
Enterprise Server
6

Developer’s Guide

Borland Software Corporation
100 Enterprise Way
Scotts Valley, California 95066-3249
www.borland.com

Borland Software Corporation may have patents and/or pending patent applications covering subject
matter in this document. Please refer to the product CD or the About dialog box for the list of
applicable patents.The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1992-2004 Borland Software Corporation. All rights reserved. All Borland brand and
product names are trademarks or registered trademarks of Borland Software Corporation in the
United States and other countries. All other marks are the property of their respective owners.

This product includes software developed by the Apache Software Foundation (http://
www.apache.org/).

This product include software developed by Steve Viens and contributors. All rights reserved (http://
juddi.org/).

BES0060WW21002

0102030405-9 8 7 6 5 4 3 2

PDF

i

Chapter 1
Introduction to Borland Enterprise
Server 1

BES Product overview. 1
Web Edition 2

Web Edition features 2
VisiBroker Edition 3

VisiBroker Edition features 3
VisiBroker Standalone (installation option). . . 3
Team Edition 3

Team Edition features 4
Borland Enterprise Server “AppServer Edition” 4

Borland Enterprise Server “AppServer
Edition” features 4

Borland Enterprise Server (BES) Documentation. 4
Accessing the BES Standalone online Help

Topics . 5
Accessing online Help Topics from within BES 6

Documentation conventions 6
Platform conventions 6

Contacting Borland support 7
Online resources 7
World Wide Web 8
Borland newsgroups 8

Chapter 2
Borland Enterprise Server overview
and architecture 9

BES architecture overview 9
BES services overview 10

Web Server. 10
JMS . 11
Smart Agent 11
2PC Transaction Service 12
Management 12

The Partition and its services 12
Connector Service 13
EJB Container 13
JDataStore Server 13
Lifecycle Interceptor Manager 13
Naming Service 13
Session Storage Service 14
Transaction Manager 14
Web Container 14

Borland Enterprise Server and J2EE APIs . . . 14

JDBC . 15
Java Mail 15
JTA. 15
JAXP. 16
JNDI . 16
RMI-IIOP. 16
Other Technologies 16
OptimizeIt Profiler 16

Chapter 3
Partitions 17
Partitions Overview 17
Creating Partitions 18
Running Partitions 19

Running unmanaged Partitions 19
Running managed Partitions 21
Partition logging 21

Configuring Partitions 22
Application archives 22
Working with Partition services 22

Partition handling of services. 23
Configuring individual services 23

Gathering Statistics 23
Security management and policies 24
Classloading policies 24
Partition Lifecycle Interceptors. 24

Chapter 4
Web components 27
Apache web server implementation 27

Apache configuration 27
Apache configuration syntax. 28
Using the .htaccess files 28

Apache directory structure 29
Borland web container implementation 29

Servlets and JavaServer Pages 30
Typical web application development process 30
Web application archive (WAR) file 31

Borland-specific DTD. 31
Adding ENV variables for the web container .

36
Microsoft Internet Information Services (IIS) web

server . 36
IIS/IIOP redirector directory structure 37

Smart Agent implementation 37

Contents

ii

Connecting an Apache web server to a Borland
web container. 38

Connecting Borland web containers to Java
Session Service 38

Chapter 5
Web server to web container
connectivity 41

Apache to Borland web container connectivity . 41
Modifying the Borland web container IIOP

configuration 41
Modifying the IIOP configuration in Apache . 43

Additional Apache IIOP directives 46
Apache IIOP connector configuration 47

Adding new clusters. 47
Adding new web applications 48

Large data transfer 49
Downloading large data 50

Implementing chunked download 50
Enabling chunked download 50
Known content length versus unknown . . 50
Chunked download with known content

length 51
Chunked download with unknown content

length 51
Browsers supporting only the HTTP 1.0

protocol 51
Implementing non-chunked download . . 52

Uploading large data 52
Implementing chunked upload 52
Enabling chunked upload 53
Changing the upload buffer size 53
Known content length versus unknown . . 53
Chunked upload with known content length

54
Chunked upload with unknown content length

54
Implementing non-chunked upload 54

IIS to Borland web container connectivity 55
Modifying the IIOP configuration in the Borland

web container. 55
Microsoft Internet Information Services (IIS)

server-specific IIOP configuration 55
Windows 2000/IIS version 5.0 55
Windows XP/IIS version 5.1 57

IIS/IIOP redirector configuration 59
Adding new clusters. 59
Adding new web applications 61

Chapter 6
Java Session Service (JSS)
configuration 63

Session management with JSS. 63
Managing and configuring the JSS 66

Configuring the JSS Partition service 67

Chapter 7
Clustering web components 69
Stateless and stateful connection services . . . 69
The Borland IIOP connector 70

Load balancing support 70
OSAgent based load balancing 70
Corbaloc based load balancing. 70

Fault tolerance (failover) 71
Smart session handling 72

Setting up your web container with JSS 72
Modifying a Borland web container for failover73
Session storage implementation. 73

Programmatic implementation 73
Automatic implementation 73

Using HTTP sessions 74

Chapter 8
Apache web server to CORBA server
connectivity 77

Web-enabling your CORBA server 77
Determining the urls for your CORBA methods .

78
Implementing the ReqProcessor IDL in your

CORBA server 78
The process() method 79

Configuring your Apache web server to invoke a
CORBA server 80

Apache IIOP configuration. 80
Adding new CORBA servers (clusters) . . 81
Mapping URIs to defined clusters 82

Chapter 9
Borland Enterprise Server Web
Services 85

Web Services Overview. 85
Web Services Architecture 85

Web Services and Partitions 86
Web Service providers 88

Specifying web service information in a
deploy.wsdd file 89

iii

Java:RPC provider 89
Java:EJB provider. 89
Java:VISIBROKER provider 90
Java:MDB provider 92

How Borland Web Services work 92
Web Service Deployment Descriptors. 93

Creating a server-config.wsdd file 94
Viewing and Editing WSDD Properties . . . 94

Packaging Web Service Application Archives . . 94
Borland Web Services examples 95

Using the Web Service provider examples. . 95
Steps to build, deploy, and run the examples

95
Apache Axis Web Service samples 96

Tools Overview 96
Apache ANT tool 96
Java2WSDL tool 96
WSDL2Java tool 97
Axis Admin tool. 97

Chapter 10
Web applications bundled with BES 99
About Cocoon 99

Chapter 11
Writing enterprise bean clients 101
Client view of an enterprise bean 101

Initializing the client 102
Locating the home interface 102
Obtaining the remote interface 103

Session beans 103
Entity beans. 104
Find methods and primary key class . . 104
Create and remove methods 105

Invoking methods 105
Removing bean instances 106
Using a bean's handle 106

Managing transactions 108
Getting information about an enterprise bean. 109
Support for JNDI 109
EJB to CORBA mapping 110

Mapping for distribution 110
Mapping for naming 111
Mapping for transaction 112
Mapping for security 113

Chapter 12
The VisiClient Container 115
Application Client architecture. 115

Packaging and deployment 116
Benefits of the VisiClient Container 117

Document Type Definitions (DTDs) 117
Example XML using the DTD 118

Support of references and links. 120
Using the VisiClient Container 121
VisiClient Container usage example. 121
Running a J2EE client application on machines

not running BES 121
Embedding VisiClient Container functionality into

an existing application 122
Use of Manifest files 123

Example of a Manifest file 123
Exception handling 124
Using resource-reference factory types. 124
Other features. 124

Using the Client Verify tool. 125

Chapter 13
Caching of Stateful Session Beans 127
Passivating Session Beans 127

Simple Passivation. 128
Aggressive Passivation 128

Sessions in secondary storage 129
Setting the keep alive timeout in Containers. 129
Setting the keep alive timeout for a particular

session bean 130

Chapter 14
Entity Beans and CMP 1.1 in Borland
Enterprise Server 131

Entity Beans 131
Container-managed persistence and Relationships

132
Implementing an entity bean 132

Packaging Requirements 133
Entity Bean Primary Keys 133

Generating primary keys from a user class .
134

Generating primary keys from a custom class
134

Support for composite keys. 134
Reentrancy 135

Container-Managed Persistence in Borland
Enterprise Server 135

BES CMP engine's CMP 1.1 implementation . .
136

Providing CMP metadata to the Container . .
137

iv

Constructing finder methods 137
Constructing the where clause 138
Parameter substitution 138
Compound parameters 139
Entity beans as parameters 139
Specifying relationships between entities 140
Container-managed field names 142

Setting Properties 142
Using the Deployment Descriptor Editor . . 142

J2EE 1.2 Entity Bean using BMP or CMP 1.1
143

Container-managed data access support . 144
Using SQL keywords 144
Using null values 145
Establishing a database connection . . 145
Container-created tables 145
Mapping Java types to SQL types . . . 146

Automatic table mapping 147

Chapter 15
Entity Beans and Table Mapping for
CMP 2.0 149

Entity Beans 149
Container-managed persistence and Relationships

150
Packaging Requirements. 150
A note on reentrancy 151

Container-Managed Persistence in Borland
Enterprise Server 152

About the Persistence Manager 152
Borland CMP engine's CMP 2.0 implementation

153
Optimistic Concurrency Behavior 153

Pessimistic Behavior 154
Optimistic Concurrency 154
SelectForUpdate 155
SelectForUpdateNoWAIT 155
UpdateAllFields 155
UpdateModifiedFields 155
VerifyModifiedFields. 155
VerifyAllFields 156

Persistence Schema 156
Specifying tables and datasources . . . 156
Basic Mapping of CMP fields to columns 158
Mapping one field to multiple columns . 158
Mapping CMP fields to multiple tables . 159
Specifying relationships between tables 160

Using cascade delete and database cascade
delete 164

Database cascade delete support 165

Chapter 16
Using BES Properties for CMP 2.x 167
Setting Properties. 167

Using the Deployment Descriptor Editor. . . 167
The EJB Designer 168

J2EE 1.3 Entity Bean 168
Setting CMP 2.x Properties 169
Editing Entity properties 169
Editing Table and Column properties 170
Entity Properties 172
Table Properties 174
Column Properties. 177
Security Properties 178

Chapter 17
EJB-QL and Data Access Support 179
Selecting a CMP Field or Collection of CMP Fields

179
Selecting a ResultSet 180

Aggregate Functions in EJB-QL 180
Data Type Returns for Aggregate Functions. 181

Support for ORDER BY. 182
Support for GROUP BY. 183
Sub-Queries 184
Dynamic Queries 184

Overriding SQL generated from EJB-QL by the
CMP engine 185

Container-managed data access support. . . . 187
Support for Oracle Large Objects (LOBs) . . 188
Container-created tables. 188

Chapter 18
Generating Entity Bean Primary Keys
191

Generating primary keys from a user class . . . 192
Generating primary keys from a custom class . 192
Implementing primary key generation by the CMP

engine . 192
Oracle Sequences: using
getPrimaryKeyBeforeInsertSql 192

SQL Server: using getPrimaryKeyAfterInsertSql
and ignoreOnInsert 193

JDataStore JDBC3: using useGetGeneratedKeys . .
193

Automatic primary key generation using named
sequence tables 193

v

Key cache size 194

Chapter 19
Transaction management 195
Understanding transactions 195

Characteristics of transactions 195
Transaction support 196

Transaction manager services 197
Distributed transactions and two-phase commit

197
When to use two-phase commit transactions198
EJBs and 2PC transactions 199

Example runtime scenarios 201
Declarative transaction management in Enterprise

JavaBeans 203
Understanding bean-managed and container-

managed transactions 204
Local and Global transactions 205
Transaction attributes 206

Programmatic transaction management using JTA
APIs . 207

JDBC API Modifications 208
Modifications to the behavior of the JDBC API.

208
Overridden JDBC methods. 208

Handling of EJB exceptions 209
System-level exceptions 210
Application-level exceptions 210
Handling application exceptions 210

Transaction rollback 211
Options for continuing a transaction . . 211

Chapter 20
Message-Driven Beans and JMS 213
JMS and EJB 213

EJB 2.0 Message-Driven Bean (MDB) . . . 214
Client View of an MDB 214
Naming Support and Configuration 215

Connecting to JMS Connection Factories from
MDBs 215

Clustering of MDBs 217
Error Recovery 218

Rebinding 218
Redelivered messages 218

MDBs and transactions 220

Chapter 21
Connecting to Resources with BES:
using the Definitions Archive (DAR)
221

JNDI Definitions Module 222
Migrating to DARs from previous versions of

Borland Enterprise Server 223
Creating and Deploying a new JNDI Definitions

Module . 223
Disabling and Enabling a JNDI Definitions Module .

224
Packaging JNDI Definitions Modules in an

application EAR 224
JNDI service provider for hosting resource factories

224
Configuring persistent storage locations for

Serial Context 225

Chapter 22
Using JDBC 227
Configuring JDBC Datasources. 228

Deploying Driver Libraries 231
Defining the Connection Pool Properties for a

JDBC Datasource 232
Getting debug output 238
Descriptions of Borland Enterprise Server's pooled

connection states 238
Support for older JDBC 1.x drivers 239
Advanced Topics for Defining JDBC Datasources .

240
Connecting to JDBC Resources from Application

Components. 242

Chapter 23
Using JMS 245
Configuring JMS Connection Factories and

Destinations 246
Queue creation 247
Enabling Sonic. 247

JMS and Transactions 247
Enabling the JMS services security. 249
Advanced Concepts for Defining JMS Connection

Factories. 249
Connecting to JMS Connection Factories from

Application Components 250
Connecting to JMS Connection Factories from

components other than MDBs 250

vi

Chapter 24
JMS provider pluggability 253
Runtime pluggability 253

Configuring JMS admin objects (connection
factories, queues and topics) 254

Service management 254
Runtime pluggability 254

Tibco and Sonic 255
Other JMS providers 255

Configuring admin objects. 255
Tibco and Sonic 255

Tibco Admin Console 256
Configuring admin objects for other JMS

providers 256
Service management for supported and other

JMS providers 258
Other JMS providers 258

Required libraries for other JMS providers .
259

Added value for Tibco 259
Enabling Sonic 259

Creating a clustered JMS service 260
Tibco . 260
Integrating clustered Tibco servers into BES 261
Sonic . 263

Enabling security for JMS 263
Tibco . 263

Enabling security for Tibco: 263
Disabling security for Tibco:. 263

Sonic . 264
Enabling security for Sonic: 264
Disabling security for Sonic: 264

Chapter 25
Implementing Partition Interceptors 267
Defining the Interceptor 267
Creating the Interceptor Class. 268
Creating the JAR file 270
Deploying the Interceptor 270

Chapter 26
VisiConnect overview 271
J2EE™ Connector Architecture 271
Components 272
System Contracts 273

Connection Management 274
Transaction Management 275

One-Phase Commit Optimization 276

Security Management 276
Component-Managed Sign-on 277
Container-Managed Sign-on 277
EIS-Managed Sign-on 277
Authentication Mechanisms 277
Security Map 278
Security Policy Processing 279

Common Client Interface (CCI) 279
Packaging and Deployment 281
VisiConnect Features 283

VisiConnect Container 283
Local and Remote Connectors Support . 283
Additional Classloading Support 284
Secure Password Credential Storage . . 285
Connection Leak Detection. 285
Security Policy Processing of ra.xml

Specifications 285
Resource Adapters 285

Chapter 27
Using VisiConnect 287
VisiConnect Container 287

Container Overview 288
Container built on top of VisiBroker and RMI-

IIOP . 288
Container is a CORBA Server 288
Container as a partition service and standalone

process. 289
Connection Management 289

Configuring Connection Properties 289
Minimizing the Runtime Performance Cost

Associated with Creating Managed
Connections 290

Controlling Connection Pool Growth. 290
Controlling System Resource Usage 291
Detecting Connection Leaks. 291

Garbage Collection 292
Idle Timer 292

Security Management with the Security Map . . 292
Authorization Domain 293
Default Roles 294
Generating a Resource Vault 294

Resource Adapter Overview 297
Development Overview 298

Editing existing Resource Adapters . . . 298
Resource Adapter Packaging 299

Deployment Descriptors for the Resource Adapter .
300

Configuring ra.xml 300

vii

Configuring the Transaction Level Type . 300
Configuring ra-borland.xml 300

Anatomy of ra-borland.xml 301
Configuring the <ra-link-ref> element . . 302
Configuring the Security Map 303

Developing the Resource Adapter. 303
Connection Management 303
Transaction Management 304
Security Management 304
Packaging and Deployment 305

Deploying the Resource Adapter 305
The ra-borland.xml deployment descriptor DTD 306

Editing Descriptors 306
DOCTYPE Header Information 306

Element Hierarchy 308
The DTD 309

Application Development Overview 315
Developing Application Components. . . . 315

Common Client Interface (CCI) 315
Managed Application Scenario 316
Non-Managed Application Scenario . . 317
Code Excerpts - Programming to the CCI317

Deployment Descriptors for Application
Components 320

EJB 2.x example 321
EJB 1.1 example 322

Other Considerations 324
Converting a Local Connector to a Remote

Connector 324
Conversion 324

Working with Poorly Implemented Resource
Adapters 326

Examples of Poorly Implemented Resource
Adapters. 326

Working with a Poor Resource Adapter
Implementation 327

Chapter 28
Apache Ant and running BES examples
333

Syntax and general usage. 334
Translating BES commands into Ant tasks . . 335

Basic Syntax 335
Omitting attributes 335
Multiple File Arguments 336

Building the example 336
Deploying the example 337
Running the example 337
Undeploying the example 337

Troubleshooting 337

Chapter 29
iastool command-line utility 339
Using the iastool command-line tools. 339

compilejsp 341
compress 342
deploy . 343
dumpstack 345
genclient 346
gendeployable 347
genstubs 348
info . 349
kill . 350
listpartitions 352
listhubs. 353
listservices 354
merge . 355
migrate. 357
patch . 357
ping . 358
pservice 360
removestubs 362
restart . 362
setmain 364
start . 365
stop . 366
uncompress 368
undeploy 369
usage . 370
verify . 370

Executing iastool command-line tools from a script
file . 372

Piping a file to the iastool utility 373
Passing a file to the iastool utility 373

Chapter 30
Partition XML reference 375
<partition> element 375

<statistics.agent> element 376
<security> element 377
<container> element 377
<user.orb> element 378
<management.orb> element. 378
<shutdown> element 379
<services> element 380

<service> element 380
<properties> element 381
<archives> element. 382

viii

<archive> element 382

Chapter 31
EJB, JSS, and JTS Properties 385
EJB Container-level Properties 385
EJB Customization Properties: Deployment

Descriptor level 390
Complete Index of EJB Properties 392

Properties common for any kind of EJB . . 392
Entity Bean Properties (applicable to all types of

entities - BMP, CMP 1.1 and CMP 2) . . . 392
Message Driven Bean Properties 395
Stateful Session Bean Properties 398
EJB Security Properties 399

Session Service (JSS) Properties. 399
Old style EJB Container and JSS Properties 403

Partition Transaction Service (Transaction
Manager) 404

JTS System Properties. 405

Chapter 32
ejb-borland.xml 407
DTD . 407

Chapter 33
application-client-borland.xml 411
DTD . 411

Chapter 34
ra-borland.xml 413
DTD . 413

Chapter 35
jndi-definitions.xml 421
DTD . 421

Chapter 36
web.xml 423
DTD . 423

Index 425

ix

3.1 Partition command options 20
3.2 Partition command available arguments 21
4.1 Apache-specific directories 29
4.2 Borland-specific new elements 32
4.3 Borland additional attributes on existing

elements. 34
4.4 IIS/IIOP redirector directories 37
5.1 IIOP connector attributes 42
5.2 IIOP directives for Apache. 44
5.3 Additional Apache IIOP directives 46
5.4 Apache IIOP connection configuration files

47
5.5 Cluster definition attributes 48
5.6 IIS/IIOP redirector configuration files . . 59
5.7 Cluster definition attributes 60
8.1 Apache IIOP connection configuration files

81
8.2 Cluster definition attributes 82
12.1 Elements in a VisiClient container

command 121
27.1 DOCTYPE headers 307
29.1 iastool command-line utilities 339

Tables

x

3.1 Partition Footprint 19
4.1 Client program binding to an object

reference 38
4.2 Connecting multiple web containers to a

single JSS 39
6.1 JSS Management with a Centralized JSS

and Two Web Containers 64
6.2 JSS Management with Two Web Containers

and a Centralized Backend Datastore. . 66
8.1 Connecting from Apache to a CORBA

server 80
9.1 Standard Web Services Architecture . . 86
9.2 Borland Web Services Architecture . . . 88
12.1 VisiClient architecture 116
26.1 VisiConnect within the Borland Enterprise

Server 272
26.2 Packaging and Deployment in the Borland

Enterprise Server and VisiConnect . . 282

Figures

Chapter 1: In troduct ion to Bor land Enterpr ise Server 1

C h a p t e r

1
Chapter1Introduction to Borland

Enterprise Server
The Borland Enterprise Server is a set of services and tools that enable you to
build, deploy, and manage enterprise applications in your corporate
environment. These applications provide dynamic content by using JSP,
servlets, and Enterprise Java Bean (EJB) technologies.

BES Product overview
Borland provides the following different flavors of its Enterprise Server in order
to better meet your specific deployment requirements:
� Web Edition: For those who do not require a full J2EE compliant application

server, Borland provides the Web Edition which is designed for developing
and deploying web applications using JavaServer pages and Servlets with
a Java-based database.

� VisiBroker Edition: For the CORBA developer, Borland provides the
VisiBroker Edition, which includes both VisiBroker for Java and VisiBroker
for C++ to leverage the industry-leading VisiBroker Object Request Broker
(ORB). Both are complete implementations of the CORBA 2.6 specification.
VisiBroker Edition also includes the Web Edition and it's feature set.

� VisiBroker Standalone (installation option): An installation option for those
who purchase VisiBroker Edition, but prefer a smaller footprint - the
standalone VisiBroker is comprised of only VisiBroker for Java and
VisiBroker for C++.

2 BES Developer’s Guide

BES Product overv iew

� Team Edition: Provides a full J2EE 1.3 implementation and can service up
to 25 concurrent users on a single box. The aim of the Team Edition is to
support scalability within an architecture that delivers performance and
reliability at an affordable price. In short, the Team Edition is the optimal
solution for small to medium deployment scales that require full J2EE
capabilities.

� Borland Enterprise Server: The complete Borland Enterprise Server
product provides full J2EE support. On top of the Web Edition, Team
Edition, and VisiBroker Edition features, BES supports unlimited concurrent
users and Partitions (applications), adds enterprise-level clustering and
other high-end features.

Each BES offering is built upon the same server core, and interact with each
other seamlessly. You can choose the degree of functionality and services you
need, and if your needs change, it is simple to upgrade your license. See the
BES Installation Guide for details.

Web Edition

The Web Edition is designed for developing and deploying web applications
using JavaServer Pages and Servlets with a Java-based database. The Web
Edition includes:
� the open-source Apache Web Server version 2.0.
� the Borland web container based on the open-source Tomcat web

container version 4.1.
� the Smart Agent for object referencing and directory service for server

connection.
� Java Session Service (JSS) to store session information for recovery in

case of container failure.
� Naming Service to associate one or more logical names with an object

reference as well as hosting associations between serial names of data
sources and the JNDI names.

� IIOP Connector that enables Apache to communicate with the Tomcat-
based, Borland web container and CORBA servers via Internet Inter-ORB
Protocol (IIOP). The IIOP Plug-in leverages the power of VisiBroker to allow
for CORBA connectivity directly from Apache.

� IIOP redirector that enables Microsoft IIS to communicate with the Borland
web container and CORBA servers.

� Borland's all Java relational database, JDataStore and support for JDBC
datasources.

Web Edition features
The Web Edition offers the following features:
� a complete deployment platform for web applications.

Chapter 1: In troduct ion to Bor land Enterpr ise Server 3

BES Product overv iew

� Web Services support, including Apache SOAP server integration, Borland
XML toolkit, and development tools like the Deployment Descriptor Editor.

� industry-proven load balancing and fault tolerance.
� automatic session management.
� web-enabled CORBA servers.
� a homogeneous integration to an all-Java database with support for

multiple connections.

VisiBroker Edition

VisiBroker is primarily for deployments that require CORBA to communicate
with non-Java objects, and is comprised of both the VisiBroker for Java and
the VisiBroker for C++ ORBs. Using VisiBroker's IIOP Connector, you can
quickly move CORBA applications on-line with very little coding.

Visibroker includes:
� the VisiBroker ORB, the industry-leading Object Request Broker.
� the VisiNaming Service, a complete implementation of the Interoperable

Naming Specification in the CORBA 2.6 specification from the OMG.
� the IIOP Plug-in for CORBA which routes Apache requests to Interface

Definition Language (IDL) and CORBA via IIOP, and then routes them back
as HTTP requests. Thus, Java and C++ CORBA objects can be used to
service HTTP requests.

VisiBroker Edition features
VisiBroker features:
� "out-of-the-box" security and web connectivity.
� CORBA 2.6 compliance.
� a seamless migration to the J2EE Platform.
� CORBA support like naming and event services.

VisiBroker Standalone (installation option)

VisiBroker Standalone is a smaller footprint option for VisiBroker Edition, it is
comprised only of VisiBroker for Java and VisiBroker for C++.

Team Edition

The Team Edition is a scaled down version of the full Borland Enterprise
Server. This option is optimal for small to medium-sized deployments. Using
the Team Edition, only one server can be installed per physical machine.
Clustering is not supported.

4 BES Developer’s Guide

Bor land Enterpr ise Server (BES) Documentat ion

Team Edition features
� provides a full Web Container.
� provides a full EJB Container.
� includes the Borland JMS services, the bundled database, JDataStore
� Fully J2EE 1.3 compliant.
� services up to 25 concurrent users on a single box.
� services 1 running Partition at a time.

Borland Enterprise Server “AppServer Edition”

The Borland Enterprise Server “AppServer Edition” allows you to deploy and
manage your distributed Java and CORBA applications that implement the
J2EE 1.3 platform standard. The AppServer Edition includes all the features
and services of the Web Edition and Visibroker with the addition of:
� provides a full EJB Container.
� a Java Messaging Service (JMS).
� VisiConnect, Borland's J2EE Connector Architecture (Connectors)

implementation for connecting to general Enterprise Information Systems
(EIS).

� Security for the Borland Enterprise Server.
� support for the HP-UX and IBM AIX platforms.

With the AppServer Edition, the number of server instances per installation is
unlimited, so the maximum of concurrent users is unlimited.

Borland Enterprise Server “AppServer Edition” features
The AppServer Edition offers the following features:
� a complete implementation of J2EE 1.3 and EJB 2.0 standards.
� leading Java Messaging Solutions.
� "out-of-the-box" EIS integration through Connectors.
� integration with the Borland JBuilder integrated development environment.
� seamless integration with the VisiBroker ORB infrastructure.
� fully supported clustering.

Borland Enterprise Server (BES) Documentation
The Borland Enterprise Server documentation set includes the following:
� BES Installation Guide - describes how to install BES on your network. It is

written for system administrators who are familiar with Windows or UNIX
operating systems.

Chapter 1: In troduct ion to Bor land Enterpr ise Server 5

Bor land Enterpr ise Server (BES) Documentat ion

� BES Developer's Guide - provides detailed information about packaging,
deployment, and management of distributed object-based applications in
their operational environment.

� Borland Management Console User's Guide - provides information about
using the Borland Management Console GUI.

� BES VisiBroker for Java Developer's Guide - describes how to develop
VisiBroker applications in Java. It familiarizes you with configuration and
management of the Visibroker ORB and how to use the programming tools.
Also described is the IDL compiler, the Smart Agent, the Location, Naming
and Event Services, the object Activation Daemon, the Quality of Service,
and the Interface Repository.

� BES VisiBroker for C++ Developer's Guide - describes how to develop
VisiBroker applications in C++. It familiarizes you with configuration and
management of the Visibroker ORB and how to use the programming tools.
Also described is the IDL compiler, the Smart Agent, the Location, Naming
and Event Services, the object Activation Daemon, the Quality of Service,
and the Interface Repository.

� BES VisiBroker for C++ API Reference - provides a description of the
classes and interfaces supplied with VisiBroker for C++.

� BES VisiBroker VisiNotify Guide - describes Borland's implementation of
the OMG standard, Notification Service, how to use the major features of
the notification messaging framework, in particular, the Quality of Service
(QoS) properties, Filtering, and Publish/Subscribe Adapter (PSA).

� BES VisiBroker VisiTransact Guide - describes Borland's implementation of
the OMG standard, Transaction Service, discusses the components of the
CORBA Transaction Service and transaction processing in a distributed
environment.

� BES VisiBroker GateKeeper Guide - describes how to use the VisiBroker
GateKeeper to enable VisiBroker clients to communicate with servers
across networks, while still conforming to the security restrictions imposed
by web browsers and firewalls.

Important The documentation in PDF format and updates to the product documentation
are available on the web at http://www.borland.com/techpubs/bes.

Accessing the BES Standalone online Help Topics

To access the standalone online Help Topics on a machine where the product
is installed, use one of the following methods:

Windows � Choose Start | Programs | Borland Deployment Platform | Help Topics
� or, open the Command Prompt and go to the product installation /bin

directory and type the following command:

help

UNIX Open a command shell and go to the product installation /bin directory and
enter the command:

6 BES Developer’s Guide

Documentat ion convent ions

help

Accessing online Help Topics from within BES

To access the online Help Topics when running the Management Console,
use one of the following methods:
� From within the Borland Management Console, choose | Help
� From within the DDEditor, choose | Help
� From within the VisiBroker Console, choose | Help

Documentation conventions
The documentation for the Borland Enterprise Server uses the typefaces and
symbols described below to indicate special text:

Platform conventions

The Borland Enterprise Server documentation uses the following symbols to
indicate platform-specific information:

Windows: All supported Windows platforms.

Win2003: Windows 2003 only

WinXP: Windows XP only

Win2000: Windows 2000 only

UNIX: UNIX platforms

Solaris: Solaris only

Linux: Linux only

Convention Used for

italics Used for new terms and book titles.

computer Information that the user or application
provides, sample command lines and
code.

bold computer In text, bold indicates information the
user types in. In code samples, bold
highlights important statements.

[] Optional items.

... Previous argument that can be repeated.

| Two mutually exclusive choices.

Chapter 1: In troduct ion to Bor land Enterpr ise Server 7

Contact ing Borland suppor t

Contacting Borland support
Borland offers a variety of support options. These include free services on the
Internet where you can search our extensive information base and connect
with other users of Borland products. In addition, you can choose from several
categories of telephone support, ranging from support on installation of
Borland products to fee-based, consultant-level support and detailed
assistance.

For more information about Borland's support services, please see our web
site at: http://www.borland.com/devsupport and select your geographic region.

For Borland support worldwide information, visit: http://www.borland.com/
devsupport/contacts.

When contacting Borland's support, be prepared to provide the following
information:
� Name
� Company and site ID
� Telephone number
� Your Access ID number (U.S.A. only)
� Operating system and version
� Borland product name and version
� Any patches or service packs applied
� Client language and version (if applicable)
� Database and version (if applicable)
� Detailed description and history of the problem
� Any log files which indicate the problem
� Details of any error messages or exceptions raised

Online resources

You can get information from any of these online sources:

World Wide Web http://www.borland.com

Online Support http://support.borland.com (access ID
required)

Listserv To subscribe to electronic newsletters,
use the online form at: http://
www.borland.com/contact/listserv.html
or, for Borland's international listserver,
http://www.borland.com/contact/
inlist.html

8 BES Developer’s Guide

Contact ing Bor land suppor t

World Wide Web

Check http://www.borland.com regularly. The Borland Enterprise Server
Product Team posts white papers, competitive analyses, answers to FAQs,
sample applications, updated software, updated documentation, and
information about new and existing products.

You may want to check these URLs in particular:
� http://www.borland.com/products/downloads (updated software and other

files)
� http://www.borland.com/techpubs/bes (documentation updates, html and

PDFs)
� http://community.borland.com (contains our web-based news magazine for

developers)

Borland newsgroups

You can participate in many threaded discussion groups devoted to the
Borland Enterprise Server products.

You can find user-supported newsgroups for Enterprise Server and other
Borland products at http://borland.com/newsgroups.

Note These newsgroups are maintained by users and are not official Borland sites.

Chapter 2: Bor land Enterpr ise Server overv iew and architecture 9

C h a p t e r

2
Chapter 2Borland Enterprise Server
overview and architecture

This section contains an overview of the Borland Enterprise Server products,
Editions, and architecture.

Important For documentation updates, go to www.borland.com/techpubs/bes.

BES architecture overview
The Borland Enterprise Server is a CORBA-based, J2EE server that utilizes
distributed objects throughout its architecture. With the Borland Enterprise
Server, you can establish connectivity to platforms from corporate mainframes
to simpler systems with small-business applications and remote databases.
The Borland Enterprise Server components process your enterprise
application based on how it is packaged and how the deployment descriptors
describe the application's modules.

10 BES Developer ’s Guide

BES serv ices overv iew

In the following architectural diagram, your enterprise applications sit on top of
the Borland Enterprise Server. An application server installation contains BES
core services and Partitions.

BES services overview
BES services are those services available to all applications being hosted on
the Borland Enterprise Server. They are:
� Web Server
� Java Messaging (JMS)
� Smart Agent
� 2PC Transaction Service
� Management

Web Server

Borland Enterprise Server includes the Apache Web Server version 2.0. The
Apache web server is a robust, commercial grade reference implementation of

Chapter 2: Bor land Enterpr ise Server overv iew and architecture 11

BES serv ices overv iew

the HTTP. protocol. The Apache web server is highly configurable and
extensible through the addition of third-party modules. Apache supports
clients with varying degrees of sophistication and supports content negotiation
to this end. Apache also provides unlimited URL ailing.

Borland has added an IIOP Plug-in to the Apache web server. The IIOP Plug-
in allows Apache and the Borland web container to communicate via Internet
Inter-ORB Protocol (IIOP), allowing users to add the power of CORBA with
their Web applications in new ways. In addition, IIOP is the protocol of the
VisiBroker ORB, allowing your Web applications to fully leverage the services
provided by the object-request-broker provided by Borland.

JMS

Borland Enterprise Server provides support for standard JMS pluggability, and
currently bundles the Tibco messaging service. Additionally, BES is certified to
support SonicMQ. Refer to Chapter 24, “JMS provider pluggability” for vendor-
specific information on JMS services.

Smart Agent

The Smart Agent is a distributed directory service provided by the VisiBroker
ORB used in BES. The Smart Agent provides facilities used by both client
programs and object implementations, and must be started on at least one
host within the local server network.

Note Users of the Web Edition do not have to use the Smart Agent if they expect
their Web server and Web containers to communicate through HTTP or
another Web protocol. To leverage the IIOP Plug-in (and, by extension, the
ORB provided with the Web Edition), however, the Smart Agent must be
turned on.

More than one Smart Agent can be configured to run on your network. When a
Smart Agent is started on more than one host, each Smart Agent will
recognize a subset of the objects available and communicate with the other
Smart Agents to locate objects it cannot find. In addition, if one of the Smart
Agent processes should terminate unexpectedly, all implementations
registered with that Smart Agent discover this event and they will automatically
re-register with another Smart Agent. It should be noted that If a heavy
services lookup load is necessary, it is advisable to use the Naming Service
(VisiNaming). VisiNaming provides persistent storage capability and cluster
load balancing whereas the Smart Agent only provides a simple round robin
on a per osagent basis.

For more information, go to the VisiBroker for Java Developer's Guide Using
the Smart Agent section.

12 BES Developer ’s Guide

The Par t i t ion and i ts serv ices

2PC Transaction Service

The Two-Phase Commit (2PC) Transaction Service exists provides a
complete recoverable solution for distributed transactional CORBA
applications. Implemented on top of the VisiBroker ORB, the 2PC Transaction
Service simplifies the complexity of distributed transactions by providing an
essential set of services, including a transaction service, recovery and logging,
integration with databases, and administration facilities within one, integrated
architecture.

Management

The Borland Management Service encompasses a set of Management Agents
which communicate with a Management Hub. The Hub is installed on a single
host in your network from which you carry out management tasks such as
clustering. The Management Hub lets you monitor and control resources
installed on the local host on which Borland Enterprise Server is installed.

Note Borland Deployment Op-Center (purchased separately) provides the ability to
manage distributed resources installed on remote hosts with network facing
services.

The Partition and its services
A Partition is an application's deployment target. The Partition provides the
J2EE server-side runtime environment required to support a complete J2EE
1.3 application. While a Partition is implemented as a single native process, its
core implementation is Java. When a Partition starts, it creates an embedded
Java Virtual Machine (JVM) within itself to run the Partition implementation
and the J2EE application code.

Partitions are present in each BES Edition and product but they host less
diverse archives in the Web Services, Team and VisiBroker Editions. This
section describes the full-featured functional Partitions offered in the full
Borland Enterprise Server. Each Partition instance provides:
� “Connector Service” on page 13
� “EJB Container” on page 13
� “JDataStore Server” on page 13
� “Lifecycle Interceptor Manager” on page 13
� “Naming Service” on page 13
� “Session Storage Service” on page 14
� “Session Storage Service” on page 14
� “Web Container” on page 14

Chapter 2: Bor land Enterpr ise Server overv iew and architecture 13

The Par t i t ion and i ts serv ices

Connector Service

The Connector Service, also known as VisiConnect, is the Borland
implementation of the Connectors 1.0 standard, which provides a simplified
environment for integrating various EISs with the Borland Enterprise Server.
The Connectors provide a solution for integrating J2EE-platform application
servers and EISs, leveraging the strengths of the J2EE platform - connection,
transaction and security infrastructure - to address the challenges of EIS
integration. For more information see Chapter 26, “VisiConnect overview”.

EJB Container

The Borland Enterprise Server provides integrated EJB container services.
These services allow you to create and manage integrated EJB containers or
EJB containers across multiple Partitions. Use this service to deploy, run, and
monitor EJBs. Tools include a Deployment Descriptor Editor (DDEditor) and a
set of task wizards for packaging and deploying EJBs and their related
descriptor files. EJB containers can also make use of J2EE connector
architecture, which enables J2EE applications to access Enterprise
Information Systems (EISs).

JDataStore Server

Borland's JDataStore is a relational database service written entirely in
Java. You can create and manage as many JDataStores as desired. For more
information on JDataStore, see the JDatastore online documentation at
www.borland.com/techpubs/bes.

Lifecycle Interceptor Manager

You can use Lifecycle Interceptors to further customize your implementation.
Partition Lifecycle Interceptors allow you to perform operations at certain
points in a Partition's lifecycle. For more information see Chapter 25,
“Implementing Partition Interceptors”.

Naming Service

The Naming Service is provided by the VisiBroker ORB. It allows developers,
assemblers, and/or deployers to associate one or more logical names with an
object reference and store those names in a VisiBroker namespace. It also
allows application clients to obtain an object reference by using the logical
name assigned to that object. Object implementations can bind a name to one
of their objects within a namespace which client applications can then use to
resolve a name using the resolve() method. The method returns an object
reference to a naming context or an object. For more information refer to the
VisiBroker for Java Developer's Guide Using the Smart Agent section.

14 BES Developer ’s Guide

Bor land Enterpr ise Server and J2EE APIs

Session Storage Service

The Java Session Service (JSS) is a service that stores information pertaining
to a specific user session. The JSS provides a mechanism to easily store
session information into a database. For example, in a shopping cart scenario,
information about your session (your login name, the number of items in the
shopping cart, and such) is polled and stored by the JSS. So when a session
is interrupted by a Borland web container unexpectedly going down, the
session information is recoverable by another Tomcat instance through the
JSS. The JSS must be running on the local network. Any web container
instance (in the cluster configuration) will find the JSS, connect to it, and
continue session management. For more information, go to Chapter 6, “Java
Session Service (JSS) configuration”.

Transaction Manager

A Partition Transaction Manager exists in each Borland Enterprise Server
Partition. It is a Java implementation of the CORBA Transaction Service
Specification. The Partition Transaction Manager supports transaction
timeouts, one-phase commit protocol, and can be used in a two-phase commit
protocol under special circumstances. For more information, go to Chapter 19,
“Transaction management”.

Web Container

The Web Container is designed to support deployment of web applications or
web components of other applications (for example, servlets and JSP files).
BES provides the Borland Web Container, which is based on Tomcat 4.1.
Tomcat is a sophisticated and flexible open-source tool that provides support
for servlets, JavaServer Pages, and HTTP. Borland has also provided an IIOP
plug-in with its Web Container, enabling communication with application
components and the web server over IIOP rather than strict HTTP. Other
features of the Web Container are:
� EJB referencing
� DataSource referencing
� Environment referencing
� Integration into industry-standard web servers

For more information, go to Chapter 4, “Web components”.

Borland Enterprise Server and J2EE APIs
Since Borland Enterprise Server is fully J2EE 1.3 compliant, it supports the
use of the following J2EE 1.3 APIs:

Chapter 2: Bor land Enterpr ise Server overv iew and architecture 15

Bor land Enterprise Server and J2EE APIs

� JNDI: the Java Naming and Directory interface
� RMI-IIOP: remote method invocation (RMI) carried out via internet inter-

ORB protocol (IIOP)
� JDBC: for getting connections to and modeling data from databases
� EJB 2.0: the Enterprise JavaBeans 2.0 APIs
� Servlets 1.0: the Sun Microsystems servlets APIs
� JSP: JavaServer Pages APIs
� JMS: Java Messaging Service
� JTA: the Java transactional APIs
� Java Mail: a Java email service
� Connectors: the J2EE Connector Architecture
� JAAS: the Java Authentication and Authorization Service
� JAXP: the Java API for XML parsing

JDBC

Borland implements the Java DataBase Connection APIs version 2.0 from
Sun Microsystems. JDBC 2.0 provides APIs for writing database drivers and a
full Service Provider Interface (SPI) for those looking to develop their own
drivers. JDBC 2.0 also supports connection pooling and distributed transaction
features. For more information, go to the Transaction management and JDBC,
JDBC API Modifications section.

Java Mail

Java Mail is an implementation of Sun's Java Mail API. It is a set of abstract
APIs that model a mail system. The API provides a platform independent and
protocol independent framework to build Java-technology-based email client
applications.

JTA

The Java Transactional API (JTA) defines the UserTransaction interface
required by application components to start, stop, rollback, or commit
transactions. EJBs establish transaction participation through the
getUserTransaction method, while other components do so using JNDI lookups.
JTA also specifies the interfaces needed by Connectors and resource
managers to communicate with an application server's transaction manager.

16 BES Developer ’s Guide

Bor land Enterpr ise Server and J2EE APIs

JAXP

The Java APIs for XML Parsing (JAXP) enable the processing of XML
documents using the DOM, SAX, and XSLT parsing implementations.
Developers can easily use the parser provided with the reference
implementation of the API to XML-enable their Java applications.

JNDI

The Java Naming and Directory Interface is used to allow developers to
customize their application components at assembly and deployment without
changes to the component's source code. The container implements the
runtime environment for the components and provides the environment to the
component as a JNDI naming context. The components' methods access the
environment through JNDI interfaces. The JNDI naming context itself stores
the application environment information and makes it available to all
application components at runtime.

RMI-IIOP

The VisiBroker ORB supports RMI-over-IIOP protocol. When used in
conjunction with the IIOP Connector Module for Apache and the Borland web
container, it allows distributed web applications built on CORBA foundations.
For more information, go to the VisiBroker for Java Developer's Guide,Using
RMI over IIOP section.

Other Technologies

It is also possible to wrap other technologies, provide them as services, and
run them in the Borland Enterprise Server.

OptimizeIt Profiler

Borland's OptimizeIt Profiler (purchased separately) helps you track memory
and CPU usage issues during the development of Java applications. Borland
Enterprise Server runs OptimizeIt at the Partition level.

See the Sun Java Center for more information on these APIs.

Chapter 3 : Par t i t ions 17

C h a p t e r

3
Chapter3Partitions

This section explains what Partitions are and how they work. It explores the
Partition's footprint, facilities, configuration, and how to run a Partition.

Important For documentation updates, go to www.borland.com/techpubs/bes.

Partitions Overview
Partitions are the runtime hosting environment for J2EE and web service
application components. A Partition is a process that can be tuned to suit the
application it is hosting. You can create any number of Partitions to isolate,
scale, or cluster your application deployment to meet your own requirements.
Extensive tooling enables you to simply create, configure, and distribute
Partitions to your needs.

A Partition provides containers and services needed for your applications:
� Web Container
� EJB Container
� Naming Service
� Session Service
� Transaction Service
� Connector Service
� JDataStore Database Server
� Partition Lifecycle Interceptor Service

18 BES Developer ’s Guide

Creat ing Par t i t ions

Additional applications and application components are also provided that can
be used in your applications:
� UDDI Server
� Apache Struts
� Apache Cocoon
� Petstore J2EE blueprint application
� SmarTicket J2EE blueprint application

By enabling and disabling the various Partition containers and services, and
configuring the Partition's environment, you can "right-size" the Partition to its
specific task. Typical use cases for a Partition include:
� Providing a complete isolated J2EE server platform for an application with

all relevant J2EE container and services enabled.
� Providing a platform for a component of a distributed application such as its

Web Tier with just the Web Container and Session Service enabled.
� Providing a central service such as a platform for the BES UDDI server with

just its Web Container enabled.
� Providing a diagnostic platform for an application such as running under

OptimizeIt.

Avoiding monolithic J2EE server Partitions hosting many applications also
allows you to fine tune the Java environment the application needs. The
version and type of JDK together with such configuration as heap space
available ensures a satisfactory environment in which to run, while not over-
allocating resources. Limits on pooled resources such as threads and
connections may similarly be configured for optimal total performance.
Partitions also have their own individual security settings for authentication
mechanisms, authorization tables, and so on. A user who has authority to
access all resources in a development Partition may be granted much more
limited authority in a production Partition.

Creating Partitions
Partitions are created as managed objects in a "configuration" from templates
provided in the Borland Management Console. Typically the Partition disk
footprint is created in:

<install-dir>/var/domains/<domain-name>/configurations/<configuration-
name>/

You can specify another location for the Partition and add a pre-existing
Partition to a configuration. The Management Console provides a rich
configuration experience for a Partition and is discussed in the Management
Console User's Guide Using Partitions section. Most configuration data for the
Partition and its services is captured in its Partition XML reference file
described in Chapter 30, “Partition XML reference”.

Chapter 3 : Par t i t ions 19

Running Par t i t ions

Figure 3.1 Partition Footprint

Running Partitions
Partitions are typically run under the control of a management agent within a
configuration, but they can also be run directly from the command line as
unmanaged Partitions. In both cases the Partition requires that a Smart Agent
(osagent) be running in the same sub-net on the same Smart Agent port.

See the Management Console User's Guide, Using Partitions section, for
information about managing Partitions within a configuration.

Running unmanaged Partitions

To run an unmanaged Partition (not managed by SCU), use the following
command:

partition [-path <my_partition_path>]

If no -path is specified, then the current directory is used.

The full list of Partition arguments is available in the following tables. Many of
these arguments are for use by the management agents and not by a user.

partition [<-options>] [-path <partitionpath>] [-management_agent <true|
false> [-management_agent_id <id>]] [-no_user_services] [-unique_cookie
<cookie>]

<-options> are the usual Java options and VM system properties recognized by
the Partition.

20 BES Developer ’s Guide

Running Par t i t ions

Note Options that are typically static, and pertinent to both managed and
unmanaged Partitions, are best encapsulated in the Partition's configuration
files.

Table 3.1 Partition command options

Option Description

-Dlog4j.configuration Path to the Partition's log4j
configuration file. Default is
<partitionpath>/adm/properties/
logConfiguration.xml

-Dlog4j.configuration.update.delay Specifies the period, in milliseconds,
between checks for updates to the
log4j configuration file. Default is
60000 milliseconds (1 minute).

-Dpartition.ignore_shutdown_on_signal=<true|
false>

Use this property to decide whether to
ignore shutdown signals and wait for a
shutdown request via the Partition's
management interface(s). Note that
UNIX sends a Ctrl-C signal to all
processes in a process group.

A Partition in control of its own life
cycle would not set this. When the
Partition is invoked by some parent
controlling process, such as the SCU,
then this would be set to true to ensure
that the Partition does not immediately
exit when the parent is issued a
shutdown signal.

-Dpartition.default.smartagent.port Overrides the User ORB Smart Agent
port and overrides all Partition
configuration. This property is only
overridden by -Dvbroker.agent.port.
Typically used by a parent controlling
process, such as the SCU.

-Dpartition.default.smartagent.addr Overrides User ORB Smart Agent addr
property and overrides all Partition
configuration. Is only overridden by -
Dvbroker.agent.addr.
Typically used by a parent controlling
process, such as the SCU.

-Dvbroker.agent.port Ultimate override for the User ORB
Smart Agent port.
This is typically never used by a parent
controlling process, but it may be used
by a command-line user.

-Dvbroker.agent.addr Ultimate override for the User ORB
Smart Agent addr.
Typically never used by a parent
controlling process, but it may be used
by a command-line user.

Chapter 3 : Par t i t ions 21

Running Par t i t ions

Running managed Partitions

Managed Partitions are started when the configuration to which they belong
starts. Typically the Partition starts according to a default mechanism, but you
can configure additional command-line options to be passed at creation-time.
Or, you can edit configuration.xml. Open the file, search for <partition-
process>, and find the <arguments> data block. Insert new command-line
arguments within <argument> tags.

Partition logging

The Partition uses log4j for its logging mechanism. It is configured using a
DOMConfigurator from the file <partitionpath>/adm/properties/
logConfiguration.xml. The default configuration is to log in an XML layout to
rolling log files in <partitionpath>/adm/logs. The Partition logConfiguration.xml
file is monitored for updates with a default check interval of 1 minute. See
previous table of Partition options for information about configuring the
configuration file and monitor check interval.

-Dpartition.management_domain.port Sets the Management ORB Smart
Agent port. Default 42424.
Typically used by a parent controlling
process, such as the SCU.

-DTomcatLoaderDebug Sets the Web Container debug level.
Default 0 (zero).

Table 3.2 Partition command available arguments

Arguments Description

-path <partitionpath> Partition footprint path.

-management_agent <true|false> The default is false which disables the
Partition management agent and runs a
standalone Partition. To enable the
Partition management agent, set to true.

-management_agent_id <id> Sets the identity to be used for the
Partition's management interface object
name.

-unique_cookie <cookie> Sets the cookie to be used to construct
unique identities in the Partition. In
particular, used to construct default
external interface names. The default is:
<host><partitionpath>.

-no_autostart_user_services <true|false> If set to true, disables the autostart of
user domain Partition services that are
configured to be started.

Table 3.1 Partition command options

Option Description

22 BES Developer ’s Guide

Conf iguring Par t i t ions

Any output sent to System.out or System.err is redirected as log4j events to the
logs. System.out is logged at the INFO level and System.err is logged at the
ERROR level.

If your application uses log4j then to configure application logging you should
edit the Partition's <partitionpath>/adm/properties/logConfiguration.xml file.

Configuring Partitions
Partitions offer a variety of fully-configurable services. This section discusses
how to work with Partition services, including archives, security, application
services, and statistics.

Application archives

Application components are hosted in the Partition itself. You can dynamically
deploy application archives to Partitions prior to running them or when they
are running. If the application archive is already hosted by the Partition, then it
is unloaded and the new archive loaded. To deploy modules to a Partition,
simply right-click its icon in the Management Console's Navigation Pane, and
select Deploy Modules. The deployed modules appear in the Partition
footprint, as shown in the Partition Footprint figure in “Creating Partitions” on
page 18.

You can also host modules at locations outside the Partition footprint. To do
so, open the partition.xml file for the Partition whose module paths you want
to configure. Search for the <archives> element node. Within this node, you
can configure archive repositories for all your archives by type, or provide the
location of a specific archive that you want hosted outside the Partition
repositories. See <archives> element in Chapter 30, “Partition XML reference”
for syntax.

In the Management Console, archives hosted within the Partition's footprint
are called "Deployed Modules". Archives that are hosted outside the
Partition's footprint are called "Hosted Modules".

Working with Partition services

The Partition allows you to specify which services will run within it and how
they will behave in the context of the Partition instance. You can configure the
Partition to automatically start some or all of its services at Partition startup.
You can specify the order in which Partition services start and shut down.
Additionally, you can configure which Partition services are configurable
through the Management Console. Again, the partition.xml file captures this
information as attributes of its <services> element.

Chapter 3 : Par t i t ions 23

Conf igur ing Par t i t ions

Partition handling of services
The <services> element has four attributes, which are:

To set any one of these attributes, use either the Management Console or
search the Partition's partition.xml file for the <services> node. The valid value
for each attribute is a space-separated list of Partition service names, which
are read left to right. For example, if you wanted to shutdown a Partition
service named ejb_container before a service named transaction_service, you
would set the value of shutdownorder to:

ejb_container transaction_service

Configuring individual services
Each Partition service is configurable within the context of its Partition parent.
The partition.xml file captures information about individual services in the
<service> node, the child node of <services>. In addition, you can use the
<properties> sub-element within <service> to set service-specific properties that
do not come under the auspices of the Partition's runtime executable.

If your services are to be included in the service node lists, you must define
them with a service data block and give them a unique name using the name
attribute. For a full description of the attributes that are configurable for
Partition services, see Chapter 30, “Partition XML reference”.

Gathering Statistics

Each Partition has a Statistics Agent that can be enabled for the short-term
gathering of statistics data. The data is stored onto disk, and is viewable using
the Management Console. Statistics are collected in snapshots performed at a
specified interval, and are cleaned up (removed from disk) at discreet intervals
and after the collection period. This function is called reaping.

You can enable, disable, and configure statistics gathering using the
Management Console or by setting attributes in the <statistics.agent> attribute
of partition.xml. For more information, see Chapter 30, “Partition XML
reference”.

autostart The services to be started with the
Partition.

startorder The startup order imposed on the
Partition services included in the
autostart.

shutdownorder The shutdown order imposed on the
Partition services running at shutdown.

administer The Partition services that will appear
in the Management Console as
configurable.

24 BES Developer ’s Guide

Conf iguring Par t i t ions

Security management and policies

Each Partition can have its own security settings. You can specify the security
manager to use for each Partition by specifying a valid security class. You can
also set the Policy to use for that manager (generally using a .policy file). You
can configure security using either the Management Console or by setting the
attributes of the <security> node of partition.xml. For more information, see
Chapter 30, “Partition XML reference”.

Classloading policies

You can configure the Partition's classloading policies, including the prefixes
to load, the classloader policy, and whether or not to verify JARs as they are
being loaded. You can configure classloading either using the Management
Console or by setting attributes of the <container> node of partition.xml.

The system.classload.prefixes attribute takes a comma-separated list of
resource prefixes as its value. These prefixes are delegated from the custom
classloader to the system classloader prior to attempting its own load. The
classloader.classpath attribute contains a semicolon-separated list of JARs to
be loaded by each instance of the application classloader. To verify the JARs
as they load, set the verify.on.load attribute to true, the default.

The classloader policy is set in the classloader.policy element. There are two
acceptable values:

Partition Lifecycle Interceptors

You can use Partition Lifecycle Interceptors to further customize your
implementation. Partition Lifecycle Interceptors allow you to perform
operations at certain points in a Partition's lifecycle. You deploy a Java class
that implements:

com.borland.enterprise.server.Partition.service.PartitionInterceptor

and contains code to perform operations at one or more of the following
interception points:
� At Partition initialization before any Partition services (Tomcat, for example)

are created and initialized.

per_module Creates a separate application
classloader for each deployed module.
This policy is required for hot
deployments (deployments while the
Partition is running).

container Loads all deployed modules in the
shared classloader. This policy
prevents the ability to hot deploy.

Chapter 3 : Par t i t ions 25

Conf igur ing Par t i t ions

� At Partition initialization after any services are started but prior to the
loading of any modules.

� At Partition startup after all Partition services have loaded their respective
modules.

� At Partition shutdown before Partition services have unloaded their
respective modules but prior to the services themselves shutting down.

� At Partition termination after Partition services have been shut down.

Partition Interceptors have a variety of uses, including pre-loading JARs prior
to startup, inserting debugging operations during module loading, or even
simple messaging upon the completion of certain events.

For information about how to implement a Partition Lifecycle Interceptor, see
Chapter 25, “Implementing Partition Interceptors”.

26 BES Developer ’s Guide

Chapter 4 : Web components 27

C h a p t e r

4
Chapter4Web components

This section provides information about the web components which are
included in all Borland Enterprise Server product offerings with the exception
of the VisiBroker Standalone installation option.

Important For documentation updates, go to www.borland.com/techpubs/bes.

Apache web server implementation
BES includes an implementation of the open-source Apache web server
version 2.0 (an httpd server) with all product offerings except in the case of the
VisiBroker Standalone installation option. The Apache web server 2.0 is HTTP
1.1-compliant and is highly customizable through the Apache modules.

Apache configuration

The Apache web server comes pre-configured and ready-to-use when it is
initially started. Many modules are dynamically loaded during the Apache
startup. You can later customize its configuration for the IIOP connector,
clustering, failover, and load balancing with one or more web container(s). You
can use the BES Management Console to modify the configuration file, or you
can use the directives in the plain text configuration file, httpd.conf.

By default, the Apache httpd.conf file is located in the following directory:

<install_dir>/var/domains/<domain_name>/configurations/
<configuration_name>/mos/apache2/conf

28 BES Developer ’s Guide

Apache web server implementat ion

Otherwise, for the location of the httpd.conf file, go to the configuration.xml file
located in:

<install_dir>/var/domains/<domain_name>/configurations/
<configuration_name>/mos/

and search for the Apache Managed Object apache-processsub-element httpd-
conf attribute:

httpd-conf=

For more information about the Apache Managed Object elements and
attributes, go to the BDOC Reference, Managed Object elements and
attributes, apache-process Managed Object type section.

For information about configuring the httpd.conf file for the IIOP connector/
redirector, go to Chapter 5, “Web server to web container connectivity”.

Apache configuration syntax

When you edit the httpd.conf file, you must adhere to the following
configuration syntax guidelines:
� The httpd.conf files contain one directive per line.
� To indicate that a directive continues onto the next line, use a back-slash "\

" as the last character on a line.
� No other characters or white space must appear between the back-slash "\

" and the end of the line.
� Arguments to directives are often case-sensitive, but directives are not

case-sensitive.
� Lines which begin with the hash character "#" are considered comments.
� Comments cannot be included on a line after a configuration directive.
� Blank lines and white space occurring before a directive are ignored, so you

can indent directives for clarity.

Note For additional information on the Apache web server configuration options and
general directive usage, go to the Apache Software Foundation web site
at:Apache2 www.apache.org, or go to the online Help Topics, Java API
Reference, Apache2 APIs.

Using the .htaccess files

The Apache web server allows for decentralized management of configuration
through the .htaccess files placed inside the web tree. These files are specified
in the AccessFileName directive.

Directives placed in .htaccess files apply to the directory where you place the
file, and all sub-directories. The .htaccess files follow the same syntax as the
main configuration files. Since .htaccess files are read on every request,
changes made in these files take immediate effect. To find which directives

Chapter 4 : Web components 29

Bor land web conta iner implementat ion

can be placed in .htaccess files, check the Context of the directive. You can
control which directives can be placed in .htaccess files by configuring the
AllowOverride directive in the main configuration files.

Apache directory structure
After installing the Apache web server, by default, the following Apache-
specific directory structure appears in:

<install_dir>/var/domains/<domain_name>/configurations/
<configuration_name>/mos/<apache_managedobject_name>/

Borland web container implementation
The Borland web container supports development and deployment of web
applications. All BES products (with the exception of VisiBroker Standalone
installation option) provide the Borland web container which is based on
Tomcat 4.1. The Borland web container is a sophisticated and flexible tool that
provides support for Servlets 2.3 and JSP 1.2 specifications.

As a "Partition service", all the Borland web container configuration files are
located in each of your Partitions' data directory under:

adm/tomcat/conf/

By default, a Partition's data directory is located in:

<install_dir>/var/domains/<domain_name>/configurations/
<configuration_name>/mos/<partition_name>/

For example, for a Partition named "standard", by default the Borland web
container configuration files are located in:

<install_dir>/var/domains/<domain_name>/configurations/
<configuration_name>/mos/standard/adm/tomcat/conf/

Otherwise, for the location of a Partition data directory, go to the
configuration.xml file located in:

<install_dir>/var/domains/<domain_name>/configurations/
<configuration_name>/

Table 4.1 Apache-specific directories

Apache-specific Directory Name Description

conf Contains all configuration files.

htdocs Contains all HTML documents and web
pages.

logs Contains all log files.

CGI-bin Contains all CGI scripts.

proxy Contains the proxies for your web
application.

icons Contains the icon images in .gif format.

30 BES Developer ’s Guide

Bor land web container implementat ion

and search for the Partition managed object, partition-process sub-element
directory attribute:

<partition-process directory=

For more information about the Partition type Managed Object and its
elements and attributes, go to the BDOC Reference, Managed Object
elements and attributes, partition Managed Object type section.

Servlets and JavaServer Pages

A servlet is a Java program that extends the functionality of a web server,
generating dynamic content and interacting with web clients using a request-
response paradigm.

JavaServer Pages (JSP) are a further abstraction to the servlet model. JSPs
are an extensible web technology that uses template data, custom elements,
scripting languages, and server-side Java objects to return dynamic content to
a client. Typically the template data is HTML or XML elements, and in many
cases the client is a web browser.

Servlets and JSPs are server components that normally run within a web
server. Servlets are written as web server extensions separate from the HTML
page, while JSP embeds the Java code directly in the HTML. At runtime, the
JSP Java code is automatically converted into a servlet.

Servlets process web requests, pass them into the back-end enterprise
application systems, and dynamically render the results as HTML or XML
client interfaces. Servlets also manage the client session information, so that
users do not need to repeatedly input the same information.

Typical web application development process

In a typical development phase for a web application:

1 The web designer writes the JSP components, and the software developer
creates the servlets for handling presentation logic.

2 In conjunction, other software engineers write Java source code for servlets
and the .jsp and .html for processing client request to the server-side
components (EJB application tier, CORBA object, JDBC object).

3 The Java class files, .jsp files, and the .html files are bundled with a
deployment descriptor as a Web ARchive (WAR) file.

4 The WAR file (or web module) is deployed in the Borland web container as
a web application.

For more information about using the BES Deployment Descriptor Editor
(DDE) to create a Web ARchive (WAR) file, go to the Management Console
User’s Guide, Using the Deployment Descriptor Editor, Adding WAR
information section.

Chapter 4 : Web components 31

Bor land web conta iner implementat ion

Web application archive (WAR) file

In order for the Borland web container to deploy a web application, the web
application must be packaged into a Web ARchive (WAR) file. This is
achieved by using the standard Java Archive tool jar command.

The WAR file includes the WEB-INF directory. This directory contains files that
relate to the web application. Unlike the document root directory of the web
application, the files in the WEB-INF directory do not have direct interaction with
the client. The WEB-INF directory contains the following:

Borland-specific DTD
The web.xml file contains the standard deployment descriptor facilities for web
applications. However, the web-borland.xml file contains some Borland-specific
extensions. The following tables describes the Borland-specific elements and
how to use them. Some of these augment the standard constructs and some
are new constructs.

Directory/File name Contents

/WEB-INF/web.xml the deployment descriptor

/WEB-INF/web-borland.xml the deployment descriptor with Borland-
specific extensions.

/WEB-INF/classes/* the servlets and utility classes. The
application class loader loads any class
in this directory.

/WEB-INF/lib/*.jar the Java ARchive (JAR) files which
contain servlets, beans, and other utility
classes useful to the web application. All
JAR files are used by the web application
class loader to load classes from.

32 BES Developer ’s Guide

Bor land web container implementat ion

Note All attributes listed for each element are required.

Table 4.2 Borland-specific new elements

Element
Require
d Description Default Behavior DDEditor Pane

context-root no Specifies a user-
defined name for
the web
application. To
designate the
application as the
root web
application, type
"!ROOT!".

By default, the
WAR name
(without the .war
extension) is
used for the
application if
there is no
context-root at
the EAR level.

General

web-deploy-
path(service,
engine, host)

no Specifies exactly
where to deploy the
web application
(service, engine,
host). The Borland
web container
(based on Tomcat)
has a notion of a
host being part of
an engine which in
itself is a part of a
service. There can
be multiple hosts
under an engine
and there can be
multiple engines
under a given
service. A given
web application
can be deployed to
one or more of
these hosts. The
service, engine,
and host you
specify using this
element, override
the defaults.
However, this
element does
accept multiple
entries.

By default, the
web-deploy-path is
defined in the
following file:
<install_dir>\
var\domains\
<domain_name>\
configurations\
<configuration_na
me>\
<partition_manage
d-object_name>\
adm\tomcat\conf\
web-borland.xml

If no web-deploy-
path is defined in
this file, then the
default is:

service=HTTP
,
engine=HTTP,
 and host=*
 (deploy to
all hosts
available
 under the
specified
engine)

Web Deploy
Paths

Chapter 4 : Web components 33

Bor land web conta iner implementat ion

authorization-
domain

no Specifies which
authorization
domain is used for
the web
application.
Because multiple
authorization
domains can be
defined in an
application server,
you must specify
the one for the web
application. The
authorization
domain specified
must be one of the
domains previously
defined. For more
information, see
the VisiSecure
Guide, Security
Authorization
section.

If not defined in
the EAR, the
domain specified
in the WAR is
used. If not
specified in the
WAR also, then
the domain
specified for the
Partition is used.

General

security-role
(role-name,
deployment-
role?)

no Maps the roles
used in the web
application to the
real roles defined in
the application
server by
specifying the (role
name, deployment
role).

n/a Open up .war,
expand
Security roles
node, select a
defined
security role to
access the
Security Roles
pane.

Table 4.2 Borland-specific new elements

Element
Require
d Description Default Behavior DDEditor Pane

34 BES Developer ’s Guide

Bor land web container implementat ion

Table 4.3 Borland additional attributes on existing elements

Element
Additional
Attribute Description DDEditor Pane

resource-ref (res-ref-name,
jndi-name)

Specifies a JNDI name
to associate with the
resource reference. At
runtime, when a servlet
looks up the specified
resource reference
name, the web
application looks up the
JNDI name in the JNDI.
Note: The res-ref-name
that the additional jndi-
name element modifies is
required.

Resource
References

resource-env-ref (resource-env-ref-
name, jndi-name)

Specifies a JNDI name
to associate with the
resource environment
reference. At runtime,
when a servlet looks up
the specified resource
environment reference
name, the web
application looks up the
JNDI name in the JNDI.
Note: The resource_env-
ref-name that the
additional jndi-name
element modifies is
required.

Resource Env
Refs

Chapter 4 : Web components 35

Bor land web conta iner implementat ion

This is the DTD for the web-borland.xml file:

Note "*" means you can specify more than one, "?" means you can only specify
one.

<!ELEMENT web-app(context-root?, resource-env-ref*, resource-ref*,
 ejb-ref*, ejb-local-ref*, property*, web-deploy-path*,
 authorization-domain?, security-role*)>

<!ELEMENT ejb-ref (ejb-ref-name, jndi-name)>
<!ELEMENT ejb-local-ref (ejb-ref-name, jndi-name?)>
<!ELEMENT resource-ref (res-ref-name, jndi-name)>
<!ELEMENT resource-env-ref (resource-env-ref-name, jndi-name)>
<!ELEMENT web-deploy-path (service, engine, host)>
<!ELEMENT context-root (#PCDATA)>
<!ELEMENT prop-name (#PCDATA)>
<!ELEMENT prop-type (#PCDATA)>
<!ELEMENT prop-value (#PCDATA)>
<!ELEMENT ejb-ref-name (#PCDATA)>
<!ELEMENT jndi-name (#PCDATA)>
<!ELEMENT res-ref-name (#PCDATA)>
<!ELEMENT resource-env-ref-name (#PCDATA)>
<!ELEMENT service (#PCDATA)>

ejb-ref (ejb-ref-name,
jndi-name)

Specifies a JNDI name
to associate with the
EJB reference name. At
runtime, when a servlet
looks up the specified
EJB reference name,
the web application
looks up the JNDI name
in the JNDI. Note: The
ejb-ref-name that the
additional jndi-name
element modifies is
required.

EJB
References

ejb-local-ref (ejb-local-ref-
name, jndi-name)

Specifies a JNDI name
to associate with the
EJB local reference
name. At runtime, when
a servlet looks up the
specified EJB local
reference name, the
web application looks
up the JNDI name in
the JNDI. Note: The
ejb-local-ref-name that
the additional jndi-name
element modifies is
required.

EJB Local
References

Table 4.3 Borland additional attributes on existing elements

Element
Additional
Attribute Description DDEditor Pane

36 BES Developer ’s Guide

Microsoft In ternet In format ion Serv ices (I IS) web server

<!ELEMENT engine (#PCDATA)>
<!ELEMENT host (#PCDATA)>
<!ELEMENT authorization-domain (#PCDATA)>
<!ELEMENT security-role (role-name, deployment-role?)>
<!ELEMENT role-name (#PCDATA)>
<!ELEMENT deployment-role (#PCDATA)>

Adding ENV variables for the web container
You add web container ENV variables for a Partition the same way you set
any ENV variables for any Partition service; you use the <env-vars> element
and insert the xml code within the partition-process sub-element.

Note When adding web container ENV variables, be sure to type space-separated,
value pairs.

The configuration.xml file is located in the following directory:

<install_dir>/var/domains/<domain_name>/configurations/
<configuration_name>/

To add web container ENV variables for a Partition Managed Object, use the
env-vars element and env-var sub-element and the following syntax:

<managed-object name="standard"> ...>
 <partition-process ...>
 <env-vars ...>
 <env-var name="name" value="value"/>
 </env-vars>
 ...
</managed-object>

where <name> is the ENV variable name and <value> is the value you want to set
for the named ENV variable.

For example:

<managed-object name="standard"> ...>
 <partition-process ...>
 <env-vars ...>
 <env-var name="ABC" value="val_abc"/>
 </env-vars>
 ...
</managed-object>

For more information, go to the BDOC Reference, Managed Object elements
and attributes, process sub-elements section.

Microsoft Internet Information Services (IIS) web server
The Microsoft Internet Information Services (IIS) web server is not included
with any BES product offerings. However, BES does include the IIOP
redirector which provides connectivity from the Borland Tomcat-based web

Chapter 4 : Web components 37

Smart Agent implementat ion

container to the IIS web server, and from the IIS web server to a CORBA
server. The IIOP redirector is supported for the following IIS versions:
� Microsoft Windows 2000/IIS version 5.0
� Microsoft Windows XP/IIS version 5.1
� Microsoft Windows 2003/IIS version 6.0

For more information, go to Chapter 5, “Web server to web container
connectivity”.

IIS/IIOP redirector directory structure

After installing any of the BES products, by default, the following IIS/IIOP
redirector-specific directory structure appears in:

<install_dir>/etc/iisredir2/

Smart Agent implementation
The Smart Agent is a service that helps in locating and mapping client
programs and object implementation. The Smart Agent is automatically
started with default properties. For information on configuring the Smart
Agent, go to the VisiBroker for Java Developer's Guide, Using the Smart
Agent section, or the VisiBroker for C++ Developer's Guide, Using the Smart
Agent section.

The Smart Agent is a dynamic, distributed directory service that provides
facilities for both the client programs and object implementation. The Smart
Agent maps client programs to the appropriate object implementation by
correlating the object or service name used by the client program to bind to an
object implementation. The object implementation is an object reference
provided by a server, such as the Borland web container.

The Smart Agent must be started on at least one host within your local
network. When your client program invokes an object (using the bind method),
the Smart Agent is automatically consulted. The Smart Agent locates the
specified object implementation so that a connection can be established
between the client and the object implementation. The communication with the
Smart Agent is transparent to the client program.

The following are examples of how the Smart Agent is used by the BES web
components:

Table 4.4 IIS/IIOP redirector directories

IIS/IIOP redirector-specific directory
name Description

conf Contains all configuration files.

logs Contains all log files.

38 BES Developer ’s Guide

Smart Agent implementat ion

� “Connecting an Apache web server to a Borland web container” on
page 38.

� “Connecting Borland web containers to Java Session Service” on page 38.

Connecting an Apache web server to a Borland web
container

As a distributed directory service, the Smart Agent registers an active ID of an
object reference for the client programs to use. The following diagram shows
the interaction between the client program binding to an object through the
Smart Agent. In this example, the Apache web server is acting as a client and
the Borland web container is acting as a server (and provides the object
reference).

Figure 4.1 Client program binding to an object reference

Connecting Borland web containers to Java Session
Service

In this scenario, there are multiple web containers that need to connect to a
Java Session Service during start up. The Smart Agent is used to make a
client/server connection. The following diagram shows multiple instances of
the Borland web container. Each web container is acting as a client. During
start up, the Smart Agent is consulted as a directory service to find and
connect a JSS object reference. For more information about the Java Session
Service (JSS), go to Chapter 6, “Java Session Service (JSS) configuration”.

Chapter 4 : Web components 39

Smart Agent implementat ion

Figure 4.2 Connecting multiple web containers to a single JSS

40 BES Developer ’s Guide

Chapter 5: Web server to web conta iner connect iv i ty 41

C h a p t e r

5
Chapter5Web server to web container

connectivity
This section describes the web server to web container IIOP connectivity
provided in the BES products. For information about Apache to CORBA
connectivity, go to Chapter 8, “Apache web server to CORBA server
connectivity”.

Important For documentation updates, go to www.borland.com/techpubs/bes.

Apache to Borland web container connectivity
All BES product offerings include an implementation of the open-sourced
Apache web server version 2.0 as well as the Tomcat-based Borland web
container (with the exception of the VisiBroker Standalone installation option).
Also included is the IIOP connector, which provides connectivity from the
Apache web server to the Tomcat-based Borland web container.

Modifying the Borland web container IIOP configuration

The server.xml is the main configuration file for the Borland web container and
is stored in your Partition's data directory:

adm/tomcat/conf/

For more information, go to Chapter 4, “Web components”.

42 BES Developer ’s Guide

Apache to Bor land web conta iner connect iv i ty

Within the server.xml file are the following lines of code that pertain to the IIOP
connector configuration.

<Connector className="com.borland.catalina.connector.iiop.IiopConnector"
name="tc_inst1 debug="0" minProcessors="5" maxProcessors="75""
enableChunking="false" port="0" canBufferHttp10Data="true"
downloadBufferSize="4096" />

Use these lines of code and the following attributes to configure the Borland
web container IIOP connector.

Table 5.1 IIOP connector attributes

Attribute Default Description

name tc_instl The name by which this connector can be reached by
Apache and IIS servers.

debug 0 (zero) Integer that sets the level of debug information.
When set to 0 (zero) - the default, debug is turned off.
To turn debug on, set to 1. For very detailed debug
messages, set to 99.

minProcessors 5 The number of minimum threads previously created
to service requests on this connector.

maxProcessors 75 The number of maximum threads that will be created
on this connector to service requests.

enableChunking false Enables chunking behavior on the connector. To
enable chunking, set this attribute to true. Important:
To enable chunking, you must also set the servlet
response header Transfer-Encoding value to chunked.
For more information, go to “Downloading large data”
on page 50 .

downloadBufferSize 4096 Defines the "chunked" buffer size employed when
enableChunking is set to true. This directive accepts a
numeric value >0. Essentially, the larger the number
of bytes you set this directive to, the less the number
of CORBA RPCs that are required to send the data to
Apache or IIS. However, the larger you set this
directive, the more memory will be consumed in
servicing the transaction. Tuning this parameter
allows you to fine-tune the performance charactistics.
This enables the administrator to weigh the RPC
costs against memory resource usage to optimize
uploading on their system.
Note: If an invalid value is presented (non numeric/
negative number) then the default 4096 value is
employed. For more information, go to “Downloading
large data” on page 50.

Chapter 5: Web server to web conta iner connect iv i ty 43

Apache to Bor land web conta iner connect iv i ty

Modifying the IIOP configuration in Apache

The httpd.conf file is the global configuration file for the Apache web server.
Within the httpd.conf file are the following lines which pertain to the IIOP
connector.

Windows LoadModule iiop2_module <install_dir>/lib/apache2/mod_iiop2.dll
 IIopLogFile <install_dir>/var/domains/<domain_name>/
configurations/<configuration_name>/mos/apache2/logs/mod_iiop.log
 IIopLogLevel error
 IIopClusterConfig <install_dir>/var/domains/<domain_name>/
configurations/<configuration_name>/mos/apache2/conf/WebClusters.properties
 IIopMapFile <install_dir>/var/domains/<domain_name>/
configurations/<configuration_name>/mos/apache2/conf/UriMapFile.properties

port 0 (zero) The IIOP connector port. If set to 0 (zero) - the
default, a random port gets picked. If the corbaloc
mechanism must be used to locate this connector
from Apache or IIS, then port must be set to a value
other than 0 (zero).

canBufferHttp10Data true When the HTTP protocol is less than 1.1 and the
content length is not set on a servlet, the following
two choices are available for the web container. It
can buffer up the data, compute the content length,
and then send the response or it can raise an error
message. To avoid buffering the data and consuming
memory, set this attribue to false.For more
information, go to “Browsers supporting only the
HTTP 1.0 protocol” on page 51.

Table 5.1 IIOP connector attributes

Attribute Default Description

44 BES Developer ’s Guide

Apache to Bor land web conta iner connect iv i ty

Use these lines of code to configure the Apache web server IIOP connector.

1 "cluster" is used to represent a CORBA server instance that is known to the
system by a single name or URI. The IIOP connector is able to load-balance
across multiple instances, hence the term "cluster" is used.

The following are examples of typical configurations of these 5 lines for the
IIOP connector for Apache 2.0:

Windows example LoadModule iiop2_module C:/BES/lib/apache2/mod_iiop2.dll
 IIopLogFile C:/BES/var/domains/base/configurations/j2ee/mos/

Table 5.2 IIOP directives for Apache

Directive default Description

LoadModule <install_dir>/lib/
apache2/mod_iiop2.dll

Enables Apache 2.0 to
load the IIOP connector.
This directive instructs the
Apache web server to load
the Apache mod_iiop2
module from the location
specified. Once the
module is loaded, the
following four directives
are required to enable the
IIOP connector to locate
the web container(s) or
CORBA server(s) it must
communicate with and
perform other functions.

IIopLogFile <install_dir>/var/domains/
<domain_name>/
configurations/
<configuration_name>/mos/
apache2/logs/mod_iiop.log

Specifies the location
where the IIOP connector
writes log output.

IIopLogLevel error Specifies the level of log
information to write. This
directive can take one of
the following: debug | warn |
info | error.

IIopClusterConfig <install_dir>/var/domains/
<domain_name>/
configurations/
<configuration_name>/mos/
apache2/conf/
WebClusters.properties

Specifies the location of
the "cluster" instance file.
For CORBA servers,
identifies the file that
contains the "cluster"
name by which they are
known to the IIOP
connector1.

IIopMapFile <install_dir>/var/domains/
<domain_name>/
configurations/
<configuration_name>/mos/
apache2/conf/
UriMapFile.properties

Specifies the location of
the URI-to-Instance
mapping file. For CORBA
servers, maps HTTP URIs
to a specific "cluster"
known to the IIOP
connector.

Chapter 5: Web server to web conta iner connect iv i ty 45

Apache to Bor land web conta iner connect iv i ty

apache2/logs/mod_iiop.log
 IIopLogLevel error
 IIopClusterConfig C:/BES/var/domains/base/configurations/j2ee/
mos/apache2/conf/WebClusters.properties
 IIopMapFile C:/BES/var/domains/base/configurations/j2ee/mos/
apache2/conf/UriMapFile.properties

Solaris example LoadModule iiop2_module /opt/BES/lib/apache2/mod_iiop2.so
 IIopLogFile /opt/BES/var/domains/base/configurations/j2ee/mos/
apache2/logs/mod_iiop.log
 IIopLogLevel error
 IIopClusterConfig /opt/BES/var/domains/base/configurations/j2ee/
mos/apache2/conf/WebClusters.properties
 IIopMapFile /opt/BES/var/domains/base/configurations/j2ee/mos/
apache2/conf/UriMapFile.properties

46 BES Developer ’s Guide

Apache to Bor land web conta iner connect iv i ty

Additional Apache IIOP directives
The following optional additional directives are available for you to use to
further customize your Apache IIOP configuration.

Table 5.3 Additional Apache IIOP directives

Directive default Description

IIopChunkedUploading (commented
out) false

Controls whether Apache attempts "chunked"
uploads to the Borland web container IIOP
connector. To enable Apache to "chunk" large
size data that is greater than the
IIopUploadBufferSize value, uncomment and set
to true. Note: "Chunked" upload must also be
enabled on the web container by setting the
server.xml attribute enablechunking="true".
If you want Apache to wait until it has collected
all data before invoking the CORBA RPC to
send the large size data to the Borland web
container, leave commented out or set to false.
For more information, go to “Implementing
chunked download” on page 50.

IIopUploadBufferSize (commented
out) 4096

Defines the "chunked" buffer size employed
when IIopChunkedUploading is set to true. This
directive accepts a numeric value >0.
Essentially, the larger the number of bytes you
set this directive to, the less the number of
CORBA RPCs that are required to send the
data to the Borland web container. However,
the larger you set this directive, the more
memory will be consumed in servicing the
transaction. Tuning this parameter allows you
to fine-tune the performance charactistics. This
enables the administrator to weigh the RPC
costs against memory resource usage to
optimize uploading on their system. Note: If an
invalid value is presented (non numeric/
negative number) then the default 4096 value is
employed. For more information, go to
“Implementing chunked upload” on page 52.

IIopSessionAffinity true Controls whether Apache employs "session
affinity" in it's request handling. When
uncommented and set to true, Apache ensures
that all requests associated with a particular
session id are routed to the Borland web
container from which the request originated. To
disable this mechanism and have all requests
be subject to the round-robin model configured
for the particular cluster, set to false. Note: If
session affinity is disabled (=false), it is crucial
to ensure that the Borland web container's
shared session store is correctly configured;
otherwise the session data's integrity will be
compromised. For more information, go to the
Clustering of multiple Web components, Smart
session handling section.

Chapter 5: Web server to web conta iner connect iv i ty 47

Apache to Bor land web conta iner connect iv i ty

Apache IIOP connector configuration

The Apache IIOP connector has a set of configuration files that you must
update with web server cluster information. By default, these IIOP connector
configuration files are located in:

<install_dir>/var/domains/<domain_name>/configurations/
<configuration_name>/mos/apache2/conf

The two configuration files are:

Note Modifying either of these configuration files can be done so without starting up
or shutting down the Apache web server(s) or CORBA server(s) because the
file is automatically loaded by the IIOP connector.

Adding new clusters
The WebClusters.properties file tells the IIOP connector:
� The name of each available cluster - (ClusterList).
� The web container identification.
� Whether to provide automatic load balancing (enable_loadbalancing) for a

particular cluster.

To add a new cluster, in the WebClusters.properties file:

1 add the name of the configured cluster to the ClusterList. For example:

ClusterList=cluster1,cluster2,cluster3

2 define each cluster by adding a line in the following format specifying the
cluster name, the required webcontainer_id attribute, and any additional
attributes (see the following table, “Cluster definition attributes” on
page 60). For example:

<clustername>.webcontainer_id = <id> <attribute>

Table 5.4 Apache IIOP connection configuration files

IIOP configuration file Description

WebClusters.properties Specifies the cluster(s) and the
corresponding web container(s) for each
cluster.

UriMapFile.properties Maps URI references to the clusters
defined in the WebClusters.properties file.

48 BES Developer ’s Guide

Apache to Bor land web conta iner connect iv i ty

Note Failover and smart session are always enabled, for more information go to
Chapter 7, “Clustering web components”.

For example:

 ClusterList=cluster1,cluster2,cluster3

 cluster1.webcontainer_id = tc_inst1

 cluster2.webcontainer_id =
corbaloc::127.20.20.2:20202,:127.20.20.3:20202/tc_inst2
 cluster2.enable_loadbalancing = true

 cluster3.webcontainer_id = tc_inst3
 cluster3.enable_loadbalancing = false

In the above example, the following three clusters are defined:

1 The first, uses the osagent naming scheme and is enabled for load
balancing.

2 The second cluster employs the corbaloc naming scheme, and is also
enabled for load balancing.

3 The third uses the osagent naming scheme, but has the load balancing
features disabled.

Note To disable use of a particular cluster, simply remove the cluster name from the
ClusterList list. However, we recommend you do not remove clusters with
active http sessions attached to the web server (attached users), because
requests to these "live" sessions will fail.

Note Modifications you make to the WebClusters.properties file automatically take
effect on the next request. You do not need to restart your server(s).

Adding new web applications
Important By default, your web application is not made available through Apache. In

order to make it available through Apache, you must add some information to
the web application descriptor. For step-by-step instructions on how to do so,

Table 5.5 Cluster definition attributes

Attribute Required Definition

webcontainer_id yes the object "bind" name or corbaloc string
identifying the web container implementing the
cluster.

enable_loadbalancing no To enable load balancing, do not include this
attribute or include and set to true; load balancing
is enabled by default. To disable load balancing,
set to false indicating that this cluster instance
should not employ load-balancing techniques.
Warning: Ensure that when entering the
enable_loadbalancing attribute you give it a legal
value (true or false).

Chapter 5: Web server to web conta iner connect iv i ty 49

Large data t ransfer

go to the Management Console User's Guide, Using the Deployment
Descriptor Editor, Web Deploy Paths section.

For new applications that you have deployed to the Borland web container,
you need to do the following to make them available through the Apache web
server. Use the UriMapFile.properties file to map HTTP URI strings to web cluster
names configured in the WebClusters.properties file (see “Adding new clusters”
on page 47).
� In the UriMapFile.properties file, type:

<uri-mapping> = <clustername>

where <uri-mapping> is a standard URI string or a wild-card string, and
<clustername> is the cluster name as it appears in the ClusterList entry in the
WebClusters.properties file.

For example:

 /examples = cluster1
 /examples/* = cluster1

 /petstore/index.jsp = cluster2
 /petstore/servlet/* = cluster2

In this example:
� Any URI that starts with /examples will be forwarded to a web container

running in the "cluster1" web cluster.
� URIs matching either /petstore/index.jsp or starting with /petstore/servlet

will be routed to "cluster2".

Note With the URI mappings, the wild-card "*" is only valid in the last term of the
URI and may represent the follow cases:
� the whole term (and all inferior references) as in /examples/*.
� the filename part of a file specification as in /examples/*.jsp.

Note Modifications you make to the UriMapFile.properties file automatically take
effect on the next request. You do not need to restart your server(s).

If the WebCluster.properties or UriMapFile.properties is altered, then it is
automatically loaded by the IIOP connector. This means that the adding and
removing of web applications and the altering of cluster configurations may be
done so without starting up or shutting down the Apache web server(s) or
Borland web container(s).

Large data transfer
This section details the BES options available to you for handling large data
transfers between a client and the Borland web container with Apache 2.0 in
between. The data to be transferred may be either:
� static content obtained from a file, or
� dynamically generated content

50 BES Developer ’s Guide

Large data t ransfer

Typically, the content length is known in advance for static content, but is not
known for dynamic content.

Downloading large data

The following modes are available for downloading large data from the
Borland web container to the browser:
� Chunked download
� Non-chunked download

Implementing chunked download
In the chunked download mode, the Borland web container does not wait until
it has all the data to send. As soon as servlet generates the data, the web
container starts sending the data to the browser via Apache in fixed size
buffers.

Because the data is flushed as soon as it is available, the chunked download
mode of transfer has low memory requirements both on Apache and the
Borland web container. The browser user sees data as it arrives rather than as
one large lump at the end of the full transfer.

Enabling chunked download
To enable chunked download mode, you update the Borland web container
server.xml file which is stored in your Partition's data directory:

adm/tomcat/conf/

For more information, go to Chapter 4, “Web components”.

To enable the chunked download:

1 In the Borland web container server.xml, locate the <Service name="IIOP">
section of the code.

2 By default, the enableChunking attribute is set to false. Change this value to
enableChunking="true"

3 By default, the download buffer size is set to 4096. To change it, use the
downloadBufferSize attribute as follows:

downloadBufferSize=<value>

Where <value> is a numeric value >0.

Note If an invalid value is presented (non numeric/negative number) then the
default 4096 value is employed.

The chunked download mode of transfer has an overhead of an extra thread
per each request.

Known content length versus unknown
Based on whether content length is known in advance or not, chunked
download mode can take one of the following two paths:

Chapter 5: Web server to web conta iner connect iv i ty 51

Large data t ransfer

� chunked download with known content length
� chunked download with unknown content length

Chunked download with known content length
In this case, a servlet or JSP knows the content length of the data in advance
of the transfer. The servlet sets the Content-Length HTTP header before writing
out the data. The Borland web container writes out a single response header
followed by multiple chunks of data. Apache receives this from the web
container and sends data in the same fashion to the browser.

The response header contains the following header:

Content-Length=<actual data size>

Chunked download with unknown content length
HTTP protocol version 1.1 adds a new feature to handle the case of data
transfer when data length is not known in advance. This feature is called
HTTP chunking. In this case, a servlet does not know the content length of the
data in advance of a transfer. The servlet does not set the Content-Length
HTTP header.

The Borland web container sends the data to the Apache web server in
exactly the same way as in the case of the chunked download where the
content length is known in advance; a single response header is sent followed
by multiple data chunks. The response header contains the following header:

Transfer-Encoding="chunked"

If the browser protocol is HTTP 1.1 and the Content-Length header is not set by
the servlet, the Borland web container automatically adds the Transfer-
Encoding="chunked" header.

When an Apache web server sees this Transfer-Encoding header, it starts
sending the data as "HTTP chunks" - a response header followed by multiple
combinations of "chunked" header, "chunked" data, and "chunked" trailers.

Note Per the HTTP 1.1 specification, if a servlet sets both the Content-Length and
Transfer-Encoding headers, the Content-Length header is dropped by the
Borland web container.

Browsers supporting only the HTTP 1.0 protocol
If the browser only supports the HTTP 1.0 protocol or less and a servlet does
not set the Content-Length header, the Borland web container can not
automatically add the Transfer-Encoding header. The reason being that to the
HTTP 1.0 protocol, the Transfer-Encoding header has no meaning. In this case,
the Borland web container:

1 buffers all the data until the data is finished,

2 calculates the content length, and

3 sets the Content-Length header itself.

52 BES Developer ’s Guide

Large data t ransfer

If you do not want the Borland web container to perform this buffering
behavior, you can set the IIOP connector attribute canBufferHttp10Data="false".
By default, this attribute is set to true.

Note When the canBufferHttp10Data attribute is set to false, the following error
message is sent to the browser:

Servlet did not set the Content-Length

Implementing non-chunked download
This is the default transfer of data mode for the IIOP connector. In the non-
chunked download mode, the Borland web container waits until it has all the
data to send. Then it calculates the content length and sets the Content-Length
header to the actual content length. The Borland web container then sends the
response header followed by a single huge data block.

This mode of transfer has high memory requirements both on the Apache web
server and the Borland web container, because the data is cached until all of it
is available. Only when all the data is transferred does the browser user see
the data.

The non-chunked download mode of transfer has no overhead of extra thread
per each request. This download mode works well under both the HTTP
protocol versions 1.0 and 1.1, because the Transfer-Encoding header is never
set in this mode.

Uploading large data

The following modes are available for uploading large data initiated by a client
(which can be either a browser or a non-browser (such as Java) client that
speaks HTTP):
� Chunked upload
� Non-chunked upload

The browser always sends the data to an Apache web server in a "chunked"
fashion. Chunked and non-chunked upload refers to the data transfer mode
between an Apache web server and a Borland web container.

Implementing chunked upload
By default, Apache will try to upload large size data in "chunks". In this mode,
Apache does not wait until it has all the data from the browser before it starts
sending data to a Borland web container. Apache sends the data in fixed size
buffers as the data becomes available from the browser.

Because the data is flushed as soon as possible, the chunked mode of upload
transfer has low memory requirements both on Apache and the Borland web
container.

The chunked mode of transfer has an overhead of an extra thread per each
request on the Borland web container?.

Chapter 5: Web server to web conta iner connect iv i ty 53

Large data t ransfer

Enabling chunked upload
To enable chunked upload mode, you must update both of the following:
� the Borland web container server.xml file, which is stored in your Partition's

data directory:

adm/tomcat/conf

For more information, go to the Chapter 4, “Web components”.
� the Apache httpd.conf file, which by default is located in the following

directory:

<install_dir>/var/domains/<domain_name>/configurations/
<configuration_name>/mos/apache2/conf

For more information, go to Chapter 4, “Web components”.

To enable the chunked upload:

1 In the Borland web container server.xml, locate the <Service name="IIOP">
section of the code.

2 By default, the enableChunking attribute is set to false. Change this value to
enableChunking="true"

3 In the Apache httpd.conf file, locate and uncomment the following IIOP
directive:

#IIopChunkedUploading true

Note The chunked upload mode of transfer has an overhead of an extra thread per
each request for the Borland web container.

Changing the upload buffer size
By default, IIopUploadBufferSize is set to 4096 bytes. To change this value:

1 In the Apache httpd.conf, locate the following commented out directive:

#IIopUploadBufferSize 4096

2 Uncomment this directive and set as follows:

IIopUploadBufferSize <value>

where <value> is a numeric value >0 (greater than zero).

Note If you specify an invalid value (non numeric/negative number) then the default
4096 value is employed.

Known content length versus unknown
Based on whether content length is known in advance or not, chunked upload
mode can take one of the following two paths:
� chunked upload with known content length
� chunked upload with unknown content length

54 BES Developer ’s Guide

Large data t ransfer

Chunked upload with known content length
In this case, the client knows the content length of the data in advance of the
transfer. The client sets the Content-Length HTTP header before writing out the
data. The client writes out a single response header followed by multiple
chunks of data. Apache receives this from the browser and sends data in the
same fashion to the Borland web container.

The response header contains the following header:

Content-Length=<actual data size>

Chunked upload with unknown content length
HTTP protocol version 1.1 adds a new feature to handle the case of data
transfer when data length is not known in advance. This feature is called
HTTP chunking.

In this case, a client does not know the content length of the data in advance
of a transfer. The client does not set the Content-Length HTTP request header.
Instead, the client sets the Transfer-Encoding HTTP request header to a value
of chunked as follows:

Transfer-Encoding="chunked"

The client sends the data to the Apache web server as "HTTP chunks"; a
single request header followed by multiple combinations of chunk header,
chunk data, and chunk trailer.

When the Apache web server sees this Transfer-Encoding header, it strips out
the chunk header and chunk trailers and sends the data as normal data
chunks to the Borland web container.

At this time, no major browsers support uploading data without knowing the
content length. In other words, browsers never add a Transfer-
Encoding="chunked" header to an HTTP request. However, a non-browser client
can add this header to an HTTP request.

Implementing non-chunked upload
This is the default transfer of data mode for the IIOP connector. In the non-
chunked upload mode, the Apache web server waits until it has all the data to
send. Then it calculates the content length and sets the Content-Length header
to the actual content length. Apache then sends the request header followed
by a single huge data block.

This mode of transfer has high memory requirements both on the Apache web
server and the Borland web container, because the data is cached until all of it
is available.

The non-chunked upload mode of transfer has no overhead of extra thread
per each request (in the Borland web container). This download mode works
well under both the HTTP protocol versions 1.0 and 1.1, because the Transfer-
Encoding header is never set in this mode.

Chapter 5: Web server to web conta iner connect iv i ty 55

I IS to Bor land web conta iner connect iv i ty

IIS to Borland web container connectivity
All BES product offerings (with the exception of the VisiBroker Standalone
installation option) include the Tomcat-based Borland web container and its
IIOP connector. Also included is the IIS/IIOP redirector which provides
connectivity from the Microsoft Internet Information Services (IIS) web server
(not included with BES products) to the Borland web container.

Modifying the IIOP configuration in the Borland web
container

The server.xml is the main configuration file for the Borland web container and
is stored in your Partition's data directory:

adm/tomcat/conf/

Within the server.xml file is a section that pertains to the IIOP connector
configuