus_type evaluates to the
constant BUS_ISA.

9 Calls the get_config() routine to obtain the base I/O address for
the device.

10 If get_config() is successful, stores the base I/O address in the reg
variable.

11 If get_config() is unsuccessful, calls the printf() routine to
display an appropriate message on the console terminal, then returns
the value 0 (zero) to indicate that the probe operation failed.

12 Calls the get_config() routine to obtain the interrupt request (IRQ)
line for the device. If get_config() is not successful, el_probe()
calls the printf() routine to display an appropriate message on the
console terminal, then returns the value 0 (zero) to indicate that the
probe operation failed.

13 If this is the first ISA 3Com 3C5x9 adapter seen in the system, calls the
el_isa_reset_all() routine to reset all 3Com 3C5x9 adapters on
the ISA bus once to clear any bad state data.

14 Calls the el_isa_activate() routine to attempt to activate the
lowest addressed adapter on the bus and to configure it with the given
base address. If the attempt fails, el_probe() calls the printf()
routine to display an appropriate message on the console terminal, then
returns the value 0 (zero) to indicate that the probe operation failed. See
the if_el source file (in the examples directory that is installed with
the device driver kit) for a listing of the el_isa_activate() routine.

15 If the driver is not operating on either the PCMCIA or ISA bus, calls
the printf() routine to display an appropriate message on the console
terminal, then returns the value 0 (zero) to indicate that the probe
operation failed.

5.1.4 Allocating Memory for the softc Data Structure

The following code shows how the el_probe() routine allocates memory
for the if_el device driver’s softc data structure. If the device has already
been probed, the driver does not need to allocate the data structure. This
can happen if the user removed and then reinserted the device, an operation
that is only possible for PCMCIA versions of the adapter.

5–6 Implementing the Autoconfiguration Support Section (probe)

if (el_softc[unit]) { 1
sc = el_softc[unit];
sc->cardout = 0;
sc->reprobe = 1;

} else { 2
MALLOC(sc, void*, sizeof(struct el_softc), M_DEVBUF, M_WAIT | M_ZERO);

if (!sc) { 3
printf("el%d: el_probe: failed to get buffer memory for softc\n",

unit);
return(0); 4

}

1 If the user removed and returned the PCMCIA card to its slot:

• Locates the existing el_softc data structure for this device. The
controller number (which is stored in the unit variable) is used as
an index into the array of el_softc data structures to determine
which el_softc data structure is associated with this 3Com 3C5x9
device.

• Sets the cardout member of the el_softc data structure to the
value 0 (zero) to indicate that the PCMCIA card is not currently
removed from its slot.

• Sets the reprobe member of the el_softc data structure to the
value 1 to indicate that the PCMCIA card was reinserted into its slot.

2 If this is an ISA device or if the user did not remove and replace the
card, calls the MALLOC macro to allocate memory for the el_softc
data structure.

3 If MALLOC could not allocate the memory, calls the printf() routine to
display an appropriate message on the console terminal. The printf()
routine also displays the controller number for the device.

4 Returns the value 0 (zero) to the bus configuration code to indicate
that the probe operation failed.

5.1.5 Allocating the ether_driver Data Structure

The following code shows how the el_probe() routine calls if_alloc()
to allocate the ether_driver data structure for this device. if_alloc()
returns an ether_driver data structure, which contains the ifnet data
structure, and initializes the if_name, if_unit, and if_index fields.
Make sure that your driver allocates its ether_driver data structure in
the same way.

sc->is_ed = if_alloc("el", unit, sizeof(struct ether_driver)); 1
CLEAR_LAN_COUNTERS(sc->is_ed); 2

1 Calls a routine that returns an ether_driver data structure and
initializes the ifnet portion of it.

Implementing the Autoconfiguration Support Section (probe) 5–7

2 Initializes all Ethernet statistics counters in the ether_driver data
structure to 0 (zero).

5.1.6 Initializing the Enhanced Hardware Management Data Structure

The following code shows how the el_probe() routine initializes the data
structure for enhanced hardware management (EHM) support:

lan_ehm_init(&sc->ehm, NET_EHM_VERSION_ID); 1
}

1 Initializes the net_hw_mgmt data structure. This data structure
contains the current and default attribute values for this device as well
as other information that EHM requires. The lan_ehm_init() routine
allocates all necessary storage and performs basic initialization of the
EHM data structure. Make sure that your driver makes this call as well.

5.1.7 Computing the CSR Addresses

The following code shows how the el_probe() routine determines the
addresses of the if_el device’s control and status (CSR) registers:

sc->regE = reg+0xe; 1
sc->regC = reg+0xc; 2
sc->regA = reg+0xa;
sc->reg8 = reg+0x8;
sc->reg6 = reg+0x6;
sc->reg4 = reg+0x4;
sc->reg2 = reg+0x2;
sc->reg0 = reg+0x0;
sc->data = reg+0x0;

sc->basereg = reg; 3

1 Fills in the regE member of the el_softc data structure for this 3Com
3C5x9 device. The value that is stored in regE consists of the I/O handle
plus a byte offset. The el_probe() routine computes this address
according to the requirements of the PCMCIA bus and the ISA bus.

2 This line and the subsequent lines compute and save other if_el device
register addresses in the el_softc data structure.

3 Stores the I/O handle in the basereg member of the el_softc data
structure for this 3Com 3C5x9 device.

5.1.8 Setting Bus-Specific Data Structure Members

The following code shows how the el_probe() routine sets members for
the bus-specific data structures that are associated with the PCMCIA and
ISA buses. See the bus-specific manual for information on data structures
for the bus on which your driver operates.

switch (ctlr->bus_hd->bus_type) { 1
case BUS_PCMCIA: 2

5–8 Implementing the Autoconfiguration Support Section (probe)

sc->irq = 3; 3
sc->iobase = 0; 4

sc->ispcmcia = 1; 5
sc->cinfop =card_infop;

pcmcia_register_event_callback(card_infop->socket_vnum, 6
CARD_REMOVAL_EVENT,
(caddr_t)el_card_remove,
(caddr_t)sc);

if (multi_func_flag) 7
lan_set_attribute(sc->ehm.current_val, NET_MODEL_NDX, "3C562");

else
lan_set_attribute(sc->ehm.current_val, NET_MODEL_NDX, "3C589");

break;

case BUS_ISA: 8
sc->irq = irq_sel.channel; 9

sc->isa_tag = isatag; 10

sc->iobase = ((reg-0x200)/0x10)&0x1f; 11

lan_set_attribute(sc->ehm.current_val, NET_MODEL_NDX, "3C509"); 12
break;

}

1 Evaluates the bus_type member of the bus data structure for this
3Com 3C5x9 device.

2 Performs tasks that are related to the PCMCIA bus if bus_type
evaluates to BUS_PCMCIA.

3 Sets the interrupt request (IRQ) to the value 3.

4 Sets the I/O base of the program card to the value 0 (zero).

5 Indicates that this is a PCMCIA unit and saves the card information
pointer.

6 Calls the pcmcia_register_event_callback() routine. See the
if_el source file (in the examples directory that is installed with the
device driver kit) for a listing of this routine.

7 Sets the model identification attribute for enhanced hardware
management support.

8 Performs tasks that are related to the ISA bus.

9 Saves the interrupt request (IRQ) from the ISA bus configuration code.

10 Saves the tag from the activation process.

11 Computes the I/O base to give to the device.

12 Sets the model identification attribute for enhanced hardware
management support.

Implementing the Autoconfiguration Support Section (probe) 5–9

5.1.9 Handling First-Time Probe Operations

If the device has not already been probed, the el_probe() routine performs
the following tasks:

• Reads the EEPROM and saves it to a temporary data structure

• Reads and saves the device’s physical address

• Starts the autosense thread to determine the media type

The following code shows how the el_probe() routine performs these
tasks:

if (!sc->reprobe) { 1

if (multi_func_flag) { 2

bzero((caddr_t)&tuple_data, sizeof(struct tuple_data_info));
tuple_data_infop = &tuple_data;
tuple_infop = (struct tuple_info *)&tuple_data;
tuple_infop->socket = (short) card_infop->socket_vnum;
tuple_infop->attributes = 0;
tuple_infop->DesiredTuple = 0x88;
status = GetFirstTuple(tuple_infop);

if (status == SUCCESS) {
tuple_data_infop->TupleOffset = 0;
tuple_data_infop->TupleDataMax = (u_short)TUPLE_DATA_MAX;
status = GetTupleData(tuple_data_infop);
if (status == SUCCESS) {

ee = (unsigned char *)&sc->eeprom;
for (i = 0; i < (sizeof(struct w3_eeprom)); i++) {

*ee = tuple_data_infop->TupleData[i];
ee++;

}
} else {

printf("el%d: Can’t read multifunction card’s eeprom.\n",
unit);

if (sc->ispcmcia)
pcmcia_unregister_event_callback(card_infop->socket_vnum,

CARD_REMOVAL_EVENT,
(caddr_t)el_card_remove);

if_dealloc(sc->is_ed);
lan_ehm_free(&sc->ehm);
FREE(sc, M_DEVBUF);
return(0);

}
} else {

printf("el%d: Can’t read multifunction card’s eeprom.\n",
unit);

if (sc->ispcmcia)
pcmcia_unregister_event_callback(card_infop->socket_vnum,

CARD_REMOVAL_EVENT,
(caddr_t)el_card_remove);

if_dealloc(sc->is_ed);
lan_ehm_free(&sc->ehm);
FREE(sc, M_DEVBUF);
return(0);

}
} else { 3

ed = (unsigned short *)&sc->eeprom;

5–10 Implementing the Autoconfiguration Support Section (probe)

for (i=0; i<(sizeof(struct w3_eeprom)/2); i++) {
WRITE_ECR(sc, ECR_READ+i);
DELAY(1000);
*ed = READ_EDR(sc);
ed++;

}
}

for (i=0; i<3; i++) { 4
j = sc->eeprom.addr[i];
sc->is_addr[(i*2)] = (j>>8) & 0xff;
sc->is_addr[(i*2)+1] = (j) & 0xff;

}

sc->lm_media_mode = LAN_MODE_AUTOSENSE; 5
sc->lm_media_state = LAN_MEDIA_STATE_SENSING; 6
sc->lm_media = LAN_MEDIA_UTP; 7
sc->autosense_thread = kernel_thread_w_arg(first_task, 8

el_autosense_thread,
(void *)sc);

if (sc->autosense_thread == NULL) { 9
printf("el%d: Can’t create autosense thread.\n", unit);
if (sc->ispcmcia) 10

pcmcia_unregister_event_callback(card_infop->socket_vnum,
CARD_REMOVAL_EVENT,
(caddr_t)el_card_remove);

if_dealloc(sc->is_ed); 11
lan_ehm_free(&sc->ehm); 12
FREE(sc, M_DEVBUF); 13
return(0); 14

}

1 Determines whether the device has already been probed, which
indicates that the device is operating on a PCMCIA bus and that the
user has put the card back into the slot. In this case, the driver does
not need to redo much of the initial probe work and will skip to the code
shown in Section 5.1.10.

2 If this is a multifunction card, reads the EEPROM data and saves it in
sc->eeprom. If this is a multifunction PC card, the EEPROM data is
located in the card information data structure.

3 If this is not a multifunction PC card, the EEPROM data is read directly
from the card and saved in the el_softc data structure.

4 Saves the 48-bit physical address of the device into the is_addr
member of the el_softc data structure for this 3Com 3C5x9 device.

5 Sets the media mode to the constant LAN_MODE_AUTOSENSE. This
constant indicates that the driver hardware determines the media
automatically.

6 Sets the media state to the constant LAN_MEDIA_STATE_SENSING. This
constant indicates that the media is currently in the autosensing state.

7 Sets the currently set media to the constant LAN_MEDIA_UTP.
This constant indicates that the mode for the media is unshielded
twisted-pair cable.

Implementing the Autoconfiguration Support Section (probe) 5–11

8 Calls the kernel_thread_w_arg() routine to create and start a
kernel thread with timeshare scheduling. A kernel thread that is
created with timeshare scheduling means that its priority degrades if it
consumes an inordinate amount of CPU resources. Make sure that your
device driver calls kernel_thread_w_arg() only for long-running
tasks and always attaches a kernel thread to the first task.

The kernel_thread_w_arg() routine returns a pointer to the thread
data structure for the newly created thread. The device driver stores
this pointer in the autosense_thread member of the el_softc data
structure.

9 If the value that kernel_thread_w_arg() returns is NULL, then the
thread could not be created. At this point, the el_probe() routine
must undo previous work and return a failure indication to the caller.

10 For PCMCIA versions of the card, unregisters the callback routine that
was previously registered.

11 Deallocates the ether_driver data structure for this device.

12 Frees up any memory that was allocated for enhanced hardware
management and unregisters this card from the hardware management
database.

13 Calls the FREE macro, which frees the memory that was previously
allocated for the el_softc data structure.

14 Returns the value 0 (zero) to indicate that the probe operation failed.

5.1.10 Handling Subsequent Probe Operations

If the device had already been probed, the if_el device driver reads the
EEPROM to determine whether the hardware address has changed. The
following code shows how the el_probe() routine performs these tasks:

} else {
struct w3_eeprom ee_copy;
unsigned char tmp_addr[8];
struct ifreq ifr;
struct ifnet *ifp = &sc->is_if

if (multi_func_flag) { 1

bzero((caddr_t)&tuple_data, sizeof(struct tuple_data_info));
tuple_data_infop = &tuple_data;
tuple_infop = (struct tuple_info *)&tuple_data;
tuple_infop->socket = (short) card_infop->socket_vnum;
tuple_infop->attributes = 0;
tuple_infop->DesiredTuple = 0x88;
status = GetFirstTuple(tuple_infop);

if (status == SUCCESS) {
tuple_data_infop->TupleOffset = 0;
tuple_data_infop->TupleDataMax = (u_short)TUPLE_DATA_MAX;
status = GetTupleData(tuple_data_infop);

5–12 Implementing the Autoconfiguration Support Section (probe)

if (status == SUCCESS) {
ee = (unsigned char *)&ee_copy;
for (i = 0; i < (sizeof(struct w3_eeprom)); i++) {

*ee = tuple_data_infop->TupleData[i];
ee++;

}
} else {

printf("el%d: Can’t read multifunction card’s eeprom.\n",
unit);

if (sc->ispcmcia)
pcmcia_unregister_event_callback(card_infop->socket_vnum,

CARD_REMOVAL_EVENT,
(caddr_t)el_card_remove);

return(0);
}

} else {
printf("el%d: Can’t read multifunction card’s eeprom.\n",

unit);
if (sc->ispcmcia)
pcmcia_unregister_event_callback(card_infop->socket_vnum,

CARD_REMOVAL_EVENT,
(caddr_t)el_card_remove);

return(0);
}

} else { 2

ed = (unsigned short *)&ee_copy;
for (i=0; i<(sizeof(struct w3_eeprom)/2); i++) {

WRITE_ECR(sc, ECR_READ+i);
DELAY(1000);
*ed = READ_EDR(sc);
ed++;

}
}

if (bcmp(sc->eeprom.addr, ee_copy.addr, 6)) { 3

for (i=0; i<3; i++) { 4
j = sc->eeprom.addr[i];
tmp_addr[(i*2)] = (j>>8) & 0xff;
tmp_addr[(i*2)+1] = (j) & 0xff;

}

if (bcmp(tmp_addr, sc->is_addr, 6) == 0) { 5

for (i=0; i<3; i++) { 6
j = ee_copy.addr[i];
tmp_addr[(i*2)] = (j>>8) & 0xff;
tmp_addr[(i*2)+1] = (j) & 0xff;

}

bzero(&ifr, sizeof(struct ifreq));
bcopy(tmp_addr, ifr.ifr_addr.sa_data, 6);
bcopy(tmp_addr, sc->is_addr, 6); 7
if (((struct arpcom *)ifp)->ac_flag & AC_IPUP) { 8

rearpwhohas((struct arpcom *)ifp);
}
if_sphyaddr(ifp, &ifr); 9
pfilt_newaddress(sc->is_ed.ess_enetunit, sc->is_addr); 10

}

Implementing the Autoconfiguration Support Section (probe) 5–13

bcopy(&ee_copy, &sc->eeprom, sizeof(struct w3_eeprom)); 11
}

}

1 If this is a multifunction card, reads the EEPROM data and saves
it in a temporary data structure, ee_copy. If this is a 3Com 3C562
multifunction PC card, the EEPROM data is located in the card
information data structure.

2 If this is not a multifunction PC card, the EEPROM data is read directly
from the card and saved in the el_sofc data structure.

3 Calls the bcmp() routine to compare the EEPROM address from the
first probe operation to the EEPROM address of the current probe
operation.

4 If the EEPROM address has changed, converts the original EEPROM
address to its canonical form.

5 Compares the original EEPROM address to the hardware address that
is currently in effect. If they are different, then a previously specified
hardware address was used that was different from the address that
was found in the EEPROM. In this case, the alternate address is still in
effect and no further action needs to be taken.

6 If the original EEPROM address is the same as the hardware address
that is currently in effect, uses the hardware address that was found
in the EEPROM. Because the EEPROM has changed (because the
old if_el adapter was removed and a new one inserted), it will be
necessary to broadcast the new EEPROM hardware address onto
the network to inform the network that there has been a change.
This section of code converts the hardware address from the current
EEPROM to canonical form in preparation for the broadcast message.

7 Saves the new hardware address in the is_addr member of the
el_softc data structure.

8 If an IP address has been configured for this interface, informs the
network that there is a new hardware address for the IP address by
sending out an ARP packet.

9 Marks this new hardware address as the link address for this interface.

10 Informs the packet filter of the new hardware address.

11 Saves the EEPROM contents in the el_softc data structure.

5.1.11 Registering the Interrupt Handler

The following code shows how the el_probe() routine registers the
interrupt handler. The Writing Device Drivers manual provides detailed
information on the data structures and routines that relate to the

5–14 Implementing the Autoconfiguration Support Section (probe)

registration of interrupt handlers. All network device drivers are required to
register interrupt handlers.

el_intr_info.configuration_st = (caddr_t)ctlr; 1
el_intr_info.intr = el_intr; 2
el_intr_info.param = (caddr_t)unit; 3
el_intr_info.config_type = CONTROLLER_CONFIG_TYPE; 4
if (ctlr->bus_hd->bus_type == BUS_PCMCIA) 5

el_intr_info.config_type |= SHARED_INTR_CAPABLE;

el_ihandle.ih_bus = ctlr->bus_hd; 6
el_ihandle.ih_bus_info = (char *)&el_intr_info; 7

sc->hid = handler_add(&el_ihandle); 8
if (sc->hid == (ihandler_id_t *)(NULL)) { 9

printf("el%d: interrrupt handler add failed\n", unit);
if (sc->ispcmcia)

pcmcia_unregister_event_callback(card_infop->socket_vnum,
CARD_REMOVAL_EVENT,
(caddr_t)el_card_remove);

if_dealloc(sc->is_ed);
lan_ehm_free(&sc->ehm);
FREE(sc, M_DEVBUF);
return(0);

}

1 Sets the configuration_st member of the el_intr_info data
structure to the pointer to the controller data structure for this
3Com 3C5x9 device.

2 Sets the intr member of the el_intr_info data structure to
el_intr, which is the if_el device driver’s interrupt handler.

3 Sets the param member of the el_intr_info data structure to the
controller number for the controller data structure for this 3Com
3C5x9 device.

4 Sets the config_type member of the el_intr_info data structure to
the constant CONTROLLER_CONFIG_TYPE, which identifies the if_el
driver type as a controller driver.

5 If the if_el driver operates on the PCMCIA bus, indicates that the
if_el driver can handle shared interrupts.

6 Sets the ih_bus member of the el_ihandle data structure to the bus
data structure for the if_el device driver. The bus data structure
is referenced through the bus_hd member of the controller data
structure for this 3Com 3C5x9 device.

7 Sets the ih_bus_info member of the el_ihandle data structure to the
address of the bus-specific information data structure, el_intr_info.

8 Calls the handler_add() routine to register the device driver’s
interrupt handler and its associated ihandler_t data structure with
the bus-specific interrupt-dispatching algorithm.

Implementing the Autoconfiguration Support Section (probe) 5–15

This routine returns an opaque ihandler_id_t key, which is a
unique number that identifies the interrupt handler to be acted
on by subsequent calls to handler_del, handler_disable, and
handler_enable. The hid member of the el_softc data structure
stores this key.

9 If the return value from handler_add equals NULL, the if_el driver
failed to register an interrupt handler for the if_el device. This is a
fatal error, and the if_el driver will undo all previous operations and
return an error to the caller.

5.1.12 Saving the controller and softc Data Structure Pointers

The following code shows how the el_probe() routine saves the
controller and el_softc data structure pointers. All probe interfaces
perform this task.

el_softc[unit] = sc; 1
el_info[unit] = ctlr; 2

1 Saves the el_softc data structure pointer for this instance of the
3Com 3C5x9 device in the array of el_softc data structures. The unit
number is the offset to the data structure within the el_softc array.

2 Saves the controller data structure pointer for this instance of the
3Com 3C5x9 device in the array of controller data structures.

5.1.13 Trying to Allocate Another controller Data Structure

The following code shows how the el_probe() routine attempts to allocate
another controller data structure. You make this call so that a driver
can support multiple devices.

if (!sc->reprobe && lan_create_controller(&el_data) != ESUCCESS) { 1
printf("el%d: WARNING: create_controller failed\n", unit);

}

1 If this is the first time that the device has been probed, calls the
lan_create_controller() routine to try to create a second
controller data structure. If lan_create_controller() fails,
calls the printf() routine to display a message. (Routines that begin
with lan_ reside in the lan_common.c source file.)

5–16 Implementing the Autoconfiguration Support Section (probe)

5.1.14 Registering the shutdown Routine

The following code shows how the el_probe() routine registers its
shutdown() routine. The kernel calls this routine when the system shuts
down. The driver can specify an argument for the kernel to pass to the
routine at that time.
if (!sc->reprobe)

drvr_register_shutdown(el_shutdown, (void*)sc, DRVR_REGISTER); 1
return(~ 0);

}

1 Registers the shutdown() routine and directs the kernel to pass
a pointer to the driver’s softc data structure to the routine. The
shutdown() routine is important for those devices that perform
DMA-related operations.

5.2 Implementing the el_shutdown Routine
The driver’s shutdown() routine shuts down the controller. The kernel
calls all registered shutdown() routines when the system shuts down.

The el_probe() routine registers a shutdown() routine called
el_shutdown(). The if_el device driver implements the routine as
follows:
static void el_shutdown(struct el_softc *sc) 1
{

WRITE_CMD(sc, CMD_RESET); 2
DELAY(1000); 3

}

1 Specifies the argument that the kernel passes to the routine, which is a
pointer to the driver’s el_softc data structure. The driver specifies
this argument when it registers the shutdown() routine in its probe
interface.

2 Calls the WRITE_CMD macro to write data to the command port register.
In this call, the el_softc data structure for this 3Com 3C5x9 device
contains the I/O handle to reference the device’s command register. The
data to be written is the CMD_RESET bit, which resets the device.

3 Calls the DELAY macro to delay the execution of el_shutdown() for 1
millisecond before continuing execution. This gives the reset command
time to complete.

5.3 Implementing the el_autosense_thread Routine
The if_el device driver implements a driver-specific routine called
el_autosense_thread() to determine the mode of the network interface.
The el_probe() routine calls el_autosense_thread() during device
autoconfiguration.

Implementing the Autoconfiguration Support Section (probe) 5–17

To determine the mode, el_autosense_thread() tries to send a test data
packet in each of the possible modes. When it successfully transmits the data
packet, it sets the network interface to that mode. The lm_media_mode,
lm_media, and lm_media_state members of the el_softc data structure
keep track of the progress of the autosensing procedure, as follows:

• The value of the lm_media_mode member determines whether the
el_autosense_thread() will automatically determine the network
interface, or whether the user specified the type of media.

• The lm_media member specifies the current media. This member
changes each time that the driver uses a different medium to try to
transmit a packet. The if_el device driver can set this member to any
of the following values:

LAN_MEDIA_UTP The media is unshielded twisted-pair cable.

LAN_MEDIA_BNC The media is thin wire.

LAN_MEDIA_AUI The media is the attachment unit
interface (AUI).

• The lm_media_state member specifies the current state of the
autosensing procedure, as follows:

LAN_MEDIA_STATE_SENSING The driver is trying to determine
the media mode.

LAN_MEDIA_STATE_DETERMINED The media state has been determined.

The el_autosense_thread() routine is implemented as a kernel thread.
It performs the following tasks:

• Blocks until awakened (Section 5.3.2)

• Tests for the termination flag (Section 5.3.3)

• Starts up statistics (Section 5.3.4)

• Enters the packet transmit loop (Section 5.3.5)

• Saves counters prior to the transmit operation (Section 5.3.6)

• Allocates memory for a test packet (Section 5.3.7)

• Uses the default from the ROM (Section 5.3.8)

• Sets the media setting in the hardware (Section 5.3.9)

• Builds a test packet to transmit (Section 5.3.10)

• Transmits the test packet (Section 5.3.11)

• Sets a timer for the current kernel thread (Section 5.3.12)

• Tests for loss of carrier (Section 5.3.13)

5–18 Implementing the Autoconfiguration Support Section (probe)

• Determines whether packets were transmitted successfully
(Section 5.3.14)

• Prints debug information (Section 5.3.15)

• Sets up new media to try if transmit was unsuccessful (Section 5.3.16)

• Establishes media if transmit was successful (Section 5.3.17)

5.3.1 Setting Up the el_autosense_thread Routine

The following code shows how to set up the el_autosense_thread()
routine:

unsigned char el_junk_msg[] = { 1
0xaa, 0x00, 0x04, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0x60, 0x06,
’t’, ’h’, ’i’, ’s’, ’ ’, ’i’, ’s’, ’ ’, ’a’, ’ ’, ’j’, ’u’, ’n’, ’k’,
’ ’, ’a’, ’u’, ’t’, ’o’, ’s’, ’e’, ’n’, ’s’, ’e’, ’ ’, ’m’,
’e’, ’s’, ’s’, ’a’, ’g’, ’e’, ’.’

};
#define EL_JUNK_SIZE 46
#define EL_AUTOSENSE_PASSES 3*10
static void el_autosense_thread(struct el_softc *sc) 2
{

struct ifnet *ifp = &sc->is_if; 3
unsigned long prev_tint, prev_tmo, prev_err;
struct mbuf *m;
int good_xmits, wait, s, i, link_beat, passes;
unsigned long wait_flag=0;

1 Defines the message to transmit when trying to determine the mode of
the device.

2 Declares a pointer to the el_softc data structure and calls it sc.

3 Declares a pointer to an ifnet data structure and calls it ifp. This line
also initializes ifp to the address of the ifnet data structure for this
3Com 3C5x9 device. The ifnet data structure is referenced through
the is_if member of the el_softc data structure pointer. The is_if
name is an alternate name for the ac_if member of the arpcom data
structure. The ac_if member is referred to as the network-visible
interface and is actually the instance of the ifnet data structure for
this 3Com 3C5x9 device.

5.3.2 Blocking Until Awakened

The following code shows how the el_autosense_thread() routine blocks
until awakened:

while(1) {
assert_wait((vm_offset_t)&sc->autosense_flag, TRUE); 1
thread_block();

1 Waits for some process to indicate when to proceed with the autosense
test.

Implementing the Autoconfiguration Support Section (probe) 5–19

5.3.3 Testing for the Termination Flag

The following code shows how the el_autosense_thread() routine tests
for the termination flag:

while (thread_should_halt(sc->autosense_thread)) { 1
printf("el%d: Autosense thread exiting\n", ifp->if_unit);
thread_halt_self(); 2

}

1 Performs an initial test for the termination flag. The termination
flag would have been set if another kernel thread had called the
thread_terminate() routine for the el_autosense_thread()
routine.

2 The thread_halt_self() routine performs the work that is
associated with a variety of asynchronous traps (ASTs) for a kernel
thread that terminates itself. A kernel thread terminates itself by
calling the thread_halt_self() routine. The thread_halt_self()
routine does not return to the caller.

5.3.4 Starting Up Statistics

The following code shows how the el_autosense_thread() routine starts
up statistics:

s = splimp(); 1
simple_lock(&sc->el_softc_lock);
WRITE_CMD(sc, CMD_STATSENA);
simple_unlock(&sc->el_softc_lock);
splx(s);

1 Starts up statistics to test for the loss of the carrier during the transmit
operation.

5.3.5 Entering the Packet Transmit Loop

The following code shows how the el_autosense_thread() routine enters
the packet transmit loop:

good_xmits = passes = 0; 1
sc->lm_media_state = LAN_MEDIA_STATE_SENSING;
while (good_xmits < 5) {

while (thread_should_halt(sc->autosense_thread)) {
printf("el%d: Autosense thread exiting\n", ifp->if_unit);
s = splimp();
simple_lock(&sc->el_softc_lock);
WRITE_CMD(sc, CMD_STATSDIS);

5–20 Implementing the Autoconfiguration Support Section (probe)

simple_unlock(&sc->el_softc_lock);
splx(s);
thread_halt_self();

}

1 Enters a loop for transmitting a packet and determining if it succeeds.
A packet must go out twice successfully for media selection to succeed.
This algorithm probably will not work in all cases.

5.3.6 Saving Counters Prior to the Transmit Operation

The following code shows how the el_autosense_thread() routine saves
counters prior to the transmit operation:

prev_tint= sc->tint;
prev_err = ifp->if_oerrors;
prev_tmo = sc->xmit_tmo;

5.3.7 Allocating Memory for a Test Packet

The following code shows how the el_autosense_thread() routine
allocates memory for a test packet:

MGETHDR(m, M_WAIT, MT_DATA);
if ((passes++ > EL_AUTOSENSE_PASSES) || (m == NULL)) {

if (m) {
m_freem(m);
printf("el%d: Autosense thread cannot determine media\n",

ifp->if_unit);
printf("el%d: Use lan_config to configure if necessary\n",

ifp->if_unit);
} else {

printf("el%d: Autosense thread cannot get xmit buffer\n",
ifp->if_unit);

}

5.3.8 Using the Default from the ROM

The following code shows how the el_autosense_thread() routine uses
the default media setting from ROM. This code sequence signifies a last
resort if the driver is unable to determine the media.

switch (sc->eeprom.addrconf & 0xc) { 1
case ACR_10B5:

if (sc->lm_media_mode == LAN_MODE_AUTOSENSE)
sc->lm_media = LAN_MEDIA_AUI;

break;
case ACR_10B2:

if (sc->lm_media_mode == LAN_MODE_AUTOSENSE)
sc->lm_media = LAN_MEDIA_BNC;

break;
case ACR_10BT:
default:

if (sc->lm_media_mode == LAN_MODE_AUTOSENSE)
sc->lm_media = LAN_MEDIA_UTP;

break;
}
printf("el%d: Used %s setting from eeprom\n",

Implementing the Autoconfiguration Support Section (probe) 5–21

ifp->if_unit, lan_media_strings_10[sc->lm_media]);
good_xmits = 100;

1 Uses the default from ROM.

5.3.9 Setting the Media in the Hardware

The following code shows how the el_autosense_thread() routine sets
the media setting in the hardware:

el_reset(ifp->if_unit); 1
break; 2
} else {

1 Directs the hardware to use the media setting that was selected in the
previous section.

2 Breaks out of the packet transmit loop because the media setting has
been determined.

5.3.10 Building the Test Packet

The following code shows how the el_autosense_thread() routine builds
a test packet to transmit:

bcopy(el_junk_msg, mtod(m, caddr_t), EL_JUNK_SIZE); 1
bcopy(sc->is_addr, mtod(m, caddr_t), 6); 2
bcopy(sc->is_addr, mtod(m, caddr_t)+6, 6); 3
m->m_pkthdr.len = m->m_len = EL_JUNK_SIZE;

1 Loads the junk message into the mbuf data structure.

2 Sets the destination address as the address of the adapter.

3 Sets the source address as the address of the adapter.

5.3.11 Transmitting the Test Packet

The following code shows how the el_autosense_thread() routine
transmits the test packet:

s = splimp();
simple_lock(&sc->el_softc_lock);
IF_ENQUEUE(&ifp->if_snd, m);
el_start_locked(sc, ifp);
simple_unlock(&sc->el_softc_lock);
splx(s);

5–22 Implementing the Autoconfiguration Support Section (probe)

5.3.12 Setting a Timer for the Current Kernel Thread

The following code shows how the el_autosense_thread() routine sets a
timer for the current kernel thread:

wait = 0;
while ((prev_tint == sc->tint) && 1

(prev_tmo == sc->xmit_tmo) &&
(wait++ < 4)) {

assert_wait((vm_offset_t)&wait_flag, TRUE);
thread_set_timeout(1*hz); 2
thread_block();

}

1 Waits until the transmit makes it out, a timeout occurs, or 4 seconds
pass.

2 Sets the timer and puts the current thread to sleep. To use a timer,
thread_set_timeout() must be called between an assert_wait()
and a thread_block().

5.3.13 Testing for Loss of Carrier

The following code shows how the el_autosense_thread() routine tests
for loss of carrier:

link_beat = 0; 1
switch (sc->lm_media) {
case LAN_MEDIA_UTP:

s = splimp();
simple_lock(&sc->el_softc_lock);
WRITE_CMD(sc, CMD_WINDOW4);
i = READ_MD(sc);
if ((i & MD_VLB) != 0)

link_beat=1;
WRITE_CMD(sc, CMD_WINDOW1);
simple_unlock(&sc->el_softc_lock);
splx(s);

case LAN_MEDIA_BNC:
case LAN_MEDIA_AUI:

s = splimp();
simple_lock(&sc->el_softc_lock);
WRITE_CMD(sc, CMD_WINDOW6);
WRITE_CMD(sc, CMD_STATSDIS);
i = READ_BUS_D8(sc->basereg);
if (i != 0) {

wait = 100;
if (sc->debug)

printf("el%d: autosense: %s carrier loss\n",
ifp->if_unit,
lan_media_strings_10[sc->lm_media]);

}
WRITE_CMD(sc, CMD_STATSENA);

Implementing the Autoconfiguration Support Section (probe) 5–23

WRITE_CMD(sc, CMD_WINDOW1);
simple_unlock(&sc->el_softc_lock);
splx(s);
break;

default:
break;

}

1 Tests for loss of carrier errors. Most network adapters give carrier
errors if no cable is plugged in or if transceivers are not present.

5.3.14 Determining Whether Packets Were Transmitted Successfully

The following code shows how the el_autosense_thread() routine
determines whether packets were successfully transmitted:

if ((prev_err == ifp->if_oerrors) &&
(prev_tmo == sc->xmit_tmo) &&
(wait < 5)) { 1
good_xmits++;
if (sc->debug)

printf("el%d: autosense: %s packet sent OK (%d)\n",
ifp->if_unit, lan_media_strings_10[sc->lm_media],
good_xmits);

} else {
good_xmits = 0;

1 Determines whether traffic went out successfully.

5.3.15 Printing Debug Information

The following code shows how the el_autosense_thread() routine prints
debug information:

if (sc->debug) { 1
if (prev_err != ifp->if_oerrors)

printf("el%d: autosense: %s transmit error\n",
ifp->if_unit,
lan_media_strings_10[sc->lm_media]);

if (prev_tmo != sc->xmit_tmo)
printf("el%d: autosense: %s driver transmit timeout\n",

ifp->if_unit,
lan_media_strings_10[sc->lm_media]);

if ((wait >= 5) && (wait < 100))
printf("el%d: autosense: %s transmit timeout\n",

ifp->if_unit,
lan_media_strings_10[sc->lm_media]);

}

1 Prints debugging information (if requested).

5.3.16 Setting Up New Media

The following code shows how the el_autosense_thread() routine
selects new media to try if the transmit operation failed:

switch (sc->lm_media) { 1
case LAN_MEDIA_AUI:

5–24 Implementing the Autoconfiguration Support Section (probe)

if (sc->lm_media_mode == LAN_MODE_AUTOSENSE)
sc->lm_media = LAN_MEDIA_UTP;

break;
case LAN_MEDIA_BNC:

if (sc->lm_media_mode == LAN_MODE_AUTOSENSE)
sc->lm_media = LAN_MEDIA_AUI;

break;
case LAN_MEDIA_UTP:
default:

if (sc->lm_media_mode == LAN_MODE_AUTOSENSE)
sc->lm_media = LAN_MEDIA_BNC;

break;
}
el_reset(ifp->if_unit); 2

}
}

1 Selects new media.

2 Calls the el_reset() routine to reset the hardware. This reset will
establish the next media to try.

5.3.17 Establishing the Media

The following code shows how the el_autosense_thread() routine
establishes the new media:

}
if (sc->debug) {

if ((sc->lm_media == LAN_MEDIA_UTP) && !link_beat &&
(passes <= EL_AUTOSENSE_PASSES))

printf("el%d: No Link Beat signal\n", ifp->if_unit);
}
sc->lm_media_state = LAN_MEDIA_STATE_DETERMINED; 1
printf("el%d: Autosense selected %s media\n", ifp->if_unit,

lan_media_strings_10[sc->lm_media]);
s = splimp(); 2
simple_lock(&sc->el_softc_lock); 3
WRITE_CMD(sc, CMD_STATSDIS); 4
simple_unlock(&sc->el_softc_lock); 5
splx(s); 6

}
}

1 Sets the lm_media_state member of the softc data structure to
LAN_MEDIA_STATE_DETERMINED. This indicates that the driver has
successfully selected a media mode.

2 Calls the splimp() routine to mask all LAN hardware interrupts.
Upon successful completion, splimp() stores an integer value in the
s variable. This value represents the CPU priority level that existed
before the call to splimp().

3 Calls the simple_lock() routine to assert a lock with exclusive
access for the resource that is associated with the el_softc_lock
data structure. This means that no other kernel thread can gain access
to the locked resource until you call simple_unlock() to release it.

Implementing the Autoconfiguration Support Section (probe) 5–25

Because simple locks are spin locks, simple_lock() does not return
until the lock has been obtained.

The el_softc_lock member of the el_softc data structure points to
a simple lock data structure. The if_el device driver declares this data
structure by calling the decl_simple_lock_data() routine.

4 Calls the WRITE_CMD macro to write data to the command port register.
In this call, el_autosense_thread() passes the if_el driver’s
el_softc data structure pointer. The data to be written is the statistics
disable command (CMD_STATDIS).

5 Releases the simple lock and resets the IPL.

6 Calls the splx() routine to reset the CPU priority to the level that is
stored in the s variable.

5–26 Implementing the Autoconfiguration Support Section (probe)

6
Implementing the Autoconfiguration

Support Section (attach)

The autoconfiguration support section implements a network device driver’s
attach interface. A network device driver’s attach interface establishes
communication with the device. The interface initializes the pointer to the
ifnet data structure and attaches the network interface to the packet filter.
The bus configuration code calls the driver’s attach interface.

The if_el device driver implements an attach() routine called
el_attach(). The el_attach() routine performs the following tasks:

• Initializes the media address and media header lengths (Section 6.2)

• Sets up the media (Section 6.3)

• Initializes simple lock information (Section 6.4)

• Prints a success message (Section 6.5)

• Specifies the network driver interfaces (Section 6.6)

• Sets the baud rate (Section 6.7)

• Attaches to the packet filter and the network layer (Section 6.8)

• Sets network attributes and registers the adapter (Section 6.9)

• Handles reinsertion operations (Section 6.10)

• Enables the interrupt handler (Section 6.11)

• Starts the polling process (Section 6.12)

6.1 Setting Up the el_attach Routine

The following code shows how to set up the el_attach() routine:

static int el_attach(struct controller *ctlr) 1
{

register int unit = ctlr->ctlr_num; 2
register struct el_softc *sc = el_softc[unit]; 3
register struct ifnet *ifp = &sc->is_if; 4
register struct sockaddr_in *sin; 5

1 Declares as an argument a pointer to a controller data structure
for this controller. This data structure contains such information
as the controller type, the controller name, and the current status

Implementing the Autoconfiguration Support Section (attach) 6–1

of the controller. The bus configuration code passes this initialized
controller data structure to the driver’s probe and attach
interfaces.

2 Declares a unit variable and initializes it to the controller number for
this controller. This controller number identifies the specific 3Com
3C5x9 controller that is being attached. The controller number is
contained in the ctlr_num member of the controller data structure
for this device.

3 Declares a pointer to the el_softc data structure called sc and
initializes it to the el_softc data structure for this device. The
controller number (which is stored in the unit variable) is used as an
index into the array of el_softc data structures to determine which
el_softc data structure is associated with this device.

4 Declares a pointer to an ifnet data structure called ifp and initializes
it to the address of the ifnet data structure for this device.

5 Declares a pointer to a sockaddr_in data structure called sin.

6.2 Initializing the Media Address and Media Header
Lengths

The el_attach() routine sets up the media’s address length and header
length, as follows:

if (!sc->reprobe) { 1
ctlr->alive |= ALV_STATIC; 2
ifp->if_addrlen = 6; 3
ifp->if_hdrlen = 4

sizeof(struct ether_header) + 8;

1 Examines the value of the reprobe member of the driver’s softc data
structure to determine whether the user has reinserted the PCMCIA
card. If the card has been reinserted, the driver skips to the code in
Section 6.10.

2 Because the if_el device driver must always be linked into the kernel,
sets the ALV_STATIC bit. If your driver can be dynamically loaded, set
the ALV_NOSIZER bit instead.

3 Sets the if_addrlen member of the ifnet data structure for this
device to the media address length, which in this case is 6 bytes (the
IEEE standard 48-bit address).

4 Sets the if_hdrlen member of the ifnet data structure for this
device to the media header length. The el_attach() routine uses the
sizeof operator to return the size of the data structure because it can
differ from one network type to another. In this example, the media

6–2 Implementing the Autoconfiguration Support Section (attach)

header length is the size of the ether_header data structure plus 8
(the size of the maximum LLC header).

The media headers are represented by the following data structures:

ether_header The media header structure for Ethernet-related
media. The if_ether.h file defines the
ether_header structure.

fddi_header The media header structure for FDDI-related
media. The if_fddi.h file defines the
fddi_header structure.

trn_header The media header structure for Token Ring-related
media. The if_trn.h file defines the
trn_header structure.

6.3 Setting Up the Media

The following code shows how the el_attach() routine sets up
media-related information:

sc->is_ac.ac_bcastaddr = (u_char *)etherbroadcastaddr; 1
sc->is_ac.ac_arphrd = ARPHRD_ETHER; 2
ifp->if_mtu = ETHERMTU; 3
ifp->if_mediamtu = ETHERMTU; 4
ifp->if_type = IFT_ETHER; 5
((struct arpcom *)ifp)->ac_flag = 0; 6

sin = (struct sockaddr_in *)&ifp->if_addr; 7
sin->sin_family = AF_INET; 8

1 Sets the ac_bcastaddr member of the softc data structure for this
device to the Ethernet broadcast address. The system stores the
Ethernet broadcast address in the etherbroadcastaddr character
array. Tru64 UNIX defines the etherbroadcastaddr character array
in the if_ether.h file.

The name is_ac is an alternate name for the ess_ac member of the
ether_driver data structure. The ess_ac member is referred to as
the Ethernet common part and is actually an instance of the arpcom
data structure.

2 Sets the ac_arphrd member of the softc data structure for this
device to the constant ARPHRD_ETHER, which represents the Ethernet
hardware address. The if_arp.h file defines this constant.

For the Token Ring interface, set the ac_arphrd member to the
constant ARPHRD_802. The if_arp.h file also defines this constant.

For the FDDI interface, set the ac_arphrd member to the constant
ARPHRD_ETHER, which represents the Ethernet hardware address. See
RFC 826 for more details.

Implementing the Autoconfiguration Support Section (attach) 6–3

3 Sets the if_mtu member of the ifnet data structure for this device to
the maximum transmission unit, which for Ethernet-related media is
represented by the constant ETHERMTU.

The following media-specific constants represent the maximum
transmission unit:

ETHERMTU The maximum transmission unit for
Ethernet media. The if_ether.h file
defines the ETHERMTU constant.

FDDIMTU The maximum transmission unit for
FDDI media. The if_fddi.h file
defines the FDDIMTU constant.

TRN4_RFC1042_IP_MTU The maximum transmission unit for
the 4 megabit-per-second Token Ring
media. The if_trn.h file defines the
TRN4_RFC1042_IP_MTU constant.

TRN16_RFC1042_IP_MTU The maximum transmission unit for
the 16 megabit-per-second Token Ring
media. The if_trn.h file defines the
TRN16_RFC1042_IP_MTU constant.

4 Sets the if_mediamtu member of the ifnet data structure for this
device to the maximum transmission unit for the media, which for
Ethernet-related media is represented by the constant ETHERMTU.
Typically, you set this member to the same constant that is used for
the if_mtu member.

5 Sets the if_type member of the ifnet data structure for this device
to the type of network interface, which is represented by the constant
IFT_ETHER (Ethernet I or II interface).

The following describes some of the valid interface types that are
defined in the if_types.h file:

IFT_ETHER Ethernet I or II interface

IFT_FDDI FDDI interface

IFT_ISO88025 Token Ring interface

6 Sets the ac_flag member of the arpcom data structure for this device
to the value 0 (zero). This indicates that an IP address is currently
not configured for this interface.

7 Sets the sockaddr_in data structure pointer to the address of the
network interface. The address of the network interface is referenced
through the if_addr member of the ifnet data structure for this
device.

6–4 Implementing the Autoconfiguration Support Section (attach)

8 Sets the sin_family member of the sockaddr_in data structure to
the address family, which in this case is represented by the constant
AF_INET. The socket.h file defines this and other address family
constants.

6.4 Initializing Simple Lock Information

The following code shows how the el_attach() routine sets up simple
lock information:

ifp->if_affinity = NETALLCPU; 1
ifp->lk_softc = &sc->el_softc_lock; 2
simple_lock_setup(&sc->el_softc_lock, el_lock_info); 3

1 Sets the if_affinity member of the ifnet data structure for this
device to the constant NETALLCPU. The if_affinity member specifies
which CPU to run on. You can set this member to one of the following
constants defined in if.h:

NETMASTERCPU Specifies that you want to funnel the network device
driver because you have not made it symmetric
multiprocessor (SMP) safe. This means that the
network driver is forced to execute on a single (the
master) CPU. This setting is not recommended. You
are encouraged to make your driver SMP safe.

NETALLCPU Specifies that you do not want to funnel the network
device driver because you have made it SMP safe.
This means that the network driver can execute
on multiple CPUs. You make a network device
driver SMP safe by using the simple or complex lock
mechanism in all critical sections of the driver.

The if_el driver uses the simple lock mechanism and is, therefore,
SMP safe.

2 Sets the lk_softc member of the ifnet data structure for this device
to the address of the el_softc_lock. Both the if_el driver and the
network software above the driver use this lock whenever modifications
are made to the shared members of the ifnet data structure. Make
sure to supply a lock for the shared portion of the ifnet structure also.

3 Calls the simple_lock_init() routine to initialize the simple lock
structure called el_softc_lock. You need to initialize the simple
lock structure only once.

Implementing the Autoconfiguration Support Section (attach) 6–5

6.5 Printing a Success Message

The following code shows how the el_attach() routine prints a success
message:

printf("el%d: %s, hardware address: %s\n", unit,
ifp->if_version, ether_sprintf(sc->is_addr)); 1

1 Calls the printf() routine to display the following information
message on the console terminal:

• The controller number that is stored in the unit variable.

• The version of the network interface that is stored in the
if_version member of the ifnet data structure pointer.

• The hardware address that is accessed through the is_addr
member of the el_softc data structure for this device. The if_el
device driver maps the ac_enaddr member of the arpcom data
structure to the alternate name is_addr.

The argument list that is passed to printf() contains a call to the
ether_sprintf() routine. The ether_sprintf() routine converts
an Ethernet address to a printable ASCII string representation.

Make sure that your driver prints a similar message during its attach()
routine.

6.6 Specifying the Network Driver Interfaces

The following code shows how the el_attach() routine specifies the
network driver interfaces for the if_el driver:

ifp->if_ioctl = el_ioctl; 1
ifp->if_watchdog = el_watch; 2
ifp->if_start = (int (*)())el_start; 3

mb();
ifp->if_output = ether_output; 4
mb();
ifp->if_flags = IFF_BROADCAST|IFF_MULTICAST|

IFF_NOTRAILERS|IFF_SIMPLEX; 5

ifp->if_timer = 0; 6
ifp->if_sysid_type = 0; 7

ifp->if_version = "3Com EtherLink III"; 8

1 Sets the if_ioctl member of the ifnet data structure for this device
to el_ioctl, which is the if_el device driver’s ioctl interface.

2 Sets the if_watchdog member of the ifnet data structure for this
device to el_watch, which is the if_el device driver’s watchdog
interface.

6–6 Implementing the Autoconfiguration Support Section (attach)

3 Sets the if_start member of the ifnet data structure for this device
to el_start, which is the if_el device driver’s start transmit for
output interface.

4 Sets the if_output member of the ifnet data structure for this
device to ether_output, which is the if_el device driver’s output
interface. Tru64 UNIX provides this kernel routine. All network device
drivers, including Token Ring and FDDI drivers, must set if_output
to ether_output, rather than implementing a driver-specific output
interface.

An mb() (memory barrier) preceeds the setting of the if_output
member. Members of the ifnet structure must be initialized in the
order shown. The mb() ensures that all other function pointers are set
before the if_output function pointer is set. This order is necessary
because the if_el device can be unattached and later attached again.

5 Sets the if_flags member of the ifnet data structure for this device
to the bitwise inclusive OR of the following status bits that are defined
in the if.h file:

IFF_BROADCAST Signifies that the network interface supports
broadcasting and that the associated broadcast
address is valid.

IFF_MULTICAST Signifies that the network interface supports multicast.

IFF_NOTRAILERS Signifies that the transmission avoids the use of
trailers. The term trailers refers to the IP trailer
encapsulation protocol, which is obsolete.

IFF_SIMPLEX Signifies that the interface cannot identify
its own transmissions.

An mb() (memory barrier) precedes the setting of the if_flags
member. All the function pointers must be initialized before the
if_flags field is set, in case the if_el device has been unattached
and then attached again.

6 Sets the if_timer member of the ifnet data structure for this device
to the value 0 (zero). This is the number of seconds to wait until the
driver’s watchdog interface is called. Setting the if_timer member to
0 (zero) disables the timer.

7 Sets the if_sysid_type member of the ifnet data structure for
this device to the value 0 (zero). This optional member specifies a
unique number that identifies the bus adapter hardware to the network
management software. This unique number is referred to as the MOP
system ID device code.

Implementing the Autoconfiguration Support Section (attach) 6–7

8 Sets the if_version member of the ifnet data structure for this
device to the string 3Com EtherLink III.

6.7 Setting the Baud Rate
The following code shows how the el_attach() routine sets the baud rate:

ifp->if_baudrate = ETHER_BANDWIDTH_10MB; 1

1 Sets the if_baudrate member of the ifnet data structure for this
device to the constant ETHER_BANDWIDTH_10MB. The if_baudrate
member specifies the line speed.

You can use the following media-specific constants:

ETHER_BANDWIDTH_10MB

Ethernet line speed is 10 megabits per second.
The if_ether.h file defines the ETHER_BAND-
WIDTH_10MB constant.

ETHER_BANDWIDTH_100MB

Fast Ethernet line speed is 100 megabits per second.
The if_ether.h file defines the ETHER_BAND-
WIDTH_100MB constant.

FDDI_BANDWIDTH_100MB

FDDI line speed is 100 megabits per second. The if_fddi.h
file defines the FDDI_BANDWIDTH_100MB constant.

TRN_BANDWIDTH_4MB

Token Ring line speed is 4 megabits per second. The if_trn.h
file defines the TRN_BANDWIDTH_4MB constant.

TRN_BANDWIDTH_16MB

Token Ring line speed is 16 megabits per second. The
if_trn.h file defines the TRN_BANDWIDTH_16MB constant.

6.8 Attaching to the Packet Filter and the Network Layer
The following code shows how the el_attach() routine attaches to the
packet filter and the network layer:

attachpfilter(&(sc->is_ed)); 1

if_attach(ifp); 2
el_configured ++; 3

1 Calls the attachpfilter() routine to inform the packet filter driver
about this network driver. The attachpfilter() routine is passed
a pointer to the ether_driver data structure for this network device
driver.

6–8 Implementing the Autoconfiguration Support Section (attach)

2 Calls the if_attach() routine to attach an interface to the list of
active interfaces. The argument to the if_attach() routine is a
pointer to the ifnet data structure for with this device.

3 If the probe and attach operations were successful, increments the
number of successfully configured el devices. You must do this if you
are using lan_configure().

6.9 Setting Network Attributes and Registering the Adapter
The following code shows how the if_attach() routine sets the known
nonzero network attributes for the enhanced hardware management (EHM)
facility and registers the adapter:

lan_set_common_attributes(sc->ehm.current_val, &sc->is_ed); 1
lan_set_attribute(sc->ehm.current_val, NET_METHOD_NDX,

net_method_automatic);
lan_register_adapter(&sc->ehm, ctlr); 2

1 Sets any known nonzero network attributes for the enhanced hardware
management facility. Make sure that this function call is made only
after the call to if_attach().

2 Registers the adapter with EHM.

6.10 Handling the Reinsert Operation
If the user has reinserted the PCMCIA card, the if_el device driver does
not need to initialize the media address and media length. It does not need
to set up the media, specify the network driver interfaces, set the baud rate,
or initialize simple lock information. These tasks are done during the first
attach operation. The el_attach() routine needs only to initialize the
device, as follows:

} else {
printf("el%d: %s, reloaded -- current lan address: %s\n", unit,

ifp->if_version, ether_sprintf(sc->is_addr)); 1

if (ifp->if_flags & IFF_RUNNING) 2
el_init(unit);

}

1 If the adapter was reinserted, calls the printf() routine to display the
following information on the console terminal:

• The controller number (which is stored in the unit variable).

• The version of the network interface (which is stored in the
if_version member of the ifnet data structure).

• The hardware address of the device.
2 Calls the driver’s el_init() routine if the resources that are

associated with the network interface were previously allocated.

Implementing the Autoconfiguration Support Section (attach) 6–9

6.11 Enabling the Interrupt Handler

The following code shows how the el_attach() routine enables the
interrupt handler:

handler_enable(sc->hid); 1

1 Calls the handler_enable() routine to enable a previously registered
interrupt handler. The el_probe() routine calls handler_add to
register the interrupt handler and it stores the handler ID in the hid
member of the el_softc data structure for this device.

6.12 Starting the Polling Process

The following code shows how the el_attach() routine starts the polling
process:

if (el_polling && !sc->polling_flag) { 1
sc->polling_flag = 1;
timeout((void *)el_intr, (void *)unit, (1*hz)/el_pollint);

} else
sc->polling_flag = 0; 2

return(0);
}

1 Starts the polling process if the el_polling attribute specifies that
polling is to be done.

To start the polling process, el_attach() sets the polling_flag
member to 1 (true), then calls the timeout() routine to schedule the
interrupt handler to run at some point in the future. timeout() is
called with the following arguments:

• A pointer to the el_intr() routine, which is the if_el device
driver’s interrupt handler.

• The unit variable, which contains the controller number associated
with this device. This argument is passed to the el_intr() routine.

• The el_pollint variable, which specifies the amount of time to
delay before calling the el_intr() routine.

2 If the user requests that polling be disabled, el_attach() sets the
polling_flag member to 0 (false).

6–10 Implementing the Autoconfiguration Support Section (attach)

7
Implementing the unattach Routine

The el_unattach() routine is called to stop the device and to free memory
and other resources prior to unloading the driver or powering off the bus
to which the device is attached. The el_unattach() routine undoes
everything that was performed by the el_probe() and el_attach()
routines.

______________________ Note _______________________

The PCMCIA bus does not support the el_unattach() routine.

The el_unattach() routine performs the following tasks:

• Verifies that the interface has shut down (Section 7.2)

• Obtains and releases the simple lock (Section 7.3)

• Disables the interrupt handler (Section 7.4)

• Terminates the autosense thread (Section 7.5)

• Unregisters the PCMCIA event callback routine (Section 7.6)

• Stops the polling process (Section 7.7)

• Unregisters the shutdown interface (Section 7.8)

• Terminates the simple lock (Section 7.9)

• Unregisters the card from the hardware management database
(Section 7.10)

• Frees data structures and resources used by the adapter (Section 7.11)

7.1 Setting Up the el_unattach Routine

The following code shows how to set up the el_unattach() routine:

static int el_unattach(struct bus *bus, 1
struct controller *ctlr)

{
int unit = ctlr->ctlr_num; 2
int s, status;

Implementing the unattach Routine 7–1

struct el_softc *sc = el_softc[unit];
struct ifnet *ifp = &sc->is_if;

1 Declares as an argument a pointer to a bus data structure and a
controller data structure for this controller. The controller data
structure contains such information as the controller type, the controller
name, and the current status of the controller. This completely identifies
the adapter that is being unattached.

2 Declares a unit variable and initializes it to the controller number for
this controller. This controller number identifies the specific 3Com
3C5x9 controller that is being unattached. The controller number is
contained in the ctlr_num member of the controller data structure
for this device.

7.2 Verifying That the Interface Has Shut Down
The following code verifies that the interface is down. Make sure that other
errors returned by if_detach do not stop interface shutdown.

status = if_detach(ifp); 1
if (status == EBUSY) 2

return(status);
else if (status == ESUCCESS) 3

detachpfilter(sc->is_ed);
ifp->if_flags &= ~IFF_RUNNING; 4

1 Calls if_detach to remove this interface from the list of active
interfaces.

2 If the interface is still in use, it cannot be detached, so failure is
returned.

3 If the interface is not in use, detaches it from the list of those that the
packet filter monitors.

4 Marks the interface as no longer running.

7.3 Obtaining the Simple Lock and Shutting Down the
Device
The following code shows how the el_unattach() routine obtains the
simple lock, shuts down the device, and releases the simple lock:

s = splimp(); 1
simple_lock(&sc->el_softc_lock); 2

el_shutdown(sc); 3

simple_unlock(&sc->el_softc_lock); 4
splx(s); 5

1 Calls the splimp() routine to mask all LAN hardware interrupts.
Upon successful completion, splimp() stores an integer value in the

7–2 Implementing the unattach Routine

s variable. This value represents the CPU priority level that existed
before the call to splimp().

2 Calls the simple_lock() routine to assert a lock with exclusive
access for the resource that is associated with the el_softc_lock
data structure. This means that no other kernel thread can gain access
to the locked resource until you call simple_unlock() to release it.
Because simple locks are spin locks, simple_lock() does not return
until the lock has been obtained.

3 Stops the device and puts it in a reset state.

4 Calls the simple_unlock() routine to release the simple lock.

5 Calls the splx() routine to reset the CPU priority to the level that is
stored in the s variable.

7.4 Disabling the Interrupt Handler

The following code shows how the el_unattach() routine disables and
deletes the interrupt handler:

if (sc->hid) { 1
handler_disable(sc->hid);
handler_del(sc->hid);
sc->hid = NULL;

}

1 Disables and deletes the interrupt handler. The argument that is
supplied to each function is the handler ID that was returned by
handler_add in the el_probe() routine.

7.5 Terminating the Autosense Kernel Thread

The following code shows how the el_unattach() routine terminates the
autosense kernel thread:

if (sc->autosense_thread) { 1
thread_force_terminate(sc->autosense_thread);
sc->autosense_thread = NULL;

}

1 Terminates the autosense kernel thread.

Implementing the unattach Routine 7–3

7.6 Unregistering the PCMCIA Event Callback Routine
The following code shows how the el_unattach() routine unregisters
the PCMCIA event callback routine:

if (sc->ispcmcia) 1
pcmcia_unregister_event_callback(sc->cinfop->socket_vnum,

CARD_REMOVAL_EVENT,
(caddr_t)el_card_remove);

1 For PCMCIA versions of the card, directs the bus code not to return
notification if the card has been removed.

7.7 Stopping the Polling Process
The following code shows how the el_unattach() routine stops the polling
process:

s = splimp();
simple_lock(&sc->el_softc_lock);
if (el_polling && sc->polling_flag) { 1

untimeout((void *)el_intr, (void *)ifp->if_unit); 2
sc->polling_flag = 0; 3

}
simple_unlock(&sc->el_softc_lock);
splx(s);

1 Stops the polling process if polling had originally been requested by
the user.

2 Removes the scheduled event from the system’s timer queue.

3 Sets the polling_flag member to 0 (false) to indicate that polling
has stopped.

7.8 Unregistering the Shutdown Routine
The following code shows how the el_unattach() routine unregisters
the shutdown routine:

drvr_register_shutdown(el_shutdown, (void*)sc, DRVR_UNREGISTER); 1

1 Unregisters the shutdown routine, which was registered during the
probe operation.

7.9 Terminating the Simple Lock
The following code shows how the el_unattach() routine terminates the
softc lock:

simple_lock_terminate(&sc->el_softc_lock); 1

1 Frees up the softc lock.

7–4 Implementing the unattach Routine

7.10 Unregistering the Card from the Hardware
Management Database

The following code shows how the el_unattach() routine unregisters the
card from the hardware management database:

lan_ehm_free(&sc->ehm); 1

1 Frees up any memory allocated for enhanced hardware management
and unregisters this card from the hardware management database.

7.11 Freeing Resources

The following code shows how the el_unattach() routine frees data
structures and memory that the adapter uses:

FREE(sc, M_DEVBUF); 1
el_softc[unit] = NULL;
el_info[unit] = NULL;
el_configured--;

return (ESUCCESS);
}

1 Frees all memory that the adapter uses, and returns ESUCCESS to
indicate that the unattach operation completed successfully.

Implementing the unattach Routine 7–5

8
Implementing the Initialization Section

The initialization section prepares the network interface to transmit and
receive data packets. It can also allocate mbuf data structures for the
receive ring.

The if_el device driver implements the following routines in its
initialization section:

• el_init (Section 8.1)

• el_init_locked (Section 8.2)

8.1 Implementing the el_init Routine

The el_init() routine is a jacket routine that performs the following tasks:

• Determines whether the PCMCIA card is in the slot (Section 8.1.2)

• Sets the IPL and obtains the simple lock (Section 8.1.3)

• Calls the el_init_locked() routine to perform the initialization
(Section 8.1.4)

• Releases the simple lock and resets the IPL (Section 8.1.5)

• Returns the status from el_init_locked() (Section 8.1.6)

8.1.1 Setting Up the el_init Routine

The following code shows how to set up the el_init() routine:

static int el_init(int unit) 1
{

register struct el_softc *sc = el_softc[unit]; 2
register struct ifnet *ifp = &sc->is_if; 3
int i, s; 4

1 Specifies the unit number of the network interface as the only argument
to el_init().

2 Declares a pointer to the el_softc data structure called sc and
initializes it to the el_softc data structure for this device. The
controller number (which is stored in the unit variable) is used as an
index into the array of el_softc data structures to determine which
el_softc data structure is for this device.

Implementing the Initialization Section 8–1

3 Declares a pointer to an ifnet data structure called ifp and initializes
it to the address of the ifnet data structure for this device. The
ifnet data structure is referenced through the is_if member of the
el_softc data structure pointer. The is_if name is an alternate
name for the ac_if member of the arpcom data structure. The ac_if
member is referred to as the network-visible interface.

4 Declares the i and s variables. The i variable stores the value that
el_init_locked() returns. The s variable stores the value that
splimp() returns.

8.1.2 Determining Whether the PCMCIA Card Is Present

The following code shows how the el_init() routine determines whether
the PCMCIA card is still present in the system.

if (sc->cardout) return(EIO); 1

1 If the user has removed the PCMCIA card from the slot, returns the
error code EIO to the el_attach() routine. The el_card_remove()
routine sets the cardout member.

8.1.3 Setting the IPL and Obtaining the Simple Lock

All network device drivers must set the interrupt priority level (IPL) to
mask all LAN hardware interrupts. Raising the IPL protects the driver from
interrupts on the same CPU. Only network device drivers that operate on
multiple CPUs need to obtain a simple lock. The simple lock mechanism
protects resources in a symmetric multiprocessing environment.

The following code shows how the el_init() routine sets the IPL and
obtains the simple lock:

s = splimp(); 1
simple_lock(&sc->el_softc_lock); 2

1 Calls the splimp() routine to mask all LAN hardware interrupts.
Upon successful completion, splimp() stores an integer value in the
s variable. This value represents the CPU priority level that existed
before the call to splimp().

2 Calls the simple_lock() routine to assert a lock with exclusive
access for the resource that is associated with the el_softc_lock
data structure. This means that no other kernel thread can gain access
to the locked resource until you call simple_unlock() to release it.
Because simple locks are spin locks, simple_lock() does not return
until the lock has been obtained.

8–2 Implementing the Initialization Section

The el_softc_lock member of the el_softc data structure points to
a simple lock data structure. The if_el device driver declares this data
structure by calling the decl_simple_lock_data() routine.

8.1.4 Calling the el_init_locked Routine

The following code shows how the el_init() routine calls the
el_init_locked() routine, which performs the actual initialization tasks:

i = el_init_locked(sc, ifp, unit);

8.1.5 Releasing the Simple Lock and Resetting the IPL

The following code shows how the el_init() routine releases the simple
lock and resets the IPL. All network device drivers that do not use the simple
lock mechanism must reset the IPL. All network device drivers that use the
simple lock mechanism must reset the IPL after releasing the simple lock.

simple_unlock(&sc->el_softc_lock); 1
splx(s); 2

1 Calls the simple_unlock() routine to release the simple lock.

2 Calls the splx() routine to reset the CPU priority to the level that is
stored in the s variable.

8.1.6 Returning the Status from the el_init_locked Routine

The following code shows how the el_init() routine returns status from
el_init_locked():

return(i); 1
}

1 Exits and returns the status from el_init_locked().

8.2 Implementing the el_init_locked Routine
The el_init_locked() routine initializes the network interface. It is
called by the if_el device driver’s el_init() and el_reset_locked()
routines.

The el_init_locked() routine performs the following tasks:

• Resets the transmitter and receiver (Section 8.2.1)

• Clears interrupts (Section 8.2.2)

• Starts the device (Section 8.2.3)

• Ensures that the 10Base2 transceiver is off (Section 8.2.4)

• Sets the LAN media (Section 8.2.5)

Implementing the Initialization Section 8–3

• Sets the LAN media type attribute (Section 8.2.6)

• Selects memory mapping (Section 8.2.7)

• Resets the transmitter and receiver a second time (Section 8.2.8)

• Sets the LAN address (Section 8.2.9)

• Processes special flags (Section 8.2.10)

• Sets the debug flag (Section 8.2.11)

• Enables TX and RX (Section 8.2.12)

• Enables interrupts (Section 8.2.13)

• Sets the operational window (Section 8.2.14)

• Marks the device as running (Section 8.2.15)

• Starts the autosense kernel thread (Section 8.2.16)

• Starts transmitting pending packets (Section 8.2.17)

8.2.1 Resetting the Transmitter and Receiver

The following code shows how the el_init_locked() routine resets the
transmitter and receiver. This task is specific to the 3Com 3C5x9 device.
Make sure that you perform similar initialization tasks for the hardware
device that your network driver controls.

static int el_init_locked(struct el_softc *sc,
struct ifnet *ifp,
int unit)

{
register struct controller *ctlr = el_info[unit];
int i;

WRITE_CMD(sc, CMD_TXRESET); 1
WRITE_CMD(sc, CMD_RXRESET); 2

1 Calls the WRITE_CMD macro to write data to the command port register.
In this call, el_init_locked() passes the if_el driver’s el_softc
data structure pointer. The data to be written is the transmit (TX)
reset command (CMD_TXRESET).

2 Calls the WRITE_CMD macro a second time to write data to the command
port register. In this call, the data to be written to the command port
register is the receive (RX) reset command (CMD_RXRESET).

8.2.2 Clearing Interrupts

The following code shows how the el_init_locked() routine clears
interrupts.

8–4 Implementing the Initialization Section

This task is specific to the 3Com 3C5x9 device. Make sure that you perform
similar initialization tasks for the hardware device that your network driver
controls.

WRITE_CMD(sc, CMD_ACKINT+0xff); 1

1 Calls the WRITE_CMD macro to write data to the command port register.
The data written to the command port register is the acknowledge
interrupt command (CMD_ACKINT) plus a mask that specifies that all
interrupts are to be acknowledged.

8.2.3 Starting the Device

The following code shows how the el_init_locked() routine starts the
device. This task is specific to the 3Com 3C5x9 device. Make sure that
you perform similar initialization tasks for the hardware device that your
network driver controls.

WRITE_CMD(sc, CMD_WINDOW0);
i = READ_CCR(sc);
WRITE_CCR(sc, CCR_ENA | i); 1
WRITE_RCR(sc,

(sc->irq << 12) | RCR_RSV); 2

1 Calls the WRITE_CCR macro to write data to the 3Com 3C5x9 device’s
configuration control register. The data to be written consists of the
original register contents but with the enable adapter bit (CCR_ENA)
set.

2 Calls the WRITE_RCR macro to write data to the 3Com 3C5x9 device’s
resource configuration register. The data to be written is the bitwise
inclusive OR of the interrupt request (IRQ) stored in the irq member
of the el_softc data structure and the reserved bit for the resource
configuration register (RCR_RSV).

8.2.4 Ensuring That the 10Base2 Transceiver Is Off

The following code shows how the el_init_locked() routine ensures
that the 10Base2 transceiver is off. This task is specific to the 3Com
3C5x9 device. You may want to perform similar initialization tasks for the
hardware device that your network driver controls.

WRITE_CMD(sc, CMD_STOP2); 1
DELAY(800); 2

1 Calls the WRITE_CMD macro to write data to the command port register.
The data to be written is the stop 10Base2 command bit (CMD_STOP2).

2 Calls the DELAY macro to wait 800 microseconds before continuing
execution.

Implementing the Initialization Section 8–5

8.2.5 Setting the LAN Media

The following code shows how the el_init_locked() routine sets the
LAN media. This task is specific to the 3Com 3C5x9 device. You may want
to perform similar initialization tasks for the hardware device that your
network driver controls.

i = READ_ACR(sc); 1
i &= ~ (ACR_BASE|ACR_10B2); 2
switch (sc->lm_media) { 3
case LAN_MEDIA_BNC: 4

WRITE_ACR(sc,
i | ACR_10B2 | sc->iobase); 5

WRITE_CMD(sc, CMD_START2); 6
DELAY(800); 7
break;

case LAN_MEDIA_AUI: 8
WRITE_ACR(sc,

i | ACR_10B5 | sc->iobase); 9
break;

default: 10
sc->lm_media = LAN_MEDIA_UTP;

case LAN_MEDIA_UTP: 11
WRITE_ACR(sc,

i | ACR_10BT | sc->iobase); 12
WRITE_CMD(sc, CMD_WINDOW4); 13
i = READ_MD(sc);
WRITE_MD(sc, i | (MD_LBE | MD_JABE)); 14
break;

}

1 Calls the READ_ACR macro to read the data from the address control
register.

2 Clears the ACR_BASE (the I/O base address) and the ACR_10B2
(Ethernet thin coaxial cable) bits.

3 Evaluates the value that is stored in the lm_media member of the
el_softc data structure for this device.

4 Determines whether lm_media evaluates to LAN_MEDIA_BNC (media
mode is thin wire).

5 Calls the WRITE_ACR macro to write data to the address control register.
The data to be written establishes the Ethernet thin coaxial cable as
the media.

6 Calls the WRITE_CMD macro a second time to write data to the command
port register. In this call, the data that is written to the command port
register is CMD_START2 (the start 10Base2 command bit).

7 Calls the DELAY macro to wait 800 microseconds.

8 Determines whether lm_media evaluates to LAN_MEDIA_AUI (media
mode is the Attachment Unit Interface).

9 Calls WRITE_ACR to write to the address control register. The data to be
written establishes the Ethernet thick coaxial cable as the media.

8–6 Implementing the Initialization Section

10 For the default case, sets the lm_media member to LAN_MEDIA_UTP
(media mode is unshielded twisted pair cable).

11 Determines whether lm_media evaluates to LAN_MEDIA_UTP.

12 Calls WRITE_ACR to write to the address control register. The data to
be written establishes the Ethernet unshielded twisted-pair cable as
the media.

13 Calls WRITE_CMD to write to the command port register. The data to be
written is the window 4 diagnostic command bit (CMD_WINDOW4).

14 Calls the WRITE_MD macro to write data to the media type and status
register. The data to be written consists of the original data from that
register but with the link beat enabled (MD_LBE) and the jabber enabled
(MD_JABE) bits set.

8.2.6 Setting a LAN Attribute

The following code shows how the el_init_locked() routine sets the LAN
media type attribute for enhanced hardware management (EHM) support:

lan_set_attribute(sc->ehm.current_val, NET_MEDIA_NDX,
lan_media_strings[sc->lm_media]); 1

1 Sets the LAN media type attribute for EHM support.

8.2.7 Selecting Memory Mapping

The following code shows how the el_init_locked() routine selects
memory mapping. This task is specific to the 3Com 3C5x9 device.

if (ctlr->bus_hd->bus_type == BUS_PCMCIA) { 1
WRITE_CMD(sc, CMD_WINDOW0);
i = READ_CCR(sc);
if ((i & 0xc000) == 0x8000) {

WRITE_CMD(sc, CMD_WINDOW3);
i = sc->eeprom.icw & ~ (ASI_RS|ASI_RS|ASI_RSIZE8|ASI_RSIZE32|

ASI_PAR_35|ASI_PAR_13|ASI_PAR_11);
i |= (ASI_PAR_11 | ASI_RSIZE32);
WRITE_DATA(sc, i);

}
}

1 If the if_el device driver operates on the PCMCIA bus, performs a
read operation and a number of write operations to select the memory
mapping.

8.2.8 Resetting the Transmitter and Receiver Again

The following code shows how the el_init_locked() routine resets the
transmitter and receiver a second time. This task is specific to the 3Com
3C5x9 device. Make sure that you perform similar initialization tasks for
the hardware device that your network driver controls.

Implementing the Initialization Section 8–7

WRITE_CMD(sc, CMD_TXRESET); 1
WRITE_CMD(sc, CMD_RXRESET); 2

1 Calls the WRITE_CMD macro to write data to the command port
register. The data to be written is the transmit (TX) reset command
(CMD_TXRESET).

2 Calls the WRITE_CMD macro to write data to the command port register.
In this call, the data to be written is the receive (RX) reset command
(CMD_RXRESET).

8.2.9 Setting the LAN Address

The following code shows how the el_init_locked() routine sets the
LAN address. This task is specific to the 3Com 3C5x9 device. You may want
to perform similar initialization tasks for the hardware device that your
network driver controls.

WRITE_CMD(sc, CMD_WINDOW2); 1
i = (sc->is_addr[1] << 8) + sc->is_addr[0];
WRITE_AD1(sc, i);
i = (sc->is_addr[3] << 8) + sc->is_addr[2];
WRITE_AD2(sc, i);
i = (sc->is_addr[5] << 8) + sc->is_addr[4];
WRITE_AD3(sc, i);

lan_set_attribute(sc->ehm.current_val, NET_MAC_NDX,
ether_sprintf(sc->is_addr)); 2

1 Performs several write operations to set the LAN address.

2 Sets the LAN MAC address attribute for EHM support.

8.2.10 Processing Special Flags

The following code shows how the el_init_locked() routine processes
special flags. This task is specific to the 3Com 3C5x9 device. Make sure
that you perform similar initialization tasks for the hardware device that
your network driver controls.

if (ifp->if_flags & IFF_LOOPBACK) { 1
WRITE_CMD(sc, CMD_WINDOW4);
i = READ_ND(sc);
WRITE_ND(sc, ND_LOOP | i);
lan_set_attribute(sc->ehm.current_val, NET_LOOP_NDX, (void *)1); 2

}
else {

lan_set_attribute(sc->ehm.current_val, NET_LOOP_NDX, (void *)0);
}
i = RF_IND | RF_BRD; 3
if ((ifp->if_flags & IFF_ALLMULTI) || (sc->is_multi.lan_nmulti)) { 4

i |= RF_GRP;
}
if (ifp->if_flags & IFF_PROMISC) { 5

i |= RF_PRM;
lan_set_attribute(sc->ehm.current_val, NET_PROMISC_NDX, (void *)1); 6

}

8–8 Implementing the Initialization Section

else {
lan_set_attribute(sc->ehm.current_val, NET_PROMISC_NDX, (void *)0);

}
WRITE_CMD(sc, CMD_FILTER+i); 7

1 If loopback mode is requested, enables it.

2 Sets the LAN loopback attribute for EHM support.

3 Selects to receive frames that are sent to both the local address and the
broadcast address.

4 If the network device receives all multicast packets, selects all group
addresses.

5 If the network device receives all packets destined to all stations, selects
promiscuous mode.

6 Sets the LAN promiscuous mode attribute for EHM support.

7 Calls the WRITE_CMD macro to write data to the command port register.
In this call, the data to be written is the set receive (RX) filter command
(CMD_FILTER) with the appropriate flags set.

8.2.11 Setting the Debug Flag

The following code shows how the el_init_locked() routine sets the
debug flag for turning on debugging on a running system. This task is
optional.

if (ifp->if_flags & IFF_DEBUG) 1
sc->debug++;

else
sc->debug = 0;

if (sc->debug) { 2
WRITE_CMD(sc, CMD_WINDOW3);
i = READ_TXF(sc);
printf("el%d: Transmit FIFO size == %d\n", unit, i);
i = READ_RXF(sc);
WRITE_CMD(sc, CMD_WINDOW1);
printf("el%d: Receive FIFO size == %d\n", unit, i);

}

1 Sets debug mode if the IFF_DEBUG bit is set.

2 If debugging mode is set, prints the transmit and receive first-in/first-out
(FIFO) sizes.

8.2.12 Enabling TX and RX

The following code shows how the el_init_locked() routine enables
transmit (TX) and receive (RX). Make sure that you perform similar
initialization tasks for the hardware device that your network driver
controls.

Implementing the Initialization Section 8–9

WRITE_CMD(sc, CMD_RXENA); 1
WRITE_CMD(sc, CMD_TXENA); 2

1 Calls the WRITE_CMD macro to write data to the command port register.
The data to be written is the receive (RX) enable command (CMD_RXENA).

2 Calls the WRITE_CMD macro to write data to the command port register.
In this call, the data to be written is the transmit (TX) enable command
(CMD_TXENA).

8.2.13 Enabling Interrupts

The following code shows how the el_init_locked() routine enables
interrupts. Make sure that you perform similar initialization tasks for the
hardware device that your network driver controls.

LAN device drivers typically do not perform polling operations. However,
this example shows how polling operations can be done on the 3Com 3C5x9
device.

if (!el_polling) { 1
WRITE_CMD(sc, CMD_ZINTMASK+0xfe);
WRITE_CMD(sc, CMD_SINTMASK+(S_AF|S_TC|S_RC));

} else { 2
WRITE_CMD(sc, CMD_ZINTMASK+0xfe);
WRITE_CMD(sc, CMD_SINTMASK+0);

}

1 If the device is not polling (the el_polling flag is not set), calls
the WRITE_CMD macro to set the interrupt mask and enable adapter
failure (S_AF), transmit complete (S_TC), and receive complete (S_RC)
interrupts.

2 If the device is polling, calls the WRITE_CMD macro to clear the interrupt
mask and disable all interrupts.

8.2.14 Setting the Operational Window

The following code shows how the el_init_locked() routine sets the
operational window. This task is specific to the 3Com 3C5x9 device.

WRITE_CMD(sc, CMD_WINDOW1); 1
sc->txfree = READ_TXF(sc);

1 Calls the WRITE_CMD macro to set the operational window register.

8.2.15 Marking the Device as Running

The following code shows how the el_init_locked() routine marks the
device as running. All network device drivers perform this task.

8–10 Implementing the Initialization Section

ifp->if_flags |= IFF_RUNNING; 1
ifp->if_flags &= ~ IFF_OACTIVE; 2

1 Sets the IFF_RUNNING flag to mark the device as running.

2 Clears the IFF_OACTIVE flag to indicate that there is no output
outstanding.

8.2.16 Starting the Autosense Kernel Thread

The following code shows how the el_init_locked() routine starts the
autosense kernel thread. Only network device drivers that implement an
autosense kernel thread perform this task.

if (sc->lm_media_mode == LAN_MODE_AUTOSENSE) { 1
sc->lm_media_state = LAN_MEDIA_STATE_SENSING;
thread_wakeup_one((vm_offset_t)&sc->autosense_flag);

}

1 If in autosense mode, starts the autosense kernel thread.

8.2.17 Starting the Transmit of Pending Packets

The following code shows how the el_init_locked() routine starts
transmitting pending packets. Because el_init_locked() may have
been called as a result of an error or a reset operation, it needs to examine
its transmit queue for any pending transmit requests. If there are any, it
starts transmitting them.

if (ifp->if_snd.ifq_head) 1
el_start_locked(sc, ifp);

return ESUCCESS; 2
}

1 If there are any pending packets, starts transmitting them by calling
the el_start_locked() routine.

2 Returns ESUCCESS to the calling routine.

Implementing the Initialization Section 8–11

9
Implementing the Start Section

The start section of a network device driver transmits data packets across
the network. When the network protocol has a data packet to transmit,
it prepares the packet, then calls the start interface for the appropriate
network device driver. The start interface transmits the packet. When
the transmission is complete, it frees up the buffers that are associated
with the packet.

The if_el device driver implements the following routines in its start
section:

• el_start() (Section 9.1)

• el_start_locked() (Section 9.2)

9.1 Implementing the el_start Routine
The el_start() routine is a jacket routine that performs the following
tasks:

• Sets the IPL and obtains the simple lock (Section 9.1.1)

• Calls the el_start_locked() routine (Section 9.1.2)

• Releases the simple lock and resets the IPL (Section 9.1.3)

9.1.1 Setting the IPL and Obtaining the Simple Lock

The following code shows how the el_start() routine sets the IPL and
acquires the simple lock.
static void el_start(struct ifnet *ifp)
{

register int unit = ifp->if_unit, s;
register struct el_softc *sc = el_softc[unit];

s = splimp(); 1
if (!simple_lock_try(&sc->el_softc_lock)) { 2

splx(s); 3
return;

}

1 Calls the splimp() routine to mask all LAN hardware interrupts.
On successful completion, splimp() stores an integer value in the s
variable. This integer value represents the CPU priority level that
existed before the call to splimp().

Implementing the Start Section 9–1

2 Calls the simple_lock_try() routine to try to assert a lock with read
and write access for the resource that is associated with the specified
simple lock. The el_start() routine calls simple_lock_try()
rather than simple_lock() because simple_lock_try() returns
immediately if the resource is already locked; simple_lock()
spins until the lock has been obtained. Make sure that you call
simple_lock_try() when you need a simple lock but the code cannot
spin until the lock is obtained.

In this example, simple_lock_try() was used as an optimization.
If the simple lock is already held, then another thread is executing
somewhere in the driver and is either currently servicing the transmit
request queue or will service it soon. Therefore, the transmit request
that was put on the send queue prior to calling the start interface
will be handled shortly. In this case, the code does not need to wait for
the lock (because someone else will do the transmit) and can return to
the caller.

The argument to simple_lock_try() is a pointer to a simple lock
data structure. The if_el device driver declares the simple lock data
structure by calling the decl_simple_lock_data() routine, and it
stores a pointer to this data structure in the el_softc data structure.

3 If the simple_lock_try() routine fails to assert the simple lock,
calls the splx() routine to reset the CPU priority to the level that
the s variable specifies, then returns. Otherwise, the simple lock was
obtained.

9.1.2 Calling the el_start_locked Routine

The following code shows how the el_start() routine calls the
el_start_locked() routine, which starts the transmit operation:

el_start_locked(sc, ifp); 1

1 Calls the el_start_locked() routine, which performs the tasks that
are related to the start operation.

9.1.3 Releasing the Simple Lock and Resetting the IPL

The following code shows how the el_start() routine releases the simple
lock and resets the IPL.

simple_unlock(&sc->el_softc_lock); 1
splx(s); 2

}

1 Calls the simple_unlock() routine to release a simple lock for the
resource that is associated with the specified simple lock data structure.

9–2 Implementing the Start Section

This simple lock was previously asserted by calling the simple_lock()
or simple_lock_try() routine.

2 Calls the splx() routine to reset the CPU priority to the level that the
s variable specifies.

9.2 Implementing the el_start_locked Routine

The el_start_locked() routine performs the start operation. It is
called by the if_el device driver’s el_init_locked(), el_start(),
el_intr(), and el_autosense_thread() routines.

The el_start_locked() routine performs the following tasks:

• Discards all transmits if the user has removed the PCMCIA card
(Section 9.2.1)

• Removes packets from the pending queue and prepares the transmit
buffer (Section 9.2.2)

• Transmits the packets (Section 9.2.3)

• Accounts for the outgoing bytes (Section 9.2.4)

• Updates counters, frees the transmit buffer, and marks the output
process as active (Section 9.2.5)

• Indicates when to start the watchdog interface (Section 9.2.6)

______________________ Note _______________________

If you decide not to implement your start section as a jacket
routine, then some of the tasks listed in this section would be
performed by your start section.

9.2.1 Discarding All Transmits After the User Removes the PCMCIA
Card

The following code shows how the el_start_locked() routine discards all
pending transmits after the user has removed the card from the system.

static void el_start_locked(struct el_softc *sc,
struct ifnet *ifp)

{
struct mbuf *m, *ms, *mp, *mn;
int len, i, j, val;
unsigned char *dat;
struct ether_header *eh; 1
if (sc->cardout) { 2

Implementing the Start Section 9–3

IF_DEQUEUE(&ifp->if_snd, m); 3
while (m) { 4

m_freem(m);
IF_DEQUEUE(&ifp->if_snd, m);

}
return;

}

1 Declares a pointer to an ether_header data structure called eh. The
ether_header data structure contains information that is associated
with a 10 Mb/s and 100 Mb/s Ethernet header.

2 If the cardout member of the el_softc data structure for this device
is set to 1 (true), the user removed the PCMCIA card from the slot.

3 Calls the IF_DEQUEUE macro to remove an entry from the output queue.
The output queue is referenced through the if_snd member of the
ifnet data structure for this device. The memory buffer information
that IF_DEQUEUE manipulates is specified in the instance of the mbuf
data structure called m.

4 As long as a transmit request was dequeued from the output queue,
calls m_freem() to free the request and IF_DEQUEUE to dequeue the
next transmit request.

9.2.2 Removing Packets from the Pending Queue and Preparing the
Transmit Buffer

The following code shows how the el_start_locked() routine removes
packets from the pending queue and prepares the transmit buffer:

while(1) { 1
IF_DEQUEUE(&ifp->if_snd, m); 2
if ((m) && ((m->m_pkthdr.len+8) < sc->txfree)) { 3

ms = m; 4
while (ms && (ms->m_len == 0)) 5

ms = ms->m_next; 6
if (ms == NULL) { 7

m_freem(m);
continue;

}

9–4 Implementing the Start Section

mp = ms; 8
mn = mp->m_next; 9
len = mp->m_len; 10
while (mn != NULL) { 11

if (mn->m_len == 0) {
mp->m_next = mn->m_next;
mn->m_next = NULL;
m_free(mn);

} else { 12
len += mn->m_len;
mp = mn;

}
mn = mp->m_next;

}

1 While true, removes packets from the pending queue and has the device
transmit the packets.

2 Calls the IF_DEQUEUE macro to remove an entry from the output queue.
The output queue is referenced through the if_snd member of the
ifnet data structure for this device. The memory buffer information is
the instance of the mbuf data structure called m.

3 Checks that the total packet length is less than the number of bytes left
in the transmit first-in/first-out (FIFO).

4 Eliminates any zero-length segments. The ms mbuf pointer will point to
the first buffer segment with data.

5 Skips over any leading zero-length segments.

6 Stores the next memory buffer in the chain of mbuf data structures in
the ms mbuf pointer. The m_next member stores the next memory
buffer in the chain. Network device drivers typically reference this
member through the alternate name m_next, which is defined in the
mbuf.h header file.

7 If this is a zero-length transmit, calls the m_freem() routine to free the
mbuf buffer chain.

8 Stores the first memory buffer in the chain of mbuf data structures in
the mp mbuf pointer.

9 Stores the next memory buffer in the chain of mbuf data structures in
the mn mbuf pointer.

10 Stores the amount of data in the mp mbuf in the len variable. The
mh_len member of the mbuf data structure pointer stores the amount
of data in this mbuf data structure. Network device drivers typically
reference this member through the alternate name m_len, which is
defined in the mbuf.h header file.

11 While the mn mbuf is not NULL, manipulates the mh_len and mh_next
members of the mbuf data structure to eliminate any zero-length buffers

Implementing the Start Section 9–5

in the middle. The mfree() routine is called to free any zero-length
memory buffers.

12 Otherwise, adds the length and sets the next memory buffer in the
chain to the mp mbuf pointer.

9.2.3 Transmitting the Buffer

The following code shows how the el_start_locked() routine transmits
the buffer:

WRITE_DATA(sc, len | TX_INT); 1
dat = mtod(ms, unsigned char *);
len = ms->m_len;
while (ms != NULL) {

io_blockwrite((vm_offset_t)dat, 2
sc->data,
(u_long)(len & ~ 3),
HANDLE_LONGWORD);

dat += (len & ~ 3);

ms = ms->m_next;

i = len % 4; 3
if (ms == NULL) {

if (i) {
val = 0;
for (j=0; j<i; j++)

val |= (*dat++ << (8*j));
WRITE_DATA(sc, val);

}
} else {

if (i) {
val = 0;

for (j=0; j<i; j++)
val |= (*dat++ << (8*j));

dat = mtod(ms, unsigned char *);

if (ms->m_len <= (4-i)) {
for (j=0; j<ms->m_len; j++)

val |= (*dat++ << (8*(j+i)));
ms = NULL;

} else {
len = ms->m_len - (4-i);
for (j=i; j<4; j++)

val |= (*dat++ << (8*j));
}
WRITE_DATA(sc, val);

} else {

dat = mtod(ms, unsigned char *);
len = ms->m_len;

}
}

}

1 Requests an interrupt upon completion of the transmit operation.

9–6 Implementing the Start Section

2 Copies transmit data from memory to the card using 32-bit writes. Only
a multiple of 4 bytes can be copied this way.

3 If some number of bytes (fewer than 4) remain in the current memory
buffer, the driver either copies those bytes directly to the card (if they
were the last bytes for the entire frame), or combines those bytes with
bytes from the next memory buffer (if there is more data for this frame).

9.2.4 Accounting for Outgoing Bytes

The following code shows how the el_start_locked() routine accounts
for the outgoing bytes:

sc->txfree -= ((m->m_pkthdr.len + 3) & ~ 0x3); 1
sc->txfree -= 4;

1 Maintains the number of bytes free in the transmit FIFO.

9.2.5 Updating Counters, Freeing the Transmit Buffer, and Marking
the Output Process as Active

The following code shows how the el_start_locked() routine updates
counters, frees the transmit buffer, and marks the output process as active:

ADD_XMIT_PACKET(ifp, sc, m->m_pkthdr.len); 1
eh = mtod(m, struct ether_header *);
if (eh->ether_dhost[0] & 0x1) {

ADD_XMIT_MPACKET(ifp, sc, m->m_pkthdr.len);
}

m_freem(m); 2

ifp->if_flags |= IFF_OACTIVE;

} else if (m) { 3
IF_PREPEND(&ifp->if_snd, m);
break;

} else
break;

}

1 Updates the counters using the ADD_XMIT_PACKET and possibly the
ADD_XMIT_MPACKET (for multicast packets) macros. These macros are
defined in the lan_common.h file. Most network drivers perform this
task in the transmit complete interface.

2 Calls the m_freem() routine to free the mbuf buffer. Network drivers
must free the buffer after the transmit operation is complete.

3 If there is no room for this transmit, puts the mbuf back on the queue.

Implementing the Start Section 9–7

9.2.6 Indicating When to Start the Watchdog Routine

The following code shows how the el_start_locked() routine indicates
the time for starting the driver’s watchdog interface. Although this task is
optional, we recommend that all network drivers perform this task.

ifp->if_timer = 3; 1
}

1 Sets the time (in seconds) for starting the if_el driver’s watchdog()
routine, called el_watch(). After the transmit complete interrupt is
received, the interrupt service routine sets if_timer back to zero,
thereby disabling the watchdog timer.

9–8 Implementing the Start Section

10
Implementing a Watchdog Section

Network device drivers can take advantage of the watchdog timer. The
network layer implements this mechanism to ensure that the network device
is transmitting data. The driver starts the watchdog timer when it sends
a transmit request to the device. After it receives the transmit completion
interrupt, the driver stops the timer. If the interrupt never happens, the
timer expires and the driver’s watchdog interface is called.

The watchdog timer is implemented using the if_timer member of the
device’s ifnet data structure. The value stored there represents the
number of seconds to wait for the transmit to complete. Once per second,
the network layer examines this value. If it is 0 (zero), then the timer is
disabled. Otherwise, the value is decremented, and if it reaches 0 (zero), the
driver’s watchdog interface is called.

The watchdog section of a network device driver is an optional interface, but
we recommend that all network drivers have one.

The if_el device driver implements a watchdog() routine called
el_watch(), which performs the following tasks:

• Sets the IPL and obtains the simple lock (Section 10.1)

• Increments the transmit timeout counter and calls the
el_reset_locked() routine to reset the unit (Section 10.2)

• Releases the simple lock and resets the IPL (Section 10.3)

10.1 Setting the IPL and Obtaining the Simple Lock
The following code shows how to set up the el_watch() routine and shows
how el_watch() sets the IPL and obtains the simple lock.
static int el_watch(int unit)
{

register struct el_softc *sc = el_softc[unit];
register struct ifnet *ifp = &sc->is_if;
int s;
s = splimp(); 1
simple_lock(&sc->el_softc_lock); 2

1 Calls the splimp() routine to mask all LAN hardware interrupts.
On successful completion, splimp() stores an integer value in the s
variable. This integer value represents the CPU priority level that
existed prior to the call to splimp().

Implementing a Watchdog Section 10–1

2 Calls the simple_lock() routine to assert a lock with exclusive access
for the resource that is associated with the el_softc_lock simple lock
data structure pointer. This means that no other kernel thread can
gain access to the locked resource until you call simple_unlock() to
release it. Because simple locks are spin locks, simple_lock() does
not return until the lock has been obtained.

10.2 Incrementing the Transmit Timeout Counter and
Resetting the Unit

The following code shows how the el_watch() routine counts the number
of transmit timeouts, clears the timer, and resets the unit:

sc->xmit_tmo++; 1

ifp->if_timer = 0;
el_reset_locked(sc, ifp, unit); 2

1 Increments the transmit timeout counter, which stores the number
of times transmit timeouts occur.

2 Calls the el_reset_locked() routine to reset the device.

10.3 Releasing the Simple Lock and Resetting the IPL

The following code shows how the el_watch() routine releases the simple
lock and resets the IPL.

simple_unlock(&sc->el_softc_lock);
splx(s);
return(0);

}

10–2 Implementing a Watchdog Section

11
Implementing the Reset Section

The reset section of a network device driver contains the code that resets the
LAN adapter when there is a network failure and there is a need to restart
the device. It resets all of the counters and local variables and can free up
and reallocate all of the buffers that the network driver uses.

The if_el device driver implements the following routines in its reset
section:

• el_reset() (Section 11.1)

• el_reset_locked() (Section 11.2)

11.1 Implementing the el_reset Routine

The el_reset() routine is a jacket routine that performs the following
tasks:

• Determines whether the user removes the PCMCIA card from the slot

• Sets the IPL and obtains the simple lock

• Calls the el_reset_locked() routine to reset the device

• Releases the simple lock and resets the IPL

The following code shows how this is done:

static void el_reset(int unit)
{

struct el_softc *sc = el_softc[unit];
struct ifnet *ifp = &sc->is_if;
int s;

if (sc->cardout) return; 1
s = splimp(); 2
simple_lock(sc->el_softc_lock);

el_reset_locked(sc, ifp, unit); 3

simple_unlock(sc->el_softc_lock); 4
splx(s);

1 If the user has removed the PCMCIA card from the slot, returns to
the calling routine.

2 Calls the splimp() routine to mask all LAN hardware interrupts
before obtaining the simple lock for the el_softc resource.

Implementing the Reset Section 11–1

3 Calls the el_reset_locked() routine, which performs the actual
tasks that are associated with resetting the device.

4 Calls the simple_unlock() routine to release the simple lock for the
el_softc data structure and then resets the CPU priority to the level
that it was originally at upon entrance to this routine.

11.2 Implementing the el_reset_locked Routine

The following code shows how the el_reset_locked() routine resets
and restarts the hardware:

static void el_reset_locked(struct el_softc *sc,
struct ifnet *ifp,

int unit)
{

ifp->if_flags &= ~ IFF_RUNNING; 1
el_init_locked(sc, ifp, unit); 2

}

1 Indicates that the device is no longer running by clearing the
IFF_RUNNING bit in the interface flags structure member.

2 Calls the el_init_locked() routine. See Section 8.2 for a description
of the el_init_locked() routine.

11–2 Implementing the Reset Section

12
Implementing the ioctl Section

The ioctl section of a network device driver contains the code that implements
a network device driver’s ioctl interface. The ioctl interface performs
miscellaneous tasks that have nothing to do with data packet transmission
and reception. Typically, it turns specific features of the hardware on or off.

The el_ioctl() routine performs the following tasks:

• Determines whether the user has removed the PCMCIA card from the
slot (Section 12.2)

• Sets the IPL and obtains the simple lock (Section 12.3)

• Recognizes the ioctl command and performs the appropriate
operations. Table 12–1 lists the ioctl commands that network device
drivers must recognize.

• Releases the simple lock and resets the IPL (Section 12.17)

Table 12–1: Network ioctl Commands
ioctl Command Required Description For More Information

SIOCENABLBACK No Enables loopback
mode.

Section 12.4

SIOCDISABLBACK No Disables loopback
mode.

Section 12.5

SIOCRPHYSADDR Yes Returns the current
and default MAC
addresses.

Section 12.6

SIOCSPHYSADDR Yes Sets the local MAC
address.

Section 12.7

SIOCADDMULTI Yes Adds the device to a
multicast group.

Section 12.8

SIOCDELMULTI Yes Removes the device
from a multicast
group.

Section 12.9

SIOCRDCTRS Yes Reads counters. Section 12.10

SIOCRDZCTRS Yes Reads and zeros
counters.

Section 12.10

SIOCSIFADDR Yes Brings up the device. Section 12.11

Implementing the ioctl Section 12–1

Table 12–1: Network ioctl Commands (cont.)

ioctl Command Required Description For More Information

SIOCSIFFLAGS Yes Ensures that the
interface is operating
correctly according
to the interface flags
(if_flags).

Section 12.12

SIOCSIPMTU Yes Sets the IP maximum
transmission unit
(MTU).

Section 12.13

SIOCSMACSPEED Yes Sets the media speed. Section 12.14

SIOCIFRESET No Resets the device. Section 12.15

SIOCIFSETCHAR Yes Sets network device
characteristics, such
as full duplex or
promiscuous mode.

Section 12.16

12.1 Setting Up the el_ioctl Routine

The following code shows how to set up the el_ioctl() routine:

static int el_ioctl(struct ifnet *ifp, 1
u_int cmd, 2
caddr_t data) 3

{
register struct el_softc *sc = el_softc[ifp->if_unit]; 4
register unit = ifp->if_unit; 5
struct ifreq *ifr = (struct ifreq *)data; 6
struct ifdevea *ifd = (struct ifdevea *)data; 7
struct ctrreq *ctr = (struct ctrreq *)data; 8
struct ifchar *ifc = (struct ifchar *)data; 9
int s, i, j, need_reset, lock_on = 1, status = ESUCCESS; 10
unsigned short ifmtu, speed; 11
u_char mclist_buf[NET_SZ_MCLIST]; 12

1 Specifies a pointer to the ifnet data structure for an if_el device.

2 Specifies the ioctl command.

3 Specifies a pointer to ioctl command-specific data to be passed to
or initialized by the device driver.

4 Declares a pointer to the el_softc data structure that is called sc and
initializes it to the el_softc data structure for this device.

5 Declares a unit variable and initializes it to the unit number for the
device.

6 Casts the data argument to a data structure of type ifreq for use with
the SIOCPHYSADDR, SIOCADDMULTI, SIOCDELMULTI, SIOCSIPMTU, and
SIOCSMACSPEED ioctl commands.

12–2 Implementing the ioctl Section

7 Casts the data argument to a data structure of type ifdevea for use
with the SIOCRPHYSADDR ioctl command.

8 Casts the data argument to a data structure of type ctrreq for use
with the SIOCRDCTRS and SIOCRDZCTRS ioctl commands.

9 Casts the data argument to a data structure of type ifchar for use
with the SIOCIFSETCHAR ioctl command.

10 Declares a lock_on variable and sets it to the value 1 (true), which
indicates that the simple lock is held. The el_ioctl() routine sets this
variable to the value 0 (false) when the simple lock is no longer in effect.

Declares a status variable and sets it to the constant ESUCCESS.
11 Declares an ifmtu variable that stores the requested MTU value for

the SIOCIPMTU command.

Declares a speed variable that stores the requested network speed
for the SIOCMACSPEED command.

12 Declares an mclist_buf buffer, which holds a character string. This
string is a list of all multicast addresses currently in use on the device.

12.2 Determining Whether the User Has Removed the
PCMCIA Card from the Slot
The following code shows how the el_ioctl() routine determines whether
the user has removed the PCMCIA card from the slot:

if (sc->cardout) return(EIO); 1

1 Examines the value of the cardout member of the el_softc data
structure for this device. If it is set to 1 (true), the user has removed
the PCMCIA card from the slot, and the driver returns the EIO error
constant to indicate an I/O error.

12.3 Setting the IPL and Obtaining the Simple Lock
The following code shows how the el_ioctl() routine sets the IPL and
obtains the simple lock:

s = splimp(); 1
simple_lock(&sc->el_softc_lock); 2

1 Calls the splimp() routine to mask all LAN hardware interrupts.
On successful completion, splimp() stores an integer value in the s
variable that represents the CPU priority level that existed before the
call to splimp().

2 Calls the simple_lock() routine to assert a lock with exclusive access
for the resource that is associated with el_softc_lock. This means
that no other kernel thread can gain access to the locked resource until

Implementing the ioctl Section 12–3

you call simple_unlock() to release it. Because simple locks are spin
locks, simple_lock() does not return until the lock has been obtained.

12.4 Enabling Loopback Mode (SIOCENABLBACK ioctl
Command)
The following code shows how the el_ioctl() routine implements the
SIOCENABLBACK ioctl command to enable loopback mode when an
application requests it. Support for the SIOCENABLBACK command is
optional. You can choose whether or not your driver supports it.

switch (cmd) { 1

case SIOCENABLBACK: 2
ifp->if_flags |= IFF_LOOPBACK; 3
if (ifp->if_flags & IFF_RUNNING) 4

el_reset_locked(sc, ifp, unit);
break;

1 Evaluates the value passed in through the cmd argument to determine
which ioctl command the caller has requested.

2 Determines whether the cmd argument is SIOCENABLBACK.

3 Sets the IFF_LOOPBACK bit in the if_flags member of the ifnet data
structure for this device.

4 If the device is running, calls the el_reset_locked() routine to
restart the network interface in loopback mode.

12.5 Disabling Loopback Mode (SIOCDISABLBACK ioctl
Command)
The following code shows how the el_ioctl() routine implements the
SIOCDISABLBACK ioctl command to disable loopback mode when an
application requests it. Support for the SIOCDISABLBACK command is
optional. However, if your driver supports SIOCENABLBACK, it must support
SIOCDISABLBACK.

case SIOCDISABLBACK: 1
ifp->if_flags &= ~IFF_LOOPBACK; 2
if (ifp->if_flags & IFF_RUNNING) 3

el_reset_locked(sc, ifp, unit);
break;

1 Determines whether the cmd argument is SIOCDISABLBACK.

2 Clears the IFF_LOOPBACK bit in the if_flags member of the ifnet
data structure for this device.

3 If the device is running, calls the el_reset_locked() routine.
The el_reset_locked() routine calls el_init_locked(), which
restarts the network interface in normal mode.

12–4 Implementing the ioctl Section

12.6 Reading Current and Default MAC Addresses
(SIOCRPHYSADDR ioctl Command)

The following code shows how the el_ioctl() routine implements the
SIOCRPHYSADDR ioctl command to read the current and default MAC
addresses when an application requests them:

case SIOCRPHYSADDR: 1
bcopy(sc->is_addr, ifd->current_pa, 6); 2
for (i=0; i<3; i++) { 3

j = sc->eeprom.addr[i];
ifd->default_pa[(i*2)] = (j>>8) & 0xff;
ifd->default_pa[(i*2)+1] = (j) & 0xff;

}
break;

1 Determines whether the cmd argument is SIOCRPHYSADDR.

2 Copies the current MAC address that is stored in the el_softc data
structure for this device to the ifd data structure, a command-specific
data structure of type ifdevea.

3 Copies the default MAC address that is stored in the driver’s el_softc
data structure for this device to the ifd data structure.

12.7 Setting the Local MAC Address (SIOCSPHYSADDR
ioctl Command)

The following code shows how the el_ioctl() routine implements the
SIOCSPHYSADDR ioctl command to set the local MAC address:

case SIOCSPHYSADDR: 1
bcopy(ifr->ifr_addr.sa_data, sc->is_addr, 6); 2

pfilt_newaddress(sc->is_ed.ess_enetunit, sc->is_addr); 3

if (ifp->if_flags & IFF_RUNNING) { 4
el_reset_locked(sc, ifp, unit);

}

simple_unlock(&sc->el_softc_lock); 5
splx(s); 6
lock_on = 0; 7

if (((struct arpcom *)ifp)->ac_flag & AC_IPUP) { 8
rearpwhohas((struct arpcom *)ifp);

}

if_sphyaddr(ifp, ifr); 9
break;

1 Determines whether the cmd argument is SIOCSPHYSADDR ioctl.

2 Copies the new MAC address to the ifnet data structure.

3 Calls the pfilt_newaddress() routine to copy the new address to
the packet filter.

Implementing the ioctl Section 12–5

4 If the 3Com 3C5x9 device is running, calls the el_reset_locked()
routine to restart the network interface with the new address.

5 Calls the simple_unlock() routine to release the simple lock for the
resource that is associated with el_softc_lock.

6 Calls the splx() routine to reset the CPU priority to the level that the
s variable specifies.

7 Sets the lock_on variable to 0 (false), which indicates that the simple
lock is no longer held.

8 If an IP address was configured, broadcasts an ARP packet to notify all
hosts that currently have this address in their ARP tables to update
their information.

9 Notifies the network layer about a possible change in the af_link
address.

12.8 Adding the Device to a Multicast Group
(SIOCADDMULTI ioctl Command)
The following code shows how the el_ioctl() routine implements the
SIOCADDMULTI ioctl command to add a multicast address:

case SIOCADDMULTI: 1

need_reset = 0;
if (bcmp(ifr->ifr_addr.sa_data, etherbroadcastaddr, 6) == 0) { 2

sc->is_broadcast++;
} else {

i = lan_add_multi(&sc->is_multi,
(unsigned char *)ifr->ifr_addr.sa_data);

switch (i) {
case LAN_MULTI_CHANGED:

if (sc->is_multi.lan_nmulti == 1) 3
need_reset++;

break;
case LAN_MULTI_NOT_CHANGED:

break;
case LAN_MULTI_FAILED:
default:

status = EINVAL;
break;

}
}

if ((ifp->if_flags & IFF_RUNNING) && (need_reset)) 4
el_reset_locked(sc, ifp, unit);

if (sc->debug) {
j = 0;
printf("el%d: Dump of multicast table after ADD (%d entries)\n",

unit, sc->is_multi.lan_nmulti);
for (i=0; i<sc->is_multi.lan_nmulti; i++) {

unsigned char *maddr;

LAN_GET_MULTI(&sc->is_multi, maddr, j);
printf(" %d %s (muse==%d)\n", i+1,

12–6 Implementing the ioctl Section

ether_sprintf(maddr),
sc->is_multi.lan_mtable[j-1].muse);

}
}
lan_build_mclist (mclist_buf, NET_SZ_MCLIST, &sc->is_multi); 5
lan_set_attribute(sc->ehm.current_val, NET_MCLIST_NDX, mclist_buf);
break;

1 Determines whether the cmd argument is SIOCADDMULTI.

2 If the address is broadcast, indicates the presence of another broadcast
user. If the address is multicast, the el_ioctl() routine adds the
address to the table. The EtherLink III family does not support any
multicast filtering. Either you receive all multicast addresses or you
do not receive any. The EtherLink III family does special-case the
broadcast address.

3 If the add succeeds and there are no other multicasts enabled,
increments a counter that indicates that the device needs to be reset.

4 If the device is running and multicasts and broadcasts have not already
been enabled, enables them.

5 Builds a text string that lists all currently active multicast addresses,
and sets this list as an enhanced hardware management (EHM)
attribute for this network device.

12.9 Deleting the Device from a Multicast Group
(SIOCDELMULTI ioctl Command)

The following code shows how the el_ioctl() routine implements the
SIOCDELMULTI ioctl command to delete a multicast address:

case SIOCDELMULTI: 1

need_reset = 0;
if (bcmp(ifr->ifr_addr.sa_data, etherbroadcastaddr, 6) == 0) { 2

sc->is_broadcast--;
} else {

i = lan_del_multi(&sc->is_multi,
(unsigned char *)ifr->ifr_addr.sa_data);

switch (i) {
case LAN_MULTI_CHANGED:

if (sc->is_multi.lan_nmulti == 0)
need_reset++;

break;
case LAN_MULTI_NOT_CHANGED:

break;
case LAN_MULTI_FAILED:
default:

status = EINVAL;
break;

}
}

if ((ifp->if_flags & IFF_RUNNING) && (need_reset))
el_reset_locked(sc, ifp, unit);

Implementing the ioctl Section 12–7

if (sc->debug) {
j = 0;
printf("el%d: Dump of multicast table after DEL (%d entries)\n",

unit, sc->is_multi.lan_nmulti);
for (i=0; i<sc->is_multi.lan_nmulti; i++) {

unsigned char *maddr;

LAN_GET_MULTI(&sc->is_multi, maddr, j);
printf(" %d %s (muse==%d)\n", i+1, ether_sprintf(maddr),

sc->is_multi.lan_mtable[j-1].muse);
}

}
lan_build_mclist (mclist_buf, NET_SZ_MCLIST, &sc->is_multi); 3
lan_set_attribute(sc->ehm.current_val, NET_MCLIST_NDX, mclist_buf);
break;

1 Determines whether the cmd argument is SIOCDELMULTI.

2 Examines the type of the multicast address and decrements the
appropriate counter. The el_ioctl() routine removes the capability
from the device only when there are no more active multicast addresses.

3 Builds a text string that lists all currently active multicast addresses,
and sets this list as an enhanced hardware management (EHM)
attribute for this network device.

12.10 Accessing Network Counters (SIOCRDCTRS and
SIOCRDZCTRS ioctl Commands)

The SIOCRDCTRS ioctl command returns the values of network counters.
The driver’s softc data structure stores a pointer to the counter information.
The driver returns the information to the caller in a ctrreq data structure,
which is passed into the ioctl() routine through the data argument.

The SIOCRDZCTRS ioctl command also zeroes the network counters.

The following code shows how the el_ioctl() routine implements the
SIOCRDCTRS and SIOCRDZCTRS ioctl commands:

case SIOCRDCTRS: 1
case SIOCRDZCTRS:

ctr->ctr_ether = sc->ctrblk; 2
ctr->ctr_type = CTR_ETHER; 3
ctr->ctr_ether.est_seconds = (time.tv_sec - sc->ztime) > 0xfffe ?

0xffff : (time.tv_sec - sc->ztime); 4

if (cmd == SIOCRDZCTRS) { 5
sc->ztime = time.tv_sec;
bzero(&sc->ctrblk, sizeof(struct estat));

}
break;

1 Determines whether the cmd argument is SIOCRDCTRS or
SIOCRDZCTRS.

12–8 Implementing the ioctl Section

2 Copies the current counters to the ctrreq data structure.

3 Indicates that these are Ethernet counters.

4 Returns the number of seconds since the counters were last zeroed.

5 If the user process requested the SIOCRDZCTRS command, zeroes the
counters and sets the ztime member of the softc data structure to the
current time. This indicates when the counters were zeroed.

For other types of network interfaces, you can specify a different counter
type and a different set of counters. Table 12–2 lists the types of counters
that the various network interfaces support.

Table 12–2: Network Interface Counter Types
Network Interface Counter Types

FDDI FDDI interface statistics

Status information

SMT attributes

MAC attributes

Path attributes

Port attributes

SMT MIB attributes

Extended MIB attributes (Compaq proprietary)

Token Ring Characteristics

Counters

MIB counters

MIB statistics

12.11 Bringing Up the Device (SIOCSIFADDR ioctl
Command)

The following code shows how the el_ioctl() routine implements the
SIOCSIFADDR ioctl command to bring up the device:

case SIOCSIFADDR: 1
ifp->if_flags |= IFF_UP; 2
el_reset_locked(sc, ifp, unit);

if (sc->ztime == 0) sc->ztime = time.tv_sec; 3
break;

1 Determines whether the cmd argument is SIOCSIFADDR.

Implementing the ioctl Section 12–9

2 Marks the interface as up and calls the el_reset_locked() routine
to start the network interface with the current settings.

3 Sets the counter cleared time (used by DECnet, netstat, clusters, and so
forth).

12.12 Using Currently Set Flags (SIOCSIFFLAGS ioctl
Command)
The following code shows how the el_ioctl() routine implements the
SIOCSIFFLAGS ioctl command to reset the device using currently set flags:

case SIOCSIFFLAGS: 1
if (ifp->if_flags & IFF_RUNNING) 2

el_reset_locked(sc, ifp, unit);
break;

1 Determines whether the cmd argument is SIOCSIFFLAGS.

2 If the 3Com 3C5x9 device is running, calls the el_reset_locked()
routine to restart the network interface with the current flag settings.

12.13 Setting the IP MTU (SIOCSIPMTU ioctl Command)
The following code shows how the el_ioctl() routine implements the
SIOCSIPMTU ioctl command to set the IP MTU. You must implement this
task in your network driver to accommodate the IP layer.

case SIOCSIPMTU: 1
bcopy(ifr->ifr_data, (u_char *)&ifmtu, sizeof(u_short));
if (ifmtu > ETHERMTU || ifmtu < IP_MINMTU) 2

status = EINVAL;
else {

ifp->if_mtu = ifmtu;
lan_set_attribute(sc->ehm.current_val, NET_MTU_NDX, (void *)ifmtu);

}
break;

1 Determines whether the cmd argument is SIOCSIPMTU.

2 Compares the passed value to the media’s maximum and minimum
values. If this value is not within the range allowed, the driver
returns an error. Otherwise, it sets the if_mtu member of the driver’s
ifnet data structure to the specified IP MTU value. Also, updates
the corresponding hardware attribute in the enhanced hardware
management (EHM) database.

12.14 Setting the Media Speed (SIOCSMACSPEED ioctl
Command)
The following code shows how the el_ioctl() routine implements
the SIOCSMACSPEED ioctl command to set the media speed. (The

12–10 Implementing the ioctl Section

SIOCSMACSPEED and SIOCIFSETCHAR ioctl commands perform some of
the same tasks.)

case SIOCSMACSPEED: 1
bcopy(ifr->ifr_data, (u_char *)&speed, sizeof(u_short));

if ((speed != 0) && (speed != 10)) { 2
status = EINVAL;
break;

}
break;

1 Determines whether the cmd argument is SIOCSMACSPEED.

2 If the LAN speed passed is anything other than 10 (0 means no change),
fails the request. (The if_el device can only operate at 10 Mb per
second.)

12.15 Resetting the Device (SIOCIFRESET ioctl Command)

The following code shows how the el_ioctl() routine implements
the SIOCIFRESET ioctl command to reset the device. Support for the
SIOCIFRESET command is optional. You can choose whether or not your
driver supports it.

case SIOCIFRESET: 1
el_reset_locked(sc, ifp, unit); 2
break;

1 Determines whether the cmd argument is SIOCIFRESET.

2 Calls the el_reset_locked() routine to restart the network interface.

12.16 Setting Device Characteristics (SIOCIFSETCHAR
ioctl Command)

The following code shows how the el_ioctl() routine implements the
SIOCIFSETCHAR ioctl command to set characteristics:

case SIOCIFSETCHAR: 1
need_reset = 0; 2

if ((ifc->ifc_media_speed != -1) && (ifc->ifc_media_speed != 10)) { 3
status = EINVAL;
break;

}

if ((ifc->ifc_auto_sense == LAN_AUTOSENSE_ENABLE) && 4
(ifc->ifc_media_type != -1)) {
status = EINVAL;
break;

}

Implementing the ioctl Section 12–11

if (ifc->ifc_auto_sense != -1) { 5
if ((ifc->ifc_auto_sense == LAN_AUTOSENSE_ENABLE) &&

(sc->lm_media_mode != LAN_MODE_AUTOSENSE)) {
sc->lm_media_mode = LAN_MODE_AUTOSENSE;
need_reset++;

} else if ((ifc->ifc_auto_sense == LAN_AUTOSENSE_DISABLE) &&
(sc->lm_media_mode == LAN_MODE_AUTOSENSE)) {

sc->lm_media_mode = sc->lm_media; 6
need_reset++;

}
}

if (ifc->ifc_media_type != -1) { 7

switch (ifc->ifc_media_type) { 8
case LAN_MEDIA_UTP:
case LAN_MEDIA_AUI:
case LAN_MEDIA_BNC:

if (ifc->ifc_media_type != sc->lm_media) 9
need_reset++;

sc->lm_media_mode = sc->lm_media = ifc->ifc_media_type;
break;

default:
status = EINVAL;

break;
}

}
if (need_reset && (ifp->if_flags & IFF_RUNNING)) 10

el_reset_locked(sc, ifp, unit);
break;

default: 11
status = EINVAL;

}

1 Determines whether the cmd argument is SIOCIFSETCHAR.

2 Assumes no device reset is necessary.

3 If the LAN speed passed is anything other than 10 (–1 means no
change), fails the request.

4 Examines the media mode settings. If the ioctl request specifies both
autosense enable and an explicit media setting, fails the request.

5 Determines whether autosensing has changed.

6 If autosensing is now disabled, selects the last known media.

7 Determines whether the explicit media type selection has changed.

8 If the requested media value is out of range or not supported by the
EtherLink III family, fails the ioctl request immediately.

The EtherLink III family supports the usual 802.3 media. The if_el
driver does not check the card’s capability in the registers because it is
not useful to do so. The registers always indicate they have all media,
regardless of what they really have.

12–12 Implementing the ioctl Section

If the user sets media that the card does not have, the interface may
not work.

9 Selects the new mode.

10 Resets the device to pick up the new mode (if the interface was running).

11 The default case returns an error that indicates that the caller has
issued an invalid ioctl command.

12.17 Releasing the Simple Lock and Resetting the IPL

The following code shows how the el_ioctl() routine releases the simple
lock and resets the IPL:

if (lock_on) { 1
simple_unlock(&sc->el_softc_lock);
splx(s);

}
return (status); 2

}

1 If the simple lock is still held, calls the simple_unlock() routine.

2 Returns the status of the ioctl request.

Implementing the ioctl Section 12–13

13
Implementing the Interrupt Section

The interrupt section of a network device driver contains the code that is
called whenever the network interface transmits or receives a frame.

The if_el device driver implements the following routines in its interrupt
section:

• el_intr() (Section 13.1)

• el_rint() (Section 13.2)

• el_tint() (Section 13.3)

• el_error() (Section 13.4)

______________________ Note _______________________

The if_el device driver implements a shared interrupt handler.
A shared interrupt handler is a driver routine that is registered
to take advantage of the shared interrupt framework that Tru64
UNIX provides for hardware devices that share an interrupt line.

The ISA bus does not currently support shared interrupts.

13.1 Implementing the el_intr Routine

The if_el device driver implements an interrupt handler called
el_intr(), which performs the following tasks:

• Sets the interrupt and priority level (IPL) and obtains the simple lock
(Section 13.1.1)

• Rearms the next timeout (Section 13.1.2)

• Reads the interrupt status (Section 13.1.3)

• Processes completed receive and transmit operations (Section 13.1.4)

• Acknowledges the interrupt (Section 13.1.5)

• Transmits pending frames (Section 13.1.6)

• Releases the simple lock and resets the IPL (Section 13.1.7)

• Indicates that the interrupt was serviced (Section 13.1.8)

Implementing the Interrupt Section 13–1

13.1.1 Setting the IPL and Obtaining the Simple Lock

The following code shows how the el_intr() routine sets the CPU’s IPL
and obtains the simple lock:

static int el_intr(int unit) 1
{

register u_int s;
volatile u_int status;
register struct el_softc *sc = el_softc[unit];
register struct ifnet *ifp = &sc->is_if;

if (el_card_out(sc)) return (INTR_NOT_SERVICED); 2

s = splimp(); 3
simple_lock(&sc->el_softc_lock); 4

1 Declares an argument that specifies the unit number of the network
interface that generated the interrupt.

2 Determines whether the card is still in the socket. If the card is no
longer in the socket, then returns the constant INTR_NOT_SERVICED to
the kernel interrupt dispatcher.

3 Calls the splimp() routine to mask all Ethernet hardware interrupts.

4 Calls the simple_lock() routine to assert a lock with exclusive access
for the resource that is associated with el_softc_lock.

13.1.2 Rearming the Next Timeout

The following code shows how the el_intr() routine rearms the next
timeout:

if (sc->polling_flag) 1
timeout((void *)el_intr, (void *)unit, (1*hz)/el_pollint); 2

1 Determines whether polling was started by testing the polling_flag
flag member in the el_softc data structure for this device.

2 If the polling process was started, calls the timeout() routine to
rearm the next timeout. The timeout() routine is called with the
following arguments:

• A pointer to the el_intr() routine, the if_el device driver’s
interrupt handler.

• The unit variable, which contains the controller number for this
device. This argument is passed to the el_intr() routine.

• The el_pollint variable, which specifies the amount of time to
delay before calling the el_intr() routine.

13–2 Implementing the Interrupt Section

13.1.3 Reading the Interrupt Status

The following code shows how the el_intr() routine uses the READ_STS
macro to read the interrupt status from the I/O status register:

status = READ_STS(sc);

13.1.4 Processing Completed Receive and Transmit Operations

The following code shows how the el_intr() routine processes the receive
and transmit rings:

if (((status & (S_RC|S_TC|S_AF)) == 0) || sc->cardout) { 1
simple_unlock(&sc->el_softc_lock);
splx(s);
return INTR_NOT_SERVICED;

}
while ((status & (S_RC|S_TC|S_AF)) && (!el_card_out(sc))) { 2

if (status & S_RC)
el_rint(sc, ifp);

if (status & S_TC)
el_tint(sc, ifp);

if (status & S_AF)
el_error(sc, ifp);

status = READ_STS(sc);
}

1 Examines the status that the READ_STS macro returns.

If the status variable does not have the receive complete (S_RC) bit,
the transmit complete (S_TC) bit, or the adapter failure (S_AF) bit set,
or if the PCMCIA card is out of the slot:

• Calls the simple_unlock() routine to release the simple lock for
the resource that is associated with el_softc_lock.

• Calls the splx() routine to reset the CPU priority to the level that
the s variable specifies.

• Returns the constant INTR_NOT_SERVICED to the kernel interrupt
dispatcher. This constant indicates that this shared interrupt was
not for the if_el device.

2 While the status variable has the receive complete (S_RC) bit, the
transmit complete (S_TC) bit, or the adapter failure (S_AF) bit set, and
if the card has not been removed from the machine:

• If the status variable has the S_RC bit set, calls the el_rint()
routine to process the receive interrupt.

• If the status variable has the S_TC bit set, calls the el_tint()
routine to process the transmit interrupt.

Implementing the Interrupt Section 13–3

• If the status variable has the S_AF bit set, calls the el_error()
routine to process the error.

• Calls the READ_STS macro to read the interrupt status again from
the I/O status register.

13.1.5 Acknowledging the Interrupt

The following code shows how the el_intr() routine acknowledges the
interrupt:

WRITE_CMD(sc, CMD_ACKINT+(S_IL)); 1

1 Calls the WRITE_CMD macro to write data to the command port register.
In this call, the regE member of the el_softc data structure specifies
the I/O handle that references the register in bus address space. The
acknowledge interrupt (CMD_ACKINT) and interrupt latch (S_IL) bits
specify the data to be written.

13.1.6 Transmitting Pending Frames

The following code shows how the el_intr() routine transmits pending
frames:

if (ifp->if_snd.ifq_head) { 1
el_start_locked(sc, ifp);

} else {
ifp->if_timer = 0; 2

}

1 Determines whether there are any transmits pending. If so, el_intr()
calls el_start_locked() to start the transmit operation.

2 Otherwise, disables the watchdog timer by setting the el_timer
member of the ifnet data structure to 0 (zero).

13.1.7 Releasing the Simple Lock and Resetting the IPL

The following code shows how the el_intr() routine releases the simple
lock and resets the IPL:

simple_unlock(&sc->el_softc_lock);
splx(s);

13–4 Implementing the Interrupt Section

13.1.8 Indicating That the Interrupt Was Serviced

The following code shows how the el_intr() routine indicates that the
interrupt was serviced:

return INTR_SERVICED; 1
}

1 Returns the INTR_SERVICED constant to the kernel interrupt
dispatcher to indicate that el_intr() serviced the shared interrupt.

13.2 Implementing the el_rint Routine

The if_el driver’s el_rint() routine is the receive interrupt completion
routine. It performs the following tasks:

• Counts the receive interrupt and reads the receive status (Section 13.2.1)

• Pulls the packets from the FIFO buffer (Section 13.2.2)

• Examines the first part of the packet (Section 13.2.3)

• Copies the received packet into the mbuf (Section 13.2.4)

• Discards a packet (Section 13.2.5)

13.2.1 Counting the Receive Interrupt and Reading the Receive
Status

The following code shows how the el_rint() routine counts the receive
interrupt and reads the receive status:

#define RXLOOP ((16*1024)/64) 1

static void el_rint(struct el_softc *sc,
struct ifnet *ifp)

{
int len, i, count=RXLOOP;
volatile short status;
struct mbuf *m;
unsigned char *dat;
unsigned int in;
struct ether_header eh;

sc->rint++; 2

status = READ_RXS(sc); 3

1 Defines a constant that represents the maximum number of packets in
a 16K receive buffer.

2 Increments the receive interrupt counter.

3 Calls the READ_RXS macro to read the receive status.

Implementing the Interrupt Section 13–5

13.2.2 Pulling the Packets from the FIFO Buffer

The following code shows how the el_rint() routine pulls the packets
from the first-in/first-out (FIFO) buffer. This task is specific to the hardware
device that is associated with the if_el device driver. If you need to perform
a similar task with your hardware device, use this example as a model.

while ((status > 0) && (count-- > 0)) { 1
len = status & RX_BYTES;
if ((status & RX_ER) || (len > 1518) || (len < 60)) { 2

if (status & RX_ER) { 3
status &= RX_EM;
if (sc->ctrblk.est_recvfail != 0xffff)

sc->ctrblk.est_recvfail++;
switch (status) {

case RX_EOR: 4
if (sc->ctrblk.est_overrun != 0xffff)

sc->ctrblk.est_overrun++;
if (sc->debug)

printf("el%d: Overrun\n", ifp->if_unit);
break;

case RX_ERT: 5
case RX_EOS:

sc->ctrblk.est_recvfail_bm |= 4;
if (sc->debug)

printf("el%d: Bad Sized packet\n", ifp->if_unit);
break;

case RX_ECR: 6
sc->ctrblk.est_recvfail_bm |= 1;
if (sc->debug)

printf("el%d: CRC\n", ifp->if_unit);
break;

case RX_EAL: 7
default:

sc->ctrblk.est_recvfail_bm |= 2;
if (sc->debug)

printf("el%d: Alignment\n", ifp->if_unit);
break;

}
} else

if ((sc->debug) && (len != 0)) 8
printf("el%d: Received illegal size packet (%d)\n",

ifp->if_unit, len);

} else {
if (len <= MHLEN-2-4) { 9

MGETHDR(m, M_DONTWAIT, MT_DATA);
} else {

MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m) {

MCLGET2(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {

m_freem(m);
m = (struct mbuf *)NULL;

}
}

}

1 Sets up a while loop that executes as long as there are complete
packets.

13–6 Implementing the Interrupt Section

2 Looks for errors.

3 Processes the error.

4 Processes the overrun error case.

5 Processes the runt and oversized error cases.

6 Processes the CRC error case.

7 Processes the alignment error case.

8 Discards the packet if none of the previous cases apply. This indicates a
size error.

9 Allocates a buffer for the received data. If the length of the received
data is less than a small mbuf, allocates a small mbuf. Otherwise, a 2K
cluster mbuf is allocated. This code is an optimization. In most cases,
a driver does not know the size of a receive packet when the buffer
resource is allocated.

13.2.3 Examining the First Part of the Packet

The following code shows how the el_rint() routine examines the first
part of the received packet:

if (m != NULL) { 1
m->m_pkthdr.len = m->m_len = len - sizeof(struct ether_header); 2
m->m_pkthdr.rcvif = ifp;
m->m_data += 2; 3

dat = mtod(m, unsigned char *); 4
len = (len + 3) & ~3;

if ((ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI)) == 0) { 5
io_blockread(sc->data,

(vm_offset_t)dat,
2UL*4UL,
HANDLE_LONGWORD); 6

len -= (2*4);
dat += (2*4);
if (*mtod(m, unsigned char *) & 0x01) { 7

Implementing the Interrupt Section 13–7

if (bcmp(mtod(m, unsigned char *),
etherbroadcastaddr, 6) != 0) { 8

int ix;
LAN_FIND_MULTI(&sc->is_multi,

mtod(m, unsigned char *),
ix, i); 9

if ((i != LAN_MULTI_FOUND) || 10
(sc->is_multi.lan_mtable[ix].muse == 0)) {

m_freem(m);
goto scrap;

}
}

}
}

1 If an mbuf was successfully allocated, copies the packet data into the
mbuf (receive data are 32-bit aligned).

2 Computes the length of the received data, excluding the size of the MAC
header. Records this length in the mbuf header. Sets the receiving
interface to be the if_el device by saving the if_el device’s ifnet
data structure address in the mbuf header.

3 Aligns the data pointer so that the IP header will be aligned on a 32-bit
boundary. Make sure that your network driver does this also.

4 Obtains the pointer to the data and calculates the number of longwords
in the FIFO transfer.

5 Because the EtherLink III performs no multicast filtering, if the
promiscuous bit and all multicast bits are not set, determines whether
any multicast addresses are actually wanted.

6 Reads the first two longwords to determine whether the packet is sent
to a multicast address.

7 Determines whether the packet contains either a multicast or a
broadcast group address.

8 Because the driver receives all broadcasts, makes sure that the group
address is not the broadcast address.

9 Calls the LAN_FIND_MULTI macro to find the multicast address.

10 If the multicast is not found, scraps the packet.

13.2.4 Copying the Received Packet into the mbuf

The following code shows how the el_rint() routine copies the received
packet into the mbuf:

io_blockread(sc->data,
(vm_offset_t)dat,
(u_long)len,
HANDLE_LONGWORD); 1

13–8 Implementing the Interrupt Section

eh = *(mtod(m, struct ether_header *)); 2
eh.ether_type = ntohs((unsigned short)eh.ether_type); 3
m->m_data += sizeof(struct ether_header); 4

ADD_RECV_PACKET(ifp, sc, m->m_pkthdr.len); 5
if (eh.ether_dhost[0] & 0x1) {

ADD_RECV_MPACKET(ifp, sc, m->m_pkthdr.len);
}

i = READ_RXS(sc); 6
if (i &= 0x7ff) {

if ((i & 0x400) == 0) {
m_freem(m);
goto scrap;

}
}
ether_input(ifp, &eh, m); 7

}
}

1 Calls the io_blockread() routine to perform the data transfer from
the FIFO buffer on the adapter to the mbuf in host memory.

2 Makes a copy of the ether_header data structure for the
ether_input() routine.

3 Converts the 2-byte ether_type field from network byte order to host
byte order and saves it in the ether_header data structure.

4 Adjusts the pointer to the received data to point past the MAC header
(skips past the destination address, source address, and ether_type
fields).

5 Calls the ADD_RECV_PACKET macro to increment the receive packet
(block) count. If this packet was destined for a broadcast or multicast
address, calls the ADD_RECV_MPACKET macro to increment those
statistics as well.

6 Calls the READ_RXS macro to read the receive status. If the packet just
received was not fully received, scraps the packet.

7 Calls the ether_input() routine to process the received Ethernet
packet. The packet is in the mbuf chain without the ether_header
data structure, which is provided separately.

13.2.5 Discarding a Packet

The following code shows how the el_rint() routine discards a packet.
Some receive interrupt handlers perform a copy of a few bytes of the
packet to determine if the packet is actually destined for the device. Thus,
this task is an optional optimization.
scrap:

WRITE_CMD(sc, CMD_RXDTP); 1
status = READ_RXS(sc);

}

Implementing the Interrupt Section 13–9

if ((sc->debug) && (count <= 0))
printf("el%d: Receive in INFINITE loop %04X\n", ifp->if_unit, status);

}

1 Calls the WRITE_CMD macro to write data to the command port register.
The data to be written is the receive discard top packet command
(CMD_RXDTP).

13.3 Implementing the el_tint Routine
The if_el device driver’s el_tint() routine is the transmit interrupt
completion routine. It performs the following tasks:

• Counts the transmit interrupt (Section 13.3.1)

• Reads the transmit status and counts all significant events
(Section 13.3.2)

• Manages excessive data collisions (Section 13.3.3)

• Writes to the status register to obtain the next value (Section 13.3.4)

• Queues other transmits (Section 13.3.5)

13.3.1 Counting the Transmit Interrupt

The following code shows how the el_tint() routine counts the transmit
interrupt:
#define TXLOOP ((16*1024)/64)
static void el_tint(struct el_softc *sc,

struct ifnet *ifp)
{

int count=TXLOOP;
volatile unsigned int status;

sc->tint++; 1

1 Increments a counter of the number of the transmit interrupts that
have been processed.

13.3.2 Reading the Transmit Status and Counting All Significant
Events

The following code shows how the el_tint() routine reads the transmit
status and counts all significant events:

status = READ_TXS(sc); 1
while ((status & (TX_CM<<8)) && (count-- > 0)) {

if (status & ((TX_JB|TX_UN)<<8)) { 2
ifp->if_oerrors++;
sc->ctrblk.est_sendfail++;
sc->txreset++;

WRITE_TXS(sc, status); 3

13–10 Implementing the Interrupt Section

WRITE_CMD(sc, CMD_TXRESET);
DELAY(10); 4
WRITE_CMD(sc, CMD_TXENA);

1 Calls the READ_TXS macro to read the transmit status from the
transmit status register.

2 Examines the status for a jabber or an underrun error. If either of these
errors happened, then the transmitter must be reset.

3 Clears the transmit status register and resets the transmitter.

4 Calls the DELAY macro to wait for 10 microseconds before reenabling
the transmitter.

13.3.3 Managing Excessive Data Collisions

The following code shows how the el_tint() routine manages excessive
data collisions:

} else if (status & (TX_MC<<8)) {

ifp->if_oerrors++; 1
ifp->if_collisions+=2;
if (sc->ctrblk.est_sendfail != 0xffff)

sc->ctrblk.est_sendfail++;
sc->ctrblk.est_sendfail_bm |= 1; 2
WRITE_TXS(sc, status);
WRITE_CMD(sc, CMD_TXENA);

} else {

1 Increments the output errors because the excessive data collisions
status means that the transmit failed.

2 Indicates excessive collisions.

13.3.4 Writing to the Status Register to Obtain the Next Value

The following code shows how the el_tint() routine writes to the status
register to obtain the next value:

WRITE_TXS(sc, status); 1
}

status = READ_TXS(sc);
}
sc->txfree = READ_TXF(sc); 2

if (sc->debug)
if (count <= 0)

printf("el%d: Transmit in INFINITE loop %04X\n", ifp->if_unit,
status);

1 Writes to the transmit status register to clear the current status in
preparation for reading the status for the next transmit completion
(if any).

Implementing the Interrupt Section 13–11

2 Updates the softc data structure with the amount of space that is
available in the transmit FIFO.

13.3.5 Queuing Other Transmits

The following code shows how the el_tint() routine clears the output
active flag to permit other transmits to be queued to the device:

ifp->if_flags &= ~IFF_OACTIVE;
}

13.4 Implementing the el_error Routine

The if_el driver’s el_error() routine implements the interface adapter
error routine, as follows:

static void el_error(struct el_softc *sc,
struct ifnet *ifp)

{
int i;

WRITE_CMD(sc, CMD_WINDOW4);
i = READ_FDP(sc); 1
printf("el%d: Adapter Failure - %04X\n", ifp->if_unit, i);
el_reset_locked(sc, ifp, ifp->if_unit); 2

}

1 Reads the FIFO diagnostic port register.

2 Resets the adapter to clear the failure condition.

13–12 Implementing the Interrupt Section

14
Network Device Driver Configuration

Device driver configuration incorporates device drivers into the kernel to
make them available to system administration and other utilities. The
operating system provides two methods for configuring drivers into the
kernel: static and dynamic. We recommend that you implement your driver
products as a single binary module so that customers can statically or
dynamically configure them into the kernel.

The driver’s configure interface handles all configuration operations
either at startup (for static configuration) or at run time (for dynamic
configuration). To support configuration, you must provide a sysconfigtab
file fragment, which contains device special file and bus-specific information.
The information in the sysconfigtab file fragment is added to the
system’s /etc/sysconfigtab database when the driver is installed. The
startup procedure and the sysconfig utility use the information that the
/etc/sysconfigtab database provides to locate the driver module and to
set device attributes.

The information that you provide in the sysconfigtab file fragment
depends on the bus on which the driver operates. The following
sysconfigtab file fragment entries are bus-specific:

• PCI_Option

The PCI_Option entry specifies the option data that is associated with
the PCI bus. See Writing PCI Bus Device Drivers for a description of the
values that you can specify with this entry.

• VBA_Option

The VBA_Option entry specifies the option data that is associated with
the VMEbus. See Writing VMEbus Device Drivers for a description of
the values that you can specify with this entry.

For more information on the sysconfigtab file fragment, as well as how
to build and either statically or dynamically link your driver, see Writing
Kernel Modules.

Network Device Driver Configuration 14–1

Index

Numbers and Special
Characters

10Base2 transceiver
ensuring that it is off, 8–5

A
allocating the ether_driver data

structure, 5–7
attach interface, 6–1

registering adapters, 6–9
setting network attributes, 6–9

autoconfiguration
attach interface, 6–1
probe interface, 5–1

autoconfiguration support
section, 1–10, 5–1
implementing, 6–1

autosense thread
context information, 3–9

autosensethread
starting, 8–11

B
base register, 3–6
baud rate

setting, 6–8
broadcast flag, 3–8
buffer

transmitting, 9–6
bus-specific information, 3–7

initializing, 5–8

C
carrier

checking for transmits, 5–23
cfg_subsys_attr_t data structure,

4–2
command port register

definitions, 2–2
common information

el_softc data structure, 3–2
computing the CSR addresses, 5–8
configuration, 14–1
configure interface, 4–1
configure section, 1–10
controller data structure

allocating multiple, 5–16
array declaration, 1–6
saving pointer, 5–16

counter
reading, 12–8
updating, 9–7

CSR pointer information, 3–7

D
data collision

dealing with excessive, 13–11
data structure

cfg_subsys_attr_t, 4–2
controller, 5–16
driver, 1–7
el_softc, 1–6, 5–6, 5–8, 5–16
simple lock, 3–10
softc, 3–1
w3_eeprom, 2–13, 3–10

data transfer

Index–1

of pending transmit frames, 13–4
of receive interrupt, 13–8

debug flag, 3–8
setting, 8–9

debug information
printing, 5–24

declarations
configure-related, 4–2
network device driver, 1–4

declarations section, 1–4
devdriver.h header file, 1–4
device

bringing up, 12–9
marking as running, 8–10
resetting, 11–2, 12–11
setting characteristics, 12–11
starting, 8–5

device physical address
reading and saving in first-time

probe operation, 5–10
device register

header file, 2–1
driver data structure

declaring and initializing, 1–7
driver interface

specifying in ifnet data structure,
6–6

dynamic configuration, 14–1

E
EEPROM

reading and saving
first-time probe operation, 5–10
subsequent probe operations,

5–12
el_autosense_thread routine, 5–17
el_error routine, 13–12
el_init_locked routine, 8–3

calling in el_init, 8–3
returning status from, 8–3

el_intr routine, 13–1
el_ioctl routine

SIOCADDMULTI ioctl command,
12–6

SIOCDELMULTI ioctl command,
12–7

SIOCDISABLBACK ioctl command,
12–4

SIOCENABLBACK ioctl command,
12–4

SIOCIFRESET ioctl command,
12–11

SIOCIFSETCHAR ioctl command,
12–11

SIOCRDCTRS ioctl command,
12–8

SIOCRDZCTRS ioctl command,
12–8

SIOCRPHYSADDR ioctl command,
12–5

SIOCSIFADDR ioctl command,
12–9

SIOCSIFFLAGS ioctl command,
12–10

SIOCSIPMTU ioctl command,
12–10

SIOCSMACSPEED ioctl command,
12–11

SIOCSPHYSADDR ioctl command,
12–5

el_probe routine, 5–1
allocating memory for the el_softc

data structure, 5–6
allocating multiple controller data

structures, 5–16
allocating the ether_driver data

structure, 5–7
checking the maximum number of

devices, 5–4
handling first-time tasks, 5–10
initializing bus-specific data

structures, 5–8
initializing the el_softc data

structure, 5–8

Index–2

initializing the enhanced hardware
management data structure, 5–8

performing bus-specific tasks, 5–4
registering interrupt handlers,

5–15
registering the shutdown routine,

5–17
saving controller and el_softc data

structure pointers, 5–16
setting up, 5–2

el_reset routine, 11–1
el_reset_locked routine, 11–2
el_rint routine, 13–5
el_shutdown routine, 5–17
el_softc data structure

allocating memory for, 5–6
array declaration, 1–6
saving pointer, 5–16

el_start routine, 9–1
el_start_locked routine, 9–3

calling from el_start, 9–2
el_tint routine, 13–10
el_watch routine, 10–1
errno.h header file, 1–3
/etc/sysconfigtab database, 14–1
event

counting, 13–10
external declarations

if_el device driver, 1–5

F
FIFO maintenance information,

3–7
flag

processing special, 8–8
setting debug, 8–9
using currently set, 12–10

forward declarations
if_el device driver, 1–5

frames
transmitting pending, 13–4

H
hardware address

determining a change, 5–12
reading current, 12–5

header file
devdriver.h, 1–4
errno.h, 1–3
if_elreg.h, 2–1
ioctl.h, 1–4
sysconfig.h, 1–4

header length
setting up, 6–2

I
if_elreg.h file

w3_eepromdata structure
definition, 2–13

if_elreg.h header file
device register header file, 2–1

include files section, 1–3
init interface, 8–1
initialization section, 1–10

implementing, 8–1
interface

attach, 6–1
configure, 4–1
init, 8–1
ioctl, 12–1
network driver, 6–6
unattach, 7–1
watchdog, 10–1

interrupt
acknowledging, 13–4
clearing, 8–5
enabling, 8–10
indicating service, 13–5
information in el_softc data

structure, 3–9
register offset definitions, 2–1
status, 13–3

Index–3

interrupt handler
enabling, 6–10
ID, 3–6
registering, 5–15

interrupt section, 1–11
implementing, 13–1

ioctl command
SIOCADDMULTI, 12–6
SIOCDELMULTI, 12–7
SIOCDISABLBACK, 12–4
SIOCENABLBACK, 12–4
SIOCIFRESET, 12–11
SIOCIFSETCHAR, 12–11
SIOCRDCTRS, 12–8
SIOCRDZCTRS, 12–8
SIOCRPHYSADDR, 12–5
SIOCSIFADDR, 12–9
SIOCSIFFLAGS, 12–10
SIOCSIPMTU, 12–10
SIOCSMACSPEED, 12–11
SIOCSPHYSADDR, 12–5

ioctl interface, 12–1
ioctl section, 1–11

implementing, 12–1
ioctl.h header file, 1–4
IP MTU

setting, 12–10
IPL

resetting
in el_init, 8–3
in el_intr, 13–4
in el_ioctl, 12–13
in el_start, 9–2
in el_watch, 10–2

setting
in el_init, 8–2
in el_intr, 13–2
in el_ioctl, 12–3
in el_start, 9–1
in el_watch, 10–1

ISA bus
initializing bus-specific data

structure, 5–8
probing, 5–4

K
kernel thread

blocking, 5–19
setting a timer for, 5–23
starting, 5–10

L
LAN

setting address, 8–8
settingmedia, 8–6

loopback mode
disabling, 12–4
enabling, 12–4

M
MAC address

enabling, 12–5
macros

driver-specific, 1–8
media

establishing new, 5–25
marking the setting in the

hardware, 5–22
setting up, 6–3
setting up new, 5–24

media address
setting up, 6–2

media speed
setting, 12–11

media state information, 3–4
memory allocation

el_softc data structure, 5–6
memory mapping, 8–7
multicast

adding an address, 12–6
defining table information, 3–6
deleting an address, 12–7

N
network device driver, 1–1

Index–4

autoconfiguration support section,
1–10

configure section, 1–10
declarations, 1–4
environment, 1–1
include files, 1–3
initialization section, 1–10
interrupt section, 1–11
ioctl section, 1–11
output section, 1–11
register offsets, 2–1
reset section, 1–11
start section, 1–10
watchdog section, 1–11

network layer
attaching, 6–8

O
operational window

setting, 8–10
outgoing bytes

accounting for, 9–7
output process

marking as active, 9–7
output section, 1–11

P
packet

copying the first part, 13–7
determining successful transmit,

5–24
discarding, 13–9
pulling from the FIFO information,

13–6
transmitting, 9–4
transmitting pending, 8–11

packet filter
attaching, 6–8

packet transmit loop
entering, 5–20

PCI_Option entry
sysconfigtab file fragment, 14–1

PCMCIA bus
discarding all transmits, 9–3
initializing bus-specific data

structure, 5–8
probe, 5–4

first time, 5–10
reload operation

in el_attach, 6–9
in el_init, 8–2

PCMCIA card
determining if the user has removed

from the slot
in el_ioctl, 12–3

physical address
reading current, 12–5

polling context flag, 3–9
polling process

starting, 6–10
probe interface, 5–1

autoconfiguration support, 5–1

R
read

driver-specific macros, 1–8
receive interrupt

counting, 13–5
data transfer, 13–8

receive operation
processing completed, 13–3

receiver
resetting, 8–4, 8–7

register offset, 2–1
registering adapters, 6–9
reload operation

in el_attach, 6–9
in el_init

in el_init, 8–2
reset section, 1–11

implementing, 11–1

Index–5

ROM
using the default from, 5–21

RX status
reading, 13–5

S
section

autoconfiguration support, 1–10,
5–1, 6–1

configure, 1–10
declarations, 1–4
include files, 1–3
initialization, 1–10, 8–1
interrupt, 1–11, 13–1
ioctl, 1–11, 12–1
output, 1–11
reset, 1–11, 11–1
start, 1–10, 9–1
watchdog, 1–11, 10–1

setting network attributes, 6–9
shutdown routine

registering, 5–17
simple lock

obtaining
in el_intr, 13–2
in el_ioctl, 12–3
in el_start, 9–1
in el_watch, 10–1
inel_init, 8–2

releasing
in el_init, 8–3
in el_intr, 13–4
in el_ioctl, 12–13
in el_start, 9–2
in el_watch, 10–2

setting up, 6–5
simple lock data structure

declaring, 3–10
SIOCADDMULTI ioctl command,

12–6
SIOCDELMULTI ioctl command,

12–7

SIOCDISABLBACK ioctl
command, 12–4

SIOCENABLBACK ioctl command,
12–4

SIOCIFRESET ioctl command,
12–11

SIOCIFSETCHAR ioctl command,
12–11

SIOCRDCTRS ioctl command,
12–8

SIOCRDZCTRS ioctl command,
12–8

SIOCRPHYSADDR ioctl
command, 12–5

SIOCSIFADDR ioctl command,
12–9

SIOCSIFFLAGS ioctl command,
12–10

SIOCSIPMTU ioctl command,
12–10

SIOCSMACSPEED ioctl command,
12–11

SIOCSPHYSADDR ioctl command,
12–5

softc data structure, 3–1
start section, 1–10

implementing, 9–1
static configuration, 14–1
statistics

starting up, 5–20
status register

offset definitions, 2–1
writing to obtain the next value,

13–11
sysconfig.h header file, 1–4
sysconfigtab file fragment, 14–1

T
termination flag

testing for, 5–20
test packet

building, 5–21

Index–6

loading into the buffer, 5–22
transmitting, 5–22

timeout
information in el_softc data

structure, 3–9
rearming the next, 13–2

timer
clearing, 10–2

transmit
counting interrupts, 13–10
counting timeouts, 10–2
discarding all, 9–3
freeing buffer, 9–7
of pending packets, 8–11
processing completed operations,

13–3
queuing, 13–12
reading status, 13–10
saving counters, 5–21

transmitter
resetting, 8–4, 8–7

TX and RX
enabling, 8–9

U
unattach interface, 7–1

unit
resetting, 10–2

V
VBA_Option entry

sysconfigtab file fragment, 14–1

W
w3_eeprom data structure, 2–13

in el_softc data structure, 3–10
watchdog interface, 10–1

indicating when to start, 9–8
watchdog section, 1–11

implementing, 10–1
window 0 configuration register

offset definitions, 2–5
window 1 operational register

offset definitions, 2–9
window 3 configuration register

offset definitions, 2–8
window 4 diagnostic register

offset definitions, 2–11
write

driver-specific macros, 1–8

Index–7

