

# FreeForm/PCI-104

**User Manual** 



Connect Tech, Inc. 42 Arrow Road Guelph, Ontario Canada, N1K 1S6 Tel: 519-836-1291 800-426-8979 Fax: 519-836-4878 Email: sales@connecttech.com support@connecttech.com URL: http://www.connecttech.com

CTIM-00040 Revision 0.02 September 19, 2008

#### **Limited Lifetime Warranty**

Connect Tech Inc. provides a Lifetime Warranty for all Connect Tech Inc. products. Should this product, in Connect Tech Inc.'s opinion, fail to be in good working order during the warranty period, Connect Tech Inc. will, at its option, repair or replace this product at no charge, provided that the product has not been subjected to abuse, misuse, accident, disaster or non Connect Tech Inc. authorized modification or repair.

You may obtain warranty service by delivering this product to an authorized Connect Tech Inc. business partner or to Connect Tech Inc. along with proof of purchase. Product returned to Connect Tech Inc. must be pre-authorized by Connect Tech Inc. with an RMA (Return Material Authorization) number marked on the outside of the package and sent prepaid, insured and packaged for safe shipment.

The Connect Tech Inc. Lifetime Warranty is defined as the serviceable life of the product. This is defined as the period during which all components are available. Should the product prove to be irreparable, Connect Tech Inc. reserves the right to substitute an equivalent product if available or to retract Lifetime Warranty if no replacement is available.

The above warranty is the only warranty authorized by Connect Tech Inc. Under no circumstances will Connect Tech Inc. be liable in any way for any damages, including any lost profits, lost savings or other incidental or consequential damages arising out of the use of, or inability to use such product.

### **Copyright Notice**

The information contained in this document is subject to change without notice. Connect Tech Inc. shall not be liable for errors contained herein or for incidental consequential damages in connection with the furnishing, performance, or use of this material. This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Connect Tech, Inc.

Copyright © 2008 by Connect Tech, Inc.

#### **Trademark Acknowledgment**

Connect Tech, Inc. acknowledges all trademarks, registered trademarks and/or copyrights referred to in this document as the property of their respective owners. Not listing all possible trademarks or copyright acknowledgments does not constitute a lack of acknowledgment to the rightful owners of the trademarks and copyrights mentioned in this document.

#### **Customer Support Overview**

If you experience difficulties after reading the manual and/or using the product, contact the Connect Tech reseller from which you purchased the product. In most cases the reseller can help you with product installation and difficulties.

In the event that the reseller is unable to resolve your problem, our highly qualified support staff can assist you. Our support section is available 24 hours a day, seven days a week on our website at:

<u>www.connecttech.com/support/support.asp</u>. See the contact information section below for more information on how to contact us directly. Our technical support is always free.

Not listing all possible trademarks or copyright acknowledgments does not constitute a lack of acknowledgment to the rightful owners of the trademarks and copyrights mentioned in this document.

#### **Contact Information**

We offer three ways for you to contact us:

#### **Telephone/Facsimile**

Technical Support representatives are ready to answer your call Monday through Friday, from 8:30 a.m. to 5:00 p.m. Eastern Standard Time. Our numbers for calls are:

| Telephone: | 800-426-8979 (North America only)                                             |
|------------|-------------------------------------------------------------------------------|
| Telephone: | 519-836-1291 (Live assistance available 8:30 a.m. to 5:00 p.m. EST, Monday to |
| -          | Friday)                                                                       |
| Facsimile: | 519-836-4878 (on-line 24 hours)                                               |

#### **Email/Internet**

You may contact us through the Internet. Our email and URL addresses are:

sales@connecttech.com support@connecttech.com www.connecttech.com

#### Mail/Courier

You may contact us by letter and our mailing address for correspondence is: Connect Tech, Inc. 42 Arrow Road Guelph, Ontario Canada N1K 1S6

### **Table of Contents**

| Limited Lifetime Warranty                              | 2      |
|--------------------------------------------------------|--------|
| Copyright Notice                                       | 2      |
| Trademark Acknowledgment                               | 2      |
| Customer Support Overview                              | 3      |
| Contact Information                                    | 3      |
| Table of Contents                                      | 4      |
| List of Tables                                         | 5      |
| List of Figures                                        |        |
| Introduction                                           |        |
| Product Features                                       |        |
| About this manual                                      | 6      |
| System Overview                                        | 0      |
| Reference Design                                       | ,<br>9 |
| Hardware Description                                   | 10     |
| Jumpers and Switches                                   | 10     |
| Slot Selection (RSW1)                                  | 10     |
| FDCA Configuration Sottings (11)                       | 10     |
| Connector Dinoute                                      | . 10   |
| DCI 104 Honder (D1)                                    | . 11   |
| rCI-104 fielder (r1)                                   | . 11   |
| SDI Flash December (P2)                                | . 11   |
| SPI Flash Programming Header (P3)                      | . 11   |
| High-speed Serial (P4)                                 | . 12   |
| RS-485 Headers (P5, P6)                                | . 13   |
| GPIO Header (P/)                                       | . 14   |
| External Power Connector (P8)                          | . 15   |
| Connector's Mating Components and Cables               | . 16   |
| Hardware Installation                                  | . 17   |
| Heat Sink Installation                                 | . 17   |
| Stand-alone Operation                                  | . 17   |
| Software Installation                                  | . 18   |
| FPGA Development Environment                           | . 18   |
| PLX Software Development Kit (SDK)                     | . 18   |
| Reference Design & Application Examples                | . 18   |
| FPGA Configuration                                     | . 19   |
| Power and Thermal Considerations                       | . 20   |
| Reference Design FPGA power analysis                   | . 20   |
| Specifications                                         | . 21   |
| Appendix A: iMPACT Instructions for FPGA Configuration | . 22   |
| Launch Impact                                          | . 22   |
| Programming the FPGA                                   | . 25   |
| Generating a PROM (MCS) File                           | . 26   |
| Configuring the FPGA with the SPI Flash                | . 29   |
| Configuring the FPGA / SPI flash Association           | . 29   |
| Programming the Flash                                  | . 31   |
| Appendix B: Power calculations                         | . 33   |
| Scenario 1: Heatsink attached, 250 LFM                 | . 33   |
| Scenario 2: No Heatsink, 250 LFM                       | . 34   |
| Scenario 3: No heatsink, 0 LFM                         | . 35   |
| Appendix C: Hardware Changes from Revision B           | . 36   |
| Reference Design                                       | . 37   |
| Hardware Description                                   | . 38   |
| Connector Pinouts                                      | . 38   |
| Specifications                                         | . 39   |
|                                                        |        |

### **List of Tables**

| Table 1: FreeForm/PCI-104 Components              | 8    |
|---------------------------------------------------|------|
| Table 2: Slot Selection (RSW1)                    | . 10 |
| Table 3: FPGA Configuration Settings (J1)         | . 10 |
| Table 4: JTAG Programming Header Pinout (P2)      | 11   |
| Table 5: SPI Flash Programming Header Pinout (P3) | 11   |
| Table 6: High-Speed serial Connector Pinout (P4)  | 12   |
| Table 7: RS-485 Port 1 Pinout (P5)                | 13   |
| Table 8: RS-485 Port 2 Pinout (P6)                | 13   |
| Table 9: GPIO Header Pinout                       | 14   |
| Table 10: External Power Connector Pinout (P8)    | 15   |
| Table 11: Connector Mate Listing                  | 16   |

### List of Figures

| Figure 1: FreeForm/PCI-104 Block Diagram | . 7 |
|------------------------------------------|-----|
| Figure 2: FreeForm/PCI-104 Layout        | . 8 |
| Figure 3: External Power Connection      | 15  |

#### Introduction

Connect Tech's FreeForm/PCI-104 features Xilinx's Virtex-5 multi-platform FPGA offering users a flexible, reconfigurable computing platform that also takes advantage of the high bandwidth capabilities of the PCI bus while communicating with various I/O interfaces.

### **Product Features**

- o PCI-104 form factor 32-Bit/33MHz
- o Xilinx multi-platform Virtex-5 FPGA with 3 million logic gates
- 2MB Flash for FPGA configuration storage
- 8MB Flash for embedded code storage
- o Designed for embedded processing using MicroBlaze™
- o 100MHz input clock
- o 128MB DDR2-400 memory
- $\circ$  2 x 10/100 Ethernet with modular jacks
- o 2 x RS-485 serial interface
- o High-speed serial connector 4 x Rocket I/O (GTP) channels
- o 64 single ended or 32 LVDS general purpose I/O
- o External 5V power connection for programming and development
- JTAG test and programming chain
- Industrial temperature range of -40°C to 85°C
- o Ships preconfigured with a reference design

#### About this manual

This manual will provide the user with the following information:

- System overview
- o Introduction to the reference design
- o Description of jumpers, switches, and connector pinouts
- o Hardware installation instructions
- o Software installation instructions
- FPGA configuration details
- Specifications

### **System Overview**

The following conceptual block diagram provides a high level overview of the FreeForm/PCI-104 and illustrates the general interconnection between components and connectors.

For the actual orientation and description of components refer to Figure 2 and Table 1 respectively.



Figure 1: FreeForm/PCI-104 Block Diagram



Figure 2: FreeForm/PCI-104 Layout

#### Table 1: FreeForm/PCI-104 Components

| Connectors                                                                                                                                                      | Description                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P1                                                                                                                                                              | PCI-104 connector                                                                                                                                                                                            |
| P2                                                                                                                                                              | JTAG programming header                                                                                                                                                                                      |
| P3                                                                                                                                                              | SPI flash programming header                                                                                                                                                                                 |
| P4                                                                                                                                                              | High-speed serial connector                                                                                                                                                                                  |
| P5, P6                                                                                                                                                          | RS-485 header                                                                                                                                                                                                |
| P7                                                                                                                                                              | GPIO header                                                                                                                                                                                                  |
| P8                                                                                                                                                              | External power header                                                                                                                                                                                        |
| P9                                                                                                                                                              | RJ-45 A                                                                                                                                                                                                      |
| P10                                                                                                                                                             | RJ-45 B                                                                                                                                                                                                      |
| Jumpers /Switches                                                                                                                                               | Description                                                                                                                                                                                                  |
| RSW1                                                                                                                                                            | Slot selection                                                                                                                                                                                               |
| T1                                                                                                                                                              | FPGA configuration settings                                                                                                                                                                                  |
| 51                                                                                                                                                              | 11 Off configuration settings                                                                                                                                                                                |
| Components                                                                                                                                                      | <b>Description</b> (not all on top side)                                                                                                                                                                     |
| Components D1-D4                                                                                                                                                | Description (not all on top side)           User LEDs                                                                                                                                                        |
| Components D1-D4 D5                                                                                                                                             | Description (not all on top side)         User LEDs         FPGA load complete LED                                                                                                                           |
| Components D1-D4 D5 U4                                                                                                                                          | Description (not all on top side)         User LEDs         FPGA load complete LED         PLX PCI-local bus bridge                                                                                          |
| Components D1-D4 D5 U4 U5                                                                                                                                       | Description (not all on top side)         User LEDs         FPGA load complete LED         PLX PCI-local bus bridge         Virtex-5 FPGA                                                                    |
| Components           D1-D4           D5           U4           U5           U10                                                                                 | Description (not all on top side)User LEDsFPGA load complete LEDPLX PCI-local bus bridgeVirtex-5 FPGAFPGA configuration flash                                                                                |
| Components           D1-D4           D5           U4           U5           U10           U11                                                                   | Description (not all on top side)         User LEDs         FPGA load complete LED         PLX PCI-local bus bridge         Virtex-5 FPGA         FPGA configuration flash         Embedded code flash       |
| Components           D1-D4           D5           U4           U5           U10           U11           U12, U13                                                | Description (not all on top side)User LEDsFPGA load complete LEDPLX PCI-local bus bridgeVirtex-5 FPGAFPGA configuration flashEmbedded code flashDDR2 memory                                                  |
| Components           D1-D4           D5           U4           U5           U10           U11           U12, U13           U14                                  | Description (not all on top side)User LEDsFPGA load complete LEDPLX PCI-local bus bridgeVirtex-5 FPGAFPGA configuration flashEmbedded code flashDDR2 memoryParameter EEPROM                                  |
| Components           D1-D4           D5           U4           U5           U10           U11           U12, U13           U14           U15, U16               | Description (not all on top side)User LEDsFPGA load complete LEDPLX PCI-local bus bridgeVirtex-5 FPGAFPGA configuration flashEmbedded code flashDDR2 memoryParameter EEPROMRS-485 transceiver                |
| Components           D1-D4           D5           U4           U5           U10           U11           U12, U13           U14           U15, U16           U17 | Description (not all on top side)User LEDsFPGA load complete LEDPLX PCI-local bus bridgeVirtex-5 FPGAFPGA configuration flashEmbedded code flashDDR2 memoryParameter EEPROMRS-485 transceiverDual 10/100 PHY |

#### **Reference Design**

The FreeForm/PCI-104 ships with a pre-installed reference design that is loaded into the FPGA's configuration flash. This reference design demonstrates how to interface the FreeForm/PCI-104 (Virtex-5 FPGA) with the PLX PCI 9056 PCI to Local Bus Bridge, as well as the various peripherals.

The PLX 9056 provides a generic local bus that is capable of operating at up to 66MHz (this design forwards a 50MHz clock to the PLX). The PLX bridge has been set in the C-Mode of operation. The reference logic operates as a local bus slave, as well as a local bus master.

The reference design contains examples demonstrating:

- o Loading of PLX 9056's registers via the local bus
- o Local bus slave transfers
- o Local bus master transfers
- o GPIO control
- Programming the SPI Flash
- o Interfacing to the built-in Virtex-5 TEMACs
- o RS-485 serial data transfers
- o Reading/writing to the serial EEPROM
- Reading/writing to DDR2 memory
- o Interfacing to the Virtex-5 Rocket I/O transceivers

Most of the example VHDL modules demonstrate how to interface with the various peripherals through a register set, which is accessible by the host system over the PCI bus. A set of software applications has been created to show how the host system can communicate with each FPGA sub-module. In most applications, the host system will not directly control these peripherals. In a custom application, these modules can be easily modified to interconnect with each other through the FPGA fabric.

To obtain the source code, refer to <u>Software Installation</u>. For further details on the reference design, refer to *FreeForm/PCI-104 Reference Design Guide (CTIM-00042)* 

### **Hardware Description**

The following sections describe the function of all switches/jumpers and provide details on connector pinouts.

### Jumpers and Switches

#### Slot Selection (RSW1)

This rotary switch selects a slot position in the PCI-104 stack. When mounting on a PCI adapter card, ensure slot one is selected.

| uble 21 blot beleetion (Rb // 1 |      |  |
|---------------------------------|------|--|
| Position                        | Slot |  |
| 0,4                             | 0    |  |
| 1,5                             | 1    |  |
| 2,6                             | 2    |  |
| 3,7                             | 3    |  |

| ( |
|---|
|---|

#### FPGA Configuration Settings (J1)

Jumper J1 is used to control FPGA configuration.

| Table 3: FPGA Configuration Settings (J1) |                                                                                |  |  |  |
|-------------------------------------------|--------------------------------------------------------------------------------|--|--|--|
| Location                                  | Function                                                                       |  |  |  |
|                                           | FPGA waits for configuration over JTAG (using P2)                              |  |  |  |
|                                           | FPGA reads configuration from SPI flash                                        |  |  |  |
|                                           | FPGA is tri-stated, flash is isolated from FPGA and can be programmed directly |  |  |  |

|         | TT CA | ~ ~           | G             |
|---------|-------|---------------|---------------|
| able 3: | FPGA  | Configuration | Settings (J1) |

### **Connector Pinouts**

#### PCI-104 Header (P1)

Refer to PCI-104 specifications.

Note: P1 must be connected to a PCI-104 stack supplying both 3.3V and 5V.

#### JTAG Programming Header (P2)

Use P2 to configure the FPGA via JTAG. Refer to <u>FPGA Configuration</u> for more information. Power pins are for voltage reference only; they do not provide power to the configuration circuitry.

Note that the FPGA can always be programmed via JTAG, regardless of the  $\underline{J1}$  configuration setting.

|     | 0      | 6         | , ,      |
|-----|--------|-----------|----------|
| Pin | Signal | Direction |          |
| 1   | TRST   | Input     |          |
| 2   | TMS    | Input     |          |
| 3   | TDI    | Input     |          |
| 4   | TDO    | Output    |          |
| 5   | ТСК    | Input     | L C      |
| 6   | GND    | Reference | Top View |
| 7   | 3.3V   | Reference | Top view |

 Table 4: JTAG Programming Header Pinout (P2)

#### SPI Flash Programming Header (P3)

P3 may be used to directly program the SPI flash, providing that  $\underline{J1}$  is set correctly to the tri-state FPGA position. The power pins are for voltage reference only. They do not provide power to the configuration circuitry.

| Pin | Signal   | Direction |           |
|-----|----------|-----------|-----------|
| 1   | SPI_CSN  | Input     |           |
| 2   | SPI_MOSI | Input     |           |
| 3   | SPI_MISO | Output    | ကို       |
| 4   | SPI_CLK  | Input     |           |
| 5   | GND      | Reference | Ton View  |
| 6   | 3.3V     | Reference | T op view |

 Table 5: SPI Flash Programming Header Pinout (P3)

#### High-speed Serial (P4)

The high-speed serial connector carries four Rocket (GTP) I/O channels, each with a dedicated transmit and receive differential pair. These channels are capable of operating up 3.125 Gbps, depending on configuration. For more information on Rocket I/O capabilities, visit the Xilinx website: <a href="http://www.xilinx.com/products/silicon\_solutions/fpgas/virtex/virtex5/">http://www.xilinx.com/products/silicon\_solutions/fpgas/virtex/virtex5/</a>

| Pin | Signal         | Direction    | Notes    |
|-----|----------------|--------------|----------|
| 1   | MTGRXN0_112    | Input        | (b)      |
| 3   | MTGRXP0_112    | Input        | (b)      |
| 2   | MTGTXN0_112    | Output       | (b)      |
| 4   | MTGTXP0_112    | Output       | (b)      |
| 5   | HSS_USER_IO(0) | Input/Output | (a), (d) |
| 7   | HSS_USER_IO(1) | Input/Output | (a), (d) |
| 6   | HSS_USER_IO(2) | Input/Output | (a), (d) |
| 8   | HSS_USER_IO(3) | Input/Output | (a), (d) |
| 9   | MTGRXN1_112    | Input        | (b)      |
| 11  | MTGRXP1_112    | Input        | (b)      |
| 10  | MTGTXN1_112    | Output       | (b)      |
| 12  | MTGTXP1_112    | Output       | (b)      |
| 13  | 3.3V           | Power        | (a)      |
| 15  | 3.3V           | Power        | (a)      |
| 14  | 3.3V           | Power        | (a)      |
| 16  | 3.3V           | Power        | (a)      |
| 17  | MTGRXN0_114    | Input        | (c)      |
| 19  | MTGRXP0_114    | Input        | (c)      |
| 18  | MTGTXN0_114    | Output       | (c)      |
| 20  | MTGTXP0_114    | Output       | (c)      |
| 21  | 3.3V           | Power        | (a)      |
| 23  | 3.3V           | Power        | (a)      |
| 22  | 3.3V           | Power        | (a)      |
| 24  | 3.3V           | Power        | (a)      |
| 25  | MTGRXN1_114    | Input        | (c)      |
| 27  | MTGRXP1_114    | Input        | (c)      |
| 26  | MTGTXN1_114    | Output       | (c)      |
| 28  | MTGTXP1_114    | Output       | (c)      |

 Table 6: High-Speed serial Connector Pinout (P4)

Notes:

- a) Pins have a different function from Revision B.
- b) The Rocket I/O (GTP) are organized into tiles, where each tile has two transceivers and shares a common PLL. In this design, tiles 112 and 114 are used.
- c) Tile 112 has AC coupling capacitors on the TX pairs, validated at PCI Express data rates (2.5 Gbps).
- d) Tile 114 has AC coupling capacitors on both the RX and TX pairs, validated at SATA data rates (1.5 Gbps).
- e) HSS\_USER\_IO are flexible LVCMOS side-band signals.

WARNING If connecting two FreeForm/PCI-104's together using the Rocket I/O interface in a cross-over fashion; care must be taken. Ensure that only cables provided by Connect Tech are used. Cables ordered directly from Samtec or a third party could result in damage to the cable and/or the FreeForm/PCI-104 board itself.



#### RS-485 Headers (P5, P6)

|     | Table 7: RS-485 Port 1 Pinout (P5) |           |            |  |  |
|-----|------------------------------------|-----------|------------|--|--|
| Pin | Signal                             | Direction |            |  |  |
| 1   | RXD+1                              | Input     | $\frown$   |  |  |
| 2   |                                    |           | 1          |  |  |
| 3   | RXD-1                              | Input     |            |  |  |
| 4   |                                    |           |            |  |  |
| 5   | TXD+1                              | Output    |            |  |  |
| 6   |                                    |           | P5         |  |  |
| 7   | TXD-1                              | Output    | 485 Port 0 |  |  |
| 8   |                                    |           | Top View   |  |  |
| 9   | GND                                | Power     | _          |  |  |
| 10  |                                    |           |            |  |  |

#### Table 8: RS-485 Port 2 Pinout (P6)

| Pin | Signal | Direction |                       |
|-----|--------|-----------|-----------------------|
| 1   | RXD+2  | Input     |                       |
| 2   |        |           |                       |
| 3   | RXD-2  | Input     | 10 - P6<br>485 Port 1 |
| 4   |        |           |                       |
| 5   | TXD+2  | Output    | <b>i i j</b> - 1      |
| 6   |        |           |                       |
| 7   | TXD-2  | Output    | Top View              |
| 8   |        |           | Top view              |
| 9   | GND    | Power     |                       |
| 10  |        |           |                       |

#### **GPIO Header (P7)**

When in differential mode, the GPIO header positive (P) and negative (N) signals are adjacent on a standard ribbon cable. Note that the GPIO voltage level is set via hardware.

- FCG001: L12 populated, enabling 2.5V I/O, including LVDS FCG002: L13 populated, enabling 3.3V I/O 0
- 0

| Pin | Signal    | Direction    | Pin | Signal    | Direction    |
|-----|-----------|--------------|-----|-----------|--------------|
| 1   | GPION(0)  | Input/Output | 41  | GPION(16) | Input/Output |
| 2   | GPIOP(0)  | Input/Output | 42  | GPIOP(16) | Input/Output |
| 3   | GPION(1)  | Input/Output | 43  | GPION(17) | Input/Output |
| 4   | GPIOP(1)  | Input/Output | 44  | GPIOP(17) | Input/Output |
| 5   | GPION(2)  | Input/Output | 45  | GPION(18) | Input/Output |
| 6   | GPIOP(2)  | Input/Output | 46  | GPIOP(18) | Input/Output |
| 7   | GPION(3)  | Input/Output | 47  | GPION(19) | Input/Output |
| 8   | GPIOP(3)  | Input/Output | 48  | GPIOP(19) | Input/Output |
| 9   | GND       | Power        | 49  | GND       | Power        |
| 10  | GND       | Power        | 50  | GND       | Power        |
| 11  | GPION(4)  | Input/Output | 51  | GPION(20) | Input/Output |
| 12  | GPIOP(4)  | Input/Output | 52  | GPIOP(20) | Input/Output |
| 13  | GPION(5)  | Input/Output | 53  | GPION(21) | Input/Output |
| 14  | GPIOP(5)  | Input/Output | 54  | GPIOP(21) | Input/Output |
| 15  | GPION(6)  | Input/Output | 55  | GPION(22) | Input/Output |
| 16  | GPIOP(6)  | Input/Output | 56  | GPIOP(22) | Input/Output |
| 17  | GPION(7)  | Input/Output | 57  | GPION(23) | Input/Output |
| 18  | GPIOP(7)  | Input/Output | 58  | GPIOP(23) | Input/Output |
| 19  | GND       | Power        | 59  | GND       | Power        |
| 20  | GND       | Power        | 60  | GND       | Power        |
| 21  | GPION(8)  | Input/Output | 61  | GPION(24) | Input/Output |
| 22  | GPIOP(8)  | Input/Output | 62  | GPIOP(24) | Input/Output |
| 23  | GPION(9)  | Input/Output | 63  | GPION(25) | Input/Output |
| 24  | GPIOP(9)  | Input/Output | 64  | GPIOP(25) | Input/Output |
| 25  | GPION(10) | Input/Output | 65  | GPION(26) | Input/Output |
| 26  | GPIOP(10) | Input/Output | 66  | GPIOP(26) | Input/Output |
| 27  | GPION(11) | Input/Output | 67  | GPION(27) | Input/Output |
| 28  | GPIOP(11) | Input/Output | 68  | GPIOP(27) | Input/Output |
| 29  | GND       | Power        | 69  | GND       | Power        |
| 30  | GND       | Power        | 70  | GND       | Power        |
| 31  | GPION(12) | Input/Output | 71  | GPION(28) | Input/Output |
| 32  | GPIOP(12) | Input/Output | 72  | GPIOP(28) | Input/Output |
| 33  | GPION(13) | Input/Output | 73  | GPION(29) | Input/Output |
| 34  | GPIOP(13) | Input/Output | 74  | GPIOP(29) | Input/Output |
| 35  | GPION(14) | Input/Output | 75  | GPION(30) | Input/Output |
| 36  | GPIOP(14) | Input/Output | 76  | GPIOP(30) | Input/Output |
| 37  | GPION(15) | Input/Output | 77  | GPION(31) | Input/Output |
| 38  | GPIOP(15) | Input/Output | 78  | GPIOP(31) | Input/Output |
| 39  | GND       | Power        | 79  | GND       | Power        |
| 40  | GND       | Power        | 80  | GND       | Power        |

#### **Table 9: GPIO Header Pinout**



#### **External Power Connector (P8)**

The external connector provides 5V to the power regulation circuitry.

The external power connector should only be used when the FreeForm/PCI-104 is being programmed outside of a PCI/PCI-104 system.

| Pin | Signal              | Direction | 1 2        |
|-----|---------------------|-----------|------------|
| 1   | 5V                  | Power     | P8 -       |
| 2   |                     |           | Standalone |
| 3   | GND                 | Power     |            |
| 4   | VIO (connect to 5V) | Power     | 3 4        |

#### Table 10: External Power Connector Pinout (P8)

It is recommended that a Connect Tech Inc. FreeForm/PCI-104 power supply is used for providing external power. Orientation of the power supply connector is important. Ensure that the clip on the cable aligns with the catch on P8, as shown below.





**Figure 3: External Power Connection** 

### **Connector's Mating Components and Cables**

The following table lists the manufacturer and part number for connectors on the FreeForm/PCI-104, as well as potential mating components.

| Connector | Component on<br>FreeForm/PCI-104                                                               | Mating components                                                                                                                                                                    | Mating cable assembly                                                         |
|-----------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| P2        | Samtec<br>TSW-107-07-L-S<br>(0.100" pitch, 1x7)                                                | Samtec<br>SSW-107-xx-G-S<br>(Socket, other options available)                                                                                                                        | Connect Tech Inc.<br>CBG027<br>(JTAG programming cable)                       |
| Р3        | Samtec<br>TSW-106-07-L-S<br>(0.100" pitch, 1x6)                                                | Samtec<br>SSW-106-xx-G-S<br>(Socket, other options available)                                                                                                                        | Connect Tech Inc.<br>CBG027<br>(JTAG programming cable)                       |
| P4        | Samtec<br>QSE-014-01-L-D-DP-A<br>(0.8mm pitch, 2x14,<br>arranged as 14 differentials<br>pairs) | Samtec<br>QTE-014-01-L-D-DP-A<br>(5mm mated height, other<br>heights available)                                                                                                      | Connect Tech.<br>Please contact sales for more<br>information.                |
| P5/P6     | Samtec<br>TSW-105-07-L-D<br>(0.100" pitch, 2x5)                                                | Samtec<br>SSW-105-xx-G-D<br>(Socket, other options available)                                                                                                                        | Connect Tech Inc.<br>CAG104<br>(Header to DB9)                                |
| Ρ7        | Tyco<br>5-104069-3<br>(0.050"x0.100" pitch, 2x40)                                              | Tyco<br>3-111196-3<br>(ribbon cable mate)<br><i>or</i><br>Tyco<br>8-487937-0<br>(discrete wire housing)<br>Tyco<br>1-487547-1<br>(crimps for housing)                                | -                                                                             |
| P8        | Samtec<br>IPL1-102-01-S-D<br>(0.100" pitch, 2x2)                                               | Samtec<br>IPD1-02-D<br>(discrete wire housing)<br>Samtec<br>CC79L-2024-01-S<br>(crimps for housing)<br>or<br>Samtec<br>MMSD-02-22-S-03-25-S<br>(pre-assembled housing and<br>wiring) | Connect Tech Inc.<br>MSG037<br>(5V power supply, for<br>development purposes) |

Note: CBG027 and MSG037 are available as part of development kit DEV002

For more details on mating components, visit:

- Samtec (<u>http://www.samtec.com/</u>)
- o Tyco Electronics (<u>http://www.tycoelectronics.com/</u>)

#### **Hardware Installation**

Before installing the FreeForm/PCI-104 into a PCI-104 stack, ensure the following:

- Slot selection is properly set using the rotary switch <u>RSW1</u>.
- FPGA configuration jumper  $\underline{J1}$  is set to read from flash.

Once installed in the system and power is applied, the LED D1 will illuminate to indicate that FreeForm/PCI-104 is functioning.

### Heat Sink Installation

Each FreeForm/PCI-104 ships with a FPGA heat sink (27 mm x 27 mm); to be installed by the user. Simply peel of the sticker backing and press firmly onto the FPGA, using proper ESD precautions.

If the heat sink size is not suitable for your application, please contact Connect Tech Inc.

**WARNING** In many applications, including high speed memory operations, the FPGA dissipates a significant amount of power. Failure to use any heat sinking will result in the product warranty being voided.

#### Stand-alone Operation

Operating the FreeForm/PCI-104 outside of a PCI-104 stack or a PCI system for extended periods of time is not recommended. The PCI to local bus bridge (PCI PLX 9056) requires the pull-up/pull-down resistors provided on a system's main board.

Configuring or programming the FreeForm/PCI-104 in stand-alone mode is acceptable, providing that it is not left powered on in stand-alone state for an extended period of time.

**WARNING** The power supply MSG037 included with the development kit DEV002 is intended for desktop programming only. It is not intended or warranted to be used in any other situation.

### Software Installation

### FPGA Development Environment

FreeForm/PCI-104 has been developed with Xilinx WebPACK 9.2, available free of charge at:

http://www.xilinx.com/ise/logic\_design\_prod/webpack.htm

### PLX Software Development Kit (SDK)

PLX provides a software development kit (SDK) to aid in the creation of applications using the PLX 9056 bridge. The SDK provides a generic driver for Windows 2000/XP and Linux. A common API is also included; which encapsulates functions like:

- Configuration register read / write
- o Block read / block write to local address space (i.e. memory / registers in the FPGA)
- o Physical memory allocation, for bus mastering or DMA purposes
- o Interrupt handling
- EEPROM read/write by address

The SDK is available for download from:

http://www.plxtech.com/products/sdk/

In order to download the SDK, you will need to register with PLX.

### **Reference Design & Application Examples**

The FreeForm/PCI-104 ships with a CD containing:

- o Documentation and manuals
- FPGA VHDL reference design
- Software program examples

The reference design and example programs help users quickly develop custom hardware and software applications. Refer to the CD for installation instructions.

The latest reference design is always available from:

http://devel.connecttech.com/

If a username and password have not already been provided, please contact Connect Tech Support via email <u>support@connecttech.com</u>.

### **FPGA** Configuration

The Virtex-5 FPGA can be configured via two methods:

- o JTAG programming chain, using P2
- SPI Flash, read on, power-up by FPGA

The configuration flash can be programmed (loaded) through three methods:

- o JTAG programming chain (through FPGA), using <u>P2</u>
- Direct with cable, using  $\underline{P3}$
- Indirect programming through FPGA, only possible after configuration is complete (refer to reference design for more details)

To configure the FPGA via the JTAG / boundary scan programming chain, three items are required:

- FPGA bitstream (\*.bit), generated at end FPGA implementation using ISE
- o PLX 9056 boundary scan definition file (\*.bdsl)
- o Ethernet PHY boundary scan definition file

To program the SPI flash, a hex file must be generated (\*.mcs) then written to the flash. To generate the hex file, the following is required:

- o FPGA Bitstream
- Setting PROM file format to MCS (important since bits are swapped)
- Setting SPI PROM density to 16M
- Setting SPI Flash type to M25P16

For a complete procedure, refer to <u>Appendix A</u>.

### **Power and Thermal Considerations**

The FreeForm/PCI-104's Virtex-5 FPGA is a versatile, flexible device, with many built-in features like termination, PLLs, and high speed gigabit transceivers. The drawback of these on-chip features is that they consume a lot of power and hence dissipate a lot of heat.

As a result Connect Tech, is recommending the installation of a heatsink, included with the product (see section <u>Heat Sink Installation</u>). As well, the FPGA designer *must* perform power analysis on their design to determine that they are not stressing the Virtex-5 component (i.e. exceeding the junction temperature).

Power analysis can be performed using the Xpower Analyzer (part of the ISE design suite) and the XPE spreadsheets (Xilinx Power Estimator Spreadsheets).

http://www.xilinx.com/products/design\_resources/power\_central/

#### Reference Design FPGA power analysis

Power analysis was performed on the FCG001 when configured with the reference design. The Virtex-5 XPE spreadsheet was used to determine an effective junction to ambient thermal resistance ( $\theta_{JA_{effective}}$ ). The following parameters are entered into the spreadsheet to determine  $\theta_{JA_{effective}}$ .

| Device              |               |
|---------------------|---------------|
| Part                | XC5VLX30T     |
| Package             | FF665         |
| Grade               | Industrial    |
| Process             | Typical       |
| Speed Grade         | -1            |
| Stepping            | Stepping - 1  |
|                     |               |
| Thermal Information |               |
| Ambient Temp (°C)   | 50            |
| Airflow (LFM)       | 250           |
| Heat Sink           | Custom        |
| Custom OSA (°C/W)   | 8 (*)         |
| Board Selection     | Small (4"x4") |
| # of Board Layers   | 12 to 15      |

 $(\theta_{SA}$  is the surface to ambient temperature for a heatsink with dimensions 27 mm x 27 mm x 6.4 mm and 250 LFM airflow. The  $\theta_{SA}$  improves (decreases) with a taller heatsink. )

Three scenarios were developed and the XPE parameters Airflow and Custom  $\Theta$ SA were varied. The  $\theta_{JA\_effective}$  was entered into the Xpower Analyzer yielding a Juction Temperature @ 50 °C and a maximum ambient temperature. The following table summarizes the scenarios and the results. For complete details of the scenarios, see Appendix B.

| Scenario                   | θ <sub>JA effective</sub> (°C/W) | T <sub>ambient max</sub> | T <sub>junction</sub> at 50 °C |
|----------------------------|----------------------------------|--------------------------|--------------------------------|
| Heatsink attached, 250 LFM | 4.9                              | 82.7                     | 67.3                           |
| No Heatsink, 250 LFM       | 6.4                              | 72.7                     | 72.7                           |
| No heatsink, 0 LFM         | 9.7                              | 65.1                     | 84.9                           |

Calculation details:

 $\begin{array}{l} T_{junction}=T_{ambient}+(P_{FPGA}\ast\theta_{JA\_effective})=50^{\circ}C+(3.53W\ast4.9\ ^{\circ}C\ /W)=67.297^{\circ}C\\ T_{ambient\_max}=T_{junction\_max}-(P_{FPGA}\ast\theta_{JA\_effective})=100^{\circ}C\ -(3.53W\ast4.9\ ^{\circ}C\ /W)=82.7^{\circ}C \end{array}$ 

Note  $T_{\text{junction absolute max}} = 125^{\circ}$ C is not used, since this is the absolute point of failure.

### Specifications

| Programmable FPGA        | Virtex-5 FPGA LX30T                                                                                                                                                                                                                  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Input Clock              | 100MHz                                                                                                                                                                                                                               |  |
| Memory / Flash           | 128MB DDR2-400<br>2MB Flash – FPGA configuration<br>8MB Flash – Embedded code<br>4K serial EEPROM – parameter storage                                                                                                                |  |
| General Purpose User I/O | 64 single ended I/O<br>32 LVDS I/O                                                                                                                                                                                                   |  |
| Serial                   | 2 x RS-485                                                                                                                                                                                                                           |  |
| Ethernet                 | 2 x 10Base-T, 100Base-TX                                                                                                                                                                                                             |  |
| High-speed serial        | 4 x Rocket I/O transceivers (GTP)                                                                                                                                                                                                    |  |
| Operating Environment    | Storage Temperature:<br>-65°C to 150°C<br>Operating Temperature:<br>0°C to 70°C (commercial)<br>-40°C to 85°C (industrial)                                                                                                           |  |
| Power Requirements       | +5V DC, in PCI-104 stack<br>+5V DC standalone<br>Current requirements are configuration dependant                                                                                                                                    |  |
| Dimensions               | PC/104- <i>Plus</i> 2.2 compliant<br>PCI-104 1.0 compliant                                                                                                                                                                           |  |
| Connectors               | Two RJ-45 modular jacks (Ethernet)<br>Two 2x5 0.100" headers (serial)<br>One 2x40 0.050 x 0.100" header (general I/O)<br>One 1x6 0.100" header (flash programming)<br>One 2x14 0.8 mm differential pair terminal (high speed serial) |  |

### **Appendix A: iMPACT Instructions for FPGA Configuration**

To configure the FPGA via JTAG, connect the JTAG programming cable to  $\underline{P2}$  ensuring that all JTAG signals align correctly. It is important to note that  $\underline{P2}$  also has the TRST signal on pin 1, which is not part of Xilinx's Parallel or USB programming cables.

### Launch Impact

1) Open iMPACT, and select create a new project

| 😵 iMPACT Project              |              |                                         | 🖬 🖬        |
|-------------------------------|--------------|-----------------------------------------|------------|
| I want to                     |              |                                         |            |
| O load most recent project    | plx_full.ipf | ~                                       | Browse     |
|                               |              | Load most recent project file when iMPA | .CT starts |
| ⊙ create a new project (.ipf) | default.ipf  |                                         | Browse     |
|                               |              |                                         |            |
|                               |              |                                         |            |
|                               |              |                                         |            |
|                               |              |                                         |            |
| _                             |              |                                         |            |
|                               | ОК           | Cancel                                  |            |

2) Select configure devices using boundary scan. iMPACT will scan the JTAG chain, and identify three devices. The first device will be the FPGA.



3) A prompt will ask for a new configuration file. Select the bitstream from the project directory.

| land the second | ₽?⊠    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Look in: is jects/FreeFormPCI104/hardware/logic/init_plx_GPI025/ v (<br><br>ngo<br>xmsgs<br>is templates<br>xst<br>init_bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| File name: init.bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Open   |
| File type:         All Design Files (".bit ".rbt ".nky ".isc ".bsd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cancel |
| Cancel All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bypass |
| <ul> <li>None</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| Enable Programming of SPI Flash Device Attached to this FPG/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4      |
| Enable Programming of BPI Flash Device Attached to this FPG/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ۹<br>: |

4) A prompt will ask for a BSDL file for device number 2 (PLX PCI9056). Click Yes.

| 🐉 Unknown Device File ( | Query                         | 🖬 🖾        |
|-------------------------|-------------------------------|------------|
| Do you ha               | ve a BSDL or BIT file for thi | s device ? |
| Yes                     | No                            | Cancel     |

5) Browse to the bsdl folder and select PCI9056BA.bsd

| Add Device                                         |                              |                                                                            |           | ₽?⊠            |
|----------------------------------------------------|------------------------------|----------------------------------------------------------------------------|-----------|----------------|
| Look in:                                           | bsdl 🦳                       | M                                                                          | 🗢 🗈 💣 📰 • |                |
| My Recent<br>Documents<br>Desktop<br>My Documents  | PCI9056BA.                   | bsd<br>sd<br>e: BSDL File<br>e: Modified: 2007-10-26 4:31 PM<br>e: 16.3 KB |           |                |
| My Computer<br>My Computer<br>My Network<br>Places | File name:<br>Files of type: | <sup> *.</sup> bsd<br> Boundary-Scan Files (*.bsd)                         | <u> </u>  | Open<br>Cancel |

6) iMPACT will add the device to the JTAG chain.



7) Again, a prompt will ask for device number three (National PHY). Browse to the bsdl folder and select DP83849IVS.bsd. The device will be added to the JTAG chain.



8) To test stream integrity, right click on the FPGA and select Get Device ID. The console will report IDCODE = 82a6e093



```
// *** BATCH CMD : ReadIdcode -p 1
Maximum TCK operating frequency for this device chain: 10000000.
Validating chain...
Boundary-scan chain validated successfully.
0: Device Temperature: Current Reading: -273.00 C
0: VCCINT Supply: Current Reading: 0.000 V
0: VCCAUX Supply: Current Reading: 0.000 V
0: VCCAUX Supply: Current Reading: 0.000 V
'1': IDCODE is '100001010101110000010010011'
'1': IDCODE is '82a6e093' (in hex).
'1': : Manufacturer's ID =Xilinx xc5vlx30t, Version : 8
```

#### Programming the FPGA

1) Right click on device number one (Virtex-5 FPGA), and select program. The following diagram will appear. Note that verification will only work if an msk file has been created.

| Programming Properties                                                                  |                                                          | E 🛛  |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------|------|
| Category                                                                                |                                                          |      |
| Programming Properties     Advanced PROM Programming Properties     Revision Properties | Programming Properties<br>General Programming Properties |      |
|                                                                                         | ✓ Verify                                                 |      |
|                                                                                         | General CPLD And PROM Properties                         |      |
|                                                                                         | Erase Before Programming 🔄 Read Protect                  |      |
|                                                                                         | PROM/CoolRunner-II Usercode (8 Hex Digits)               |      |
|                                                                                         | CPLD Specific Properties                                 |      |
|                                                                                         | Write Protect Functional Test On-The-Fly Program         |      |
|                                                                                         | XPLA UES Enter up to 13 characters                       |      |
|                                                                                         | PROM Specific Properties                                 |      |
|                                                                                         | Load FPGA Parallel Mode Use D4 for CF                    |      |
|                                                                                         | Spartan3AN Programming Properties                        |      |
|                                                                                         | Data Protect Data Lockdown                               |      |
|                                                                                         | FPGA Device Specific Programming Properties              |      |
|                                                                                         | Pulse PROG Program Key                                   |      |
|                                                                                         | Assert Cable INIT during programming                     |      |
|                                                                                         |                                                          |      |
|                                                                                         |                                                          |      |
|                                                                                         |                                                          |      |
| · · · · · · · · · · · · · · · · · · ·                                                   |                                                          |      |
|                                                                                         | OK Cancel Apply                                          | Help |

2) Select OK to begin programming. After programming is complete, the status window will report:

```
INFO::MPACT:2219 - Status register values:
INFO::MPACT - 0011 1111 1001 1110 0000 1010 1110 0000
INFO::MPACT - '1': Checking done pin....done.
'1': Programmed successfully.
'1': Verifying device...INFO::MPACT:2502 - Complete word count is 9363744/32=292617'.
INFO::MPACT:2495 - Readback Size is 9363744.
done.
'1': Verification completed successfully.
INFO::MPACT:579 - '1': Completed downloading bit file to device.
INFO::MPACT - '1': Checking done pin....done.
'1': Programmed successfully.
PROGRESS_END - End Operation.
Elapsed time = 8 sec.
```

### Generating a PROM (MCS) File

1) Double click Prom File Formatter in the Flows window.



- The "Prepare PROM Files" dialog will appear. Ensure that the following settings are selected: 3<sup>rd</sup> Party SPI PROM MSC PROM File Format
- 3) Give the file a name, and click Next.

| 🐉 iMPACT - Prepare PROM Files                                                                                                                      | E - 🗆 🛛                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| I want to target a          Xilinx PR0M         Generic Parallel PR0M         3rd-Party SPI PR0M         PR0M Supporting Multiple Design Versions: | Spartan3E MultiBoot                                             |
| PROM File Format     MCS TEK UFP ('C'' format)     EXO BIN ISC     HEX Swap Bits                                                                   |                                                                 |
| Checksum Fill Value (2 Hex Digits): FF<br>PROM File Name: init_plx_GPI025.cs<br>Location: C:\Data\Projects\FreeFormPCI104\hards                    | ware\logic\init_plx_GP1025\ Browse <back next=""> Cancel</back> |

4) Select the PROM density (16M)  $\rightarrow$  click Next  $\rightarrow$  click Finish.

| 🔯 iMPACT - Specify SPI PROM Device |        |
|------------------------------------|--------|
|                                    |        |
| Auto Select PHUM Density           |        |
| Select SPI PROM Density (bits) 16M |        |
|                                    |        |
|                                    |        |
|                                    |        |
|                                    |        |
|                                    |        |
|                                    |        |
|                                    |        |
|                                    |        |
|                                    |        |
|                                    |        |
|                                    |        |
|                                    |        |
|                                    |        |
| Add Data Files                     |        |
|                                    |        |
|                                    |        |
|                                    |        |
| < Back Next >                      | Cancel |

5) A prompt will ask to add device to data stream 0. Click OK. Select the bitstream from the project directory.



| Add Device                                                                   |                |                        |                               | 2?     |
|------------------------------------------------------------------------------|----------------|------------------------|-------------------------------|--------|
| Look in:<br>My Recent<br>Documents<br>Desktop<br>My Documents<br>My Computer | init_plx_GPI   | 025                    | ← È <sup>*</sup> <sup>*</sup> |        |
| My Network<br>Places                                                         | File name:     | jinit.bit              | •                             | Open   |
| 110003                                                                       | Files of type: | FPGA Bit Files (*.bit) | •                             | Cancel |

- 6) Click "No" when asked if another device is to be added. Click "OK" to accept the setup.
- 7) Double Click "Generate File" from the "iMPACT" processes menu. The status will be reported in the console.

| iMPACT Proce                 | sses                                  | ×         |                        |                                             |
|------------------------------|---------------------------------------|-----------|------------------------|---------------------------------------------|
| Available Opera              | ations are:                           |           |                        |                                             |
| 🛋 Generate Fi                | le                                    |           |                        |                                             |
|                              |                                       |           |                        |                                             |
|                              |                                       |           |                        |                                             |
|                              |                                       |           |                        |                                             |
|                              |                                       |           |                        |                                             |
|                              |                                       |           |                        |                                             |
|                              |                                       |           |                        |                                             |
| Operations                   |                                       |           |                        |                                             |
|                              |                                       |           |                        |                                             |
| // *** BATCH                 | CMD : setMode -p                      | f         |                        |                                             |
| // *** BATCH                 | CMD : setSubmode                      | -p        | ffparalle<br>-configde | ffparallel<br>-configdevice -attr           |
| // *** BATCH                 | CMD : setAttribu                      | :e        | -configde              | -configdevice -attr                         |
| // *** BATCH<br>// *** BATCH | CMD : setAttribu<br>CMD : setAttribu  | :e<br>:e  | -configde<br>-configde | -configdevice -attr<br>-configdevice -attr  |
| // *** BATCH                 | CMD : setAttribu                      | e         | -configde              | -configdevice -attr                         |
| "C:\Data\Pro<br>// *** BATCH | jects\FreeFormPCI<br>CMD : setAttribu | .04<br>:e | \hardware<br>-configde | \hardware\logic\init<br>-configdevice -attr |
| Total config                 | uration bit size                      | - 9       | 371136 bi              | 371136 bits.                                |
| Total config<br>// *** BATCH | CMD : setCurrent                      | =<br>)es  | 1171392 b<br>ign -vers | ign -version 0                              |
| // *** BATCH                 | CMD : generate -                      | spi       |                        | The file from the set                       |
| Swap bit can<br>0x11dfc0 (11 | only be disabled<br>71392) bytes load | וח<br>d ו | Hex file<br>up from 0  | Hex file format on.<br>up from 0x0          |
| Using user-s                 | pecified prom size                    | e of      | E 2048K                | E 2048K                                     |
| "C:\Data\Pro                 | jects\FreeFormPCI                     | L04       | hardware               | \hardware\logic\init                        |
| Writing file                 |                                       |           |                        |                                             |
| "C:\Data\Pro                 | jects\FreeFormPCI                     | 04        | hardware               | hardware\logic\init                         |
|                              |                                       |           |                        |                                             |

### Configuring the FPGA with the SPI Flash

In previous Xilinx FPGA configurations, the SPI flash required programming via 3<sup>rd</sup> party JTAG test software or through in-system methods. The following features are new to ISE 9.1/9.2, and are only available on select FPGAs, including the Virtex-5. Your FreeForm/PCI-104 card featuring the Xilinx Virtex-5 FPGA includes a standard core to enable programming of BPI and SPI flashes over JTAG.

#### Configuring the FPGA / SPI flash Association

1) Select "Boundary Scan" from the "Flows" tab.



2) Right click on the FPGA and select "Add SPI Flash..."



3) Browse to the directory containing the previously generated MCS file. Select and click "Open".

| Add PROM File          |                |                     |          |          | ₽?⊠    |
|------------------------|----------------|---------------------|----------|----------|--------|
| Look in:               | init_plx_GPI   | 025                 | <u>•</u> | + 🗈 💣 📰+ |        |
| My Recent<br>Documents |                |                     |          |          |        |
| Dealter                | init_plx_GPIO  | 25.mcs              |          |          |        |
|                        |                |                     |          |          |        |
| My Documents           |                |                     |          |          |        |
| My Computer            |                |                     |          |          |        |
|                        |                |                     |          |          |        |
| My Network             | File name:     | init_plx_GPI025.mcs |          | •        | Open   |
| T IQUES                | Files of type: | MCS Files (*.mcs)   |          | *        | Cancel |

4) The "FPGA SPI Flash Association" window will appear; select "M25P16" (this is the flash device connected to the FPGA).

| FPGA SPI Flash Asso | ociation  |    |
|---------------------|-----------|----|
| FPGA                | SPI Flash |    |
| xc5vlx30t           | M25P16    | ~  |
| ОК                  | Cancel    | Ţ. |

5) The flash will be added to the FPGA. Note that this flash is not part of the JTAG chain.



#### **Programming the Flash**

1) Right click the previously associated flash device, and select program.





2) The programming dialog will appear. Select "Verify" and "Erase Before Programming", then click "OK."

| ategory                                                                                 |                                                          |       |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------|-------|
| Programming Properties     Advanced PROM Programming Properties     Revision Properties | Programming Properties<br>General Programming Properties |       |
|                                                                                         | Verifu                                                   |       |
|                                                                                         | General CPLD And PROM Properties                         |       |
|                                                                                         | Erase Before Programming Read Protect                    |       |
|                                                                                         | PROM/CoolFiunner-II Usercode (8 Hex Digits)              |       |
|                                                                                         | CPLD Specific Properties                                 |       |
|                                                                                         | Write Protect Functional Test On-The-Fly Program         |       |
|                                                                                         | XPLA UES Enter up to 13 characters                       |       |
|                                                                                         | PROM Specific Properties                                 |       |
|                                                                                         | Load FPGA Parallel Mode Use D4 for CF                    |       |
|                                                                                         | Spartan3AN Programming Properties                        |       |
|                                                                                         | Data Protect Data Lockdown                               |       |
|                                                                                         | FPGA Device Specific Programming Properties              |       |
|                                                                                         | Pulse PROG Program Key                                   |       |
|                                                                                         | Assert Cable INIT during programming                     |       |
|                                                                                         |                                                          |       |
|                                                                                         |                                                          |       |
|                                                                                         |                                                          |       |
|                                                                                         |                                                          |       |
|                                                                                         |                                                          | 11-1- |

- 3) Observe the results in the transcript window.
  - a. The SPI core is first download to the FPGA device
  - b. The IDCODE is checked and verified
  - c. Flash is erased
  - d. Flash is programmed

After completion of the flash programming, the FPGA will attempt to configure itself from the flash. If the SPI flash setting is not selected with <u>J1</u>; this step will fail. This does not mean the flash is not programmed, but rather the verification of the programmed contents has failed.

```
'1': SPI access core not detected. SPI access core will be downloaded to the
device to enable operations.
PROGRESS_START - Starting Operation.
'1': Downloading core...
done.
'1': Reading status register contents...
INFO: iMPACT: 2219 - Status register values:
INFO: iMPACT - 0011 1111 1001 1110 0000 1010 1000 0000
INFO: iMPACT: 2492 - '1': Completed downloading core to device.
INFO: iMPACT - '1': Checking done pin....done.
'1': Core downloaded successfully.
'1': IDCODE is '202015' (in hex).
'1': ID Check passed.
'1': IDCODE is '202015' (in hex).
'1': ID Check passed.
 '1': Erasing Device.
'1': Programming Device.
'1': Reading device contents...
done.
'1': Verification completed.
INFO: iMPACT - '1': Checking done pin...done.
'1': Programmed successfully.
INFO: iMPACT - '1': Checking done pin....done.
'1': Programmed successfully.
PROGRESS_END - End Operation.
Elapsed time =
                  179 sec.
```

### **Appendix B: Power calculations**

#### Scenario 1: Heatsink attached, 250 LFM

| Name                  | Value                    | Used | Total Available | Utilization (%) |
|-----------------------|--------------------------|------|-----------------|-----------------|
| Clocks                | 0.26375 (W)              | 16   |                 |                 |
| Logic                 | 0.01646 (W)              | 3759 | 19200           | 19.6            |
| Signals               | 0.05521 (W)              | 7757 |                 |                 |
| IOs                   | 2.06396 (W)              | 453  | 402             | 112.7           |
| BRAMs                 | 0.15807 (W)              | 23   | 36              | 63.9            |
| DCMs                  | 0.22787 (W)              | 3    | 4               | 75.0            |
| GTP_DUALs             | 0.20747 (W)              | 2    | 4               | 50.0            |
| TEMACs                | 0.00000 (W)              | 1    | 2               | 50.0            |
|                       |                          |      |                 |                 |
| Total Quiescent Power | 0.66765 ( <del>W</del> ) |      |                 |                 |
| Total Dynamic Power   | 2.86209 (W)              |      |                 |                 |
| Total Power           | 3.52974 (W)              |      |                 |                 |
|                       |                          |      |                 |                 |
| Junction Temp         | 67.3 (degrees C)         |      |                 |                 |

| Name                            | Value   | Range          |
|---------------------------------|---------|----------------|
| Ambient Temp (degrees C)        | 50.0    | -40.0 to 100.0 |
| Use custom ThetaJA ?            | Yes 🛛 🔽 |                |
| Custom ThetaJA (degrees C/W)    | 4.9     |                |
| Airflow (LFM)                   | NA      | 0 to 750       |
| Effective ThetaJA (degrees C/W) | 4.9     |                |
| Max Ambient (degrees C)         | 82.7    |                |
| Junction Temp (degrees C)       | 67.3    |                |

| Name                  | Value            | Used | Total Available | Utilization (%) |
|-----------------------|------------------|------|-----------------|-----------------|
| Clocks                | 0.26375 (W)      | 16   |                 |                 |
| Logic                 | 0.01646 (W)      | 3759 | 19200           | 19.6            |
| Signals               | 0.05521 (W)      | 7757 |                 |                 |
| IOs -                 | 2.06396 (W)      | 453  | 402             | 112.7           |
| BRAMs                 | 0.15807 (W)      | 23   | 36              | 63.9            |
| DCMs                  | 0.22787 (W)      | 3    | 4               | 75.0            |
| GTP_DUALs             | 0.20747 (W)      | 2    | 4               | 50.0            |
| TEMACs                | 0.00000 (W)      | 1    | 2               | 50.0            |
|                       |                  |      |                 |                 |
| Total Quiescent Power | 0.68723 (W)      |      |                 |                 |
| Total Dynamic Power   | 2.86209 (W)      |      |                 |                 |
| Total Power           | 3.54933 (W)      |      |                 |                 |
|                       |                  |      |                 |                 |
| Junction Temp         | 72.7 (degrees C) |      |                 |                 |

#### Scenario 2: No Heatsink, 250 LFM

| Name                            | Value   | Range          |
|---------------------------------|---------|----------------|
| Ambient Temp (degrees C)        | 50.0    | -40.0 to 100.0 |
| Use custom ThetaJA ?            | Yes 💌 💌 |                |
| Custom ThetaJA (degrees C/W)    | 6.4     |                |
| Airflow (LFM)                   | NA      | 0 to 750       |
| Effective ThetaJA (degrees C/W) | 6.4     |                |
| Max Ambient (degrees C)         | 77.3    |                |
| Junction Temp (degrees C)       | 72.7    |                |

#### Scenario 3: No heatsink, 0 LFM

| Name                  | Value                    | Used | Total Available | Utilization (%) |
|-----------------------|--------------------------|------|-----------------|-----------------|
| Clocks                | 0.26375 (W)              | 16   |                 |                 |
| Logic                 | 0.01646 (W)              | 3759 | 19200           | 19.6            |
| Signals               | 0.05521 (W)              | 7757 |                 |                 |
| IOs                   | 2.06396 (W)              | 453  | 402             | 112.7           |
| BRAMs                 | 0.15807 (W)              | 23   | 36              | 63.9            |
| DCMs                  | 0.22787 (W)              | 3    | 4               | 75.0            |
| GTP_DUALs             | 0.20747 (W)              | 2    | 4               | 50.0            |
| TEMACs                | 0.00000 (W)              | 1    | 2               | 50.0            |
|                       |                          |      |                 |                 |
| Total Quiescent Power | 0.73730 (¥)              |      |                 |                 |
| Total Dynamic Power   | 2.86209 (W)              |      |                 |                 |
| Total Power           | 3.59939 ( <del>W</del> ) |      |                 |                 |
|                       |                          |      |                 |                 |
| Junction Temp         | 84.9 (degrees C)         |      |                 |                 |

| Name                            | Value   | Range          |
|---------------------------------|---------|----------------|
| Ambient Temp (degrees C)        | 50.0    | -40.0 to 100.0 |
| Use custom ThetaJA ?            | Yes 🛛 💌 |                |
| Custom ThetaJA (degrees C/W)    | 9.7     |                |
| Airflow (LFM)                   | NA      | 0 to 750       |
| Effective ThetaJA (degrees C/W) | 9.7     |                |
| Max Ambient (degrees C)         | 65.1    |                |
| Junction Temp (degrees C)       | 84.9    |                |

### **Appendix C: Hardware Changes from Revision B**

This appendix lists the changes between hardware revision B and hardware revision C. The following is a summary of changes:

- PCB requires only 5V over PCI-104; it previously required 3.3V and 5V
- A dedicated local bus oscillator was added to generate 50Mhz. A clock is no longer forwarded from FPGA to the PLX PCI 9056.
- The DDR2 FPGA pinout has been changed to increase timing margins
- The pinout of connector P4 (high-speed serial) has changed. The sideband signals have been relocated and 3.3V has been added.
- The orientation of connector P5 (RS-485 port 0) has rotated 180 degrees
- The Location of P8 (external power connector) has changed. The 3.3V enable signal has also been removed

### **Reference Design**

The top level reference design contains a generic parameter which will correctly configure the FPGA for Revision B or Revision C. A separate constraint file UCF is created for Revision B and Revision C, which need to be added to the ISE project manually.

Pin

Y21

A20

| <b>Revision E</b> | 3 |
|-------------------|---|
|-------------------|---|

#### **Revision** C

Signal Name

lb\_lclkfb

Dedicated oscillator

generates local bus clock. Clock is driven to FPGA on

pin Y21, which drives an

internal global clock net.

| Local | Clock | Generation |
|-------|-------|------------|
|       |       |            |

| Pin | Signal Name   | Local clock generated in  |
|-----|---------------|---------------------------|
| Y21 | lb_lclkfb     | bridge. Clock feedback to |
| A20 | lb_lclko_loop | FPGA via pin Y21.         |
| B21 | lb_lclko_plx  |                           |
| חחח | 1 Dim and     |                           |

| DDK2 | Fillout       |      |             |
|------|---------------|------|-------------|
| Pin  | Signal Name   | Pin  | Signal Name |
| AA9  | ddr2_a<0>     | AD21 | ddr2_dq<0>  |
| Y8   | ddr2_a<1>     | AD15 | ddr2_dq<1>  |
| AD8  | ddr2_a<2>     | AC21 | ddr2_dq<2>  |
| Y7   | ddr2_a<3>     | AD14 | ddr2_dq<3>  |
| AB9  | ddr2_a<4>     | AE13 | ddr2_dq<4>  |
| W9   | ddr2_a<5>     | AE22 | ddr2_dq<5>  |
| AC8  | ddr2_a<6>     | AD16 | ddr2_dq<6>  |
| AD6  | ddr2_a<7>     | AE17 | ddr2_dq<7>  |
| AA8  | ddr2_a<8>     | AF10 | ddr2_dq<8>  |
| V8   | ddr2_a<9>     | AE5  | ddr2_dq<9>  |
| AC7  | ddr2_a<10>    | AE12 | ddr2_dq<10> |
| AB7  | ddr2_a<11>    | AF3  | ddr2_dq<11> |
| AB6  | ddr2_a<12>    | AF4  | ddr2_dq<12> |
| AC9  | ddr2_a<13>    | AF12 | ddr2_dq<13> |
| AE7  | ddr2_ba<0>    | AF5  | ddr2_dq<14> |
| AA5  | ddr2_ba<1>    | AF9  | ddr2_dq<15> |
| V9   | ddr2_ba<2>    | AD24 | ddr2_dq<16> |
| AE8  | ddr2_cas_n    | AE25 | ddr2_dq<17> |
| AE11 | ddr2_ck<0>    | AC26 | ddr2_dq<18> |
| AD11 | ddr2_ck_n<0>  | AC23 | ddr2_dq<19> |
| AD18 | ddr2_cke<0>   | AB22 | ddr2_dq<20> |
| AC22 | ddr2_cs_n<0>  | AC24 | ddr2_dq<21> |
| AE16 | ddr2_dm<0>    | AE26 | ddr2_dq<22> |
| AE6  | ddr2_dm<1>    | AD26 | ddr2_dq<23> |
| AD25 | ddr2_dm<2>    | AD23 | ddr2_dq<24> |
| AE18 | ddr2_dm<3>    | AE15 | ddr2_dq<25> |
| AD19 | ddr2_dqs<0>   | AF24 | ddr2_dq<26> |
| AF7  | ddr2_dqs<1>   | AF13 | ddr2_dq<27> |
| AF20 | ddr2_dqs<2>   | AF14 | ddr2_dq<28> |
| AF22 | ddr2_dqs<3>   | AF25 | ddr2_dq<29> |
| AD20 | ddr2_dqs_n<0> | AF15 | ddr2_dq<30> |
| AF8  | ddr2_dqs_n<1> | AF23 | ddr2_dq<31> |
| AE20 | ddr2_dqs_n<2> | AD13 | ddr2_odt<0> |
| AE21 | ddr2_dqs_n<3> | AA7  | ddr2_ras_n  |
|      |               | AB5  | ddr2_we_n   |

| B21  |                   |      | groom eroen neu |
|------|-------------------|------|-----------------|
|      |                   |      |                 |
| Pin  | Signal Name       | Pin  | Signal Name     |
| AA9  | ddr2_a<0>         | AC21 | ddr2_dq<0>      |
| Y8   | ddr2_a<1>         | AD15 | ddr2_dq<1>      |
| AD8  | ddr2_a<2>         | AC23 | ddr2_dq<2>      |
| Y7   | ddr2_a<3>         | AE13 | ddr2_dq<3>      |
| AB9  | ddr2_a<4>         | AD14 | ddr2_dq<4>      |
| W9   | ddr2_a<5>         | AE22 | ddr2_dq<5>      |
| AE8  | ddr2_a<6>         | AD16 | ddr2_dq<6>      |
| AD6  | ddr2_a<7>         | AD21 | ddr2_dq<7>      |
| AA8  | ddr2_a<8>         | AF10 | ddr2_dq<8>      |
| V8   | ddr2_a<9>         | AE5  | ddr2_dq<9>      |
| AC7  | ddr2_a<10>        | AE12 | ddr2_dq<10>     |
| AB7  | ddr2_a<11>        | AF3  | ddr2_dq<11>     |
| AB6  | ddr2_a<12>        | AF4  | ddr2_dq<12>     |
| AD10 | ddr2_a<13>        | AF12 | ddr2_dq<13>     |
| AE7  | ddr2_ba<0>        | AF5  | ddr2_dq<14>     |
| AA5  | ddr2_ba<1>        | AF9  | ddr2_dq<15>     |
| V9   | ddr2_ba<2>        | AC26 | ddr2_dq<16>     |
| AC9  | ddr2_cas_n        | AE26 | ddr2_dq<17>     |
| AE11 | ddr2_ck<0>        | AC24 | ddr2_dq<18>     |
| AD11 | ddr2_ck_n<0>      | AD24 | ddr2_dq<19>     |
| AC8  | ddr2_cke<0>       | AE25 | ddr2_dq<20>     |
| W8   | ddr2_cs_n<0>      | AB22 | ddr2_dq<21>     |
| AE16 | ddr2_dm<0>        | AD26 | ddr2_dq<22>     |
| AE6  | ddr2_dm<1>        | AD25 | ddr2_dq<23>     |
| AE17 | ddr2_dm<2>        | AD23 | Ddr2_dq<24>     |
| AE18 | ddr2_dm<3>        | AE15 | Ddr2_dq<25>     |
| AD19 | ddr2_dqs<0>       | AF25 | ddr2_dq<26>     |
| AF7  | ddr2 dqs < 1>     | AF13 | ddr2 dq<27>     |
| AF20 | ddr2_dqs<2>       | AF14 |                 |
| AF22 | $ddr2_dqs < 3>$   | AF24 |                 |
| AD20 | ddr2_dqs_n<0>     | AF15 |                 |
| AF8  | <br>ddr2_dqs_n<1> | AF23 |                 |
| AE20 | $ddr2_dqs_n<2>$   | AD9  | ddr2_odt<0>     |
| AE21 | $ddr2_dqs_n<3>$   | AA7  | ddr2_ras_n      |
|      |                   | AB5  | <br>ddr2_we_n   |

### Hardware Description

#### **Connector Pinouts**

#### High-speed Serial (P4)

The sideband LVCMOS signals (HSS) have been rearranged so that when two FreeForm units are connected:

HSS\_USER\_IO(0) maps to HSS\_USER\_IO(2) HSS\_USER\_IO(1) maps to HSS\_USER\_IO(3)

Also, 3.3V pins replace the GND pins; this is because the connector has embedded GND blades.

|     | Revision B     |     | Revision C     |
|-----|----------------|-----|----------------|
| Pin | Signal         | Pin | Signal         |
| 1   | MTGRXN0_112    | 1   | MTGRXN0_112    |
| 3   | MTGRXP0_112    | 3   | MTGRXP0_112    |
| 2   | MTGTXN0_112    | 2   | MTGTXN0_112    |
| 4   | MTGTXP0_112    | 4   | MTGTXP0_112    |
| 5   | GND            | 5   | HSS_USER_IO(0) |
| 7   | GND            | 7   | HSS_USER_IO(1) |
| 6   | HSS_USER_IO(0) | 6   | HSS_USER_IO(2) |
| 8   | HSS_USER_IO(1) | 8   | HSS_USER_IO(3) |
| 9   | MTGRXN1_112    | 9   | MTGRXN1_112    |
| 11  | MTGRXP1_112    | 11  | MTGRXP1_112    |
| 10  | MTGTXN1_112    | 10  | MTGTXN1_112    |
| 12  | MTGTXP1_112    | 12  | MTGTXP1_112    |
| 13  | GND            | 13  | 3.3V           |
| 15  | GND            | 15  | 3.3V           |
| 14  | GND            | 14  | 3.3V           |
| 16  | GND            | 16  | 3.3V           |
| 17  | MTGRXN0_114    | 17  | MTGRXN0_114    |
| 19  | MTGRXP0_114    | 19  | MTGRXP0_114    |
| 18  | MTGTXN0_114    | 18  | MTGTXN0_114    |
| 20  | MTGTXP0_114    | 20  | MTGTXP0_114    |
| 21  | GND            | 21  | 3.3V           |
| 23  | GND            | 23  | 3.3V           |
| 22  | HSS_USER_IO(2) | 22  | 3.3V           |
| 24  | HSS_USER_IO(3) | 24  | 3.3V           |
| 25  | MTGRXN1_114    | 25  | MTGRXN1_114    |
| 27  | MTGRXP1_114    | 27  | MTGRXP1_114    |
| 26  | MTGTXN1_114    | 26  | MTGTXN1_114    |
| 28  | MTGTXP1_114    | 28  | MTGTXP1_114    |

#### RS-485 Headers (P5)

The orientation of the connector has changed. The pinout remains the same.



External Power Connector (P8) The connector no longer enables 3.3V regulation – it is always enabled.

| <b>Revision B</b> |                            | <b>Revision</b> C |     |                     |
|-------------------|----------------------------|-------------------|-----|---------------------|
| Pin               | Signal                     |                   | Pin | Signal              |
| 1                 | 5V                         |                   | 1   | 5V                  |
| 2                 | 3.3 enable (connect to 5V) |                   | 2   |                     |
| 3                 | GND                        |                   | 3   | GND                 |
| 4                 | VIO (connect to 5V)        |                   | 4   | VIO (connect to 5V) |

## Specifications

|                    | Revision B                                                                                                         | <b>Revision</b> C                              |
|--------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Power Requirements | +3.3V DC and +5V DC, in PCI-104 stack<br>+5V DC stand-alone<br>Current requirements are configuration<br>dependent | +5V DC, in PCI-104 stack<br>+5V DC stand-alone |
|                    | dependunt.                                                                                                         |                                                |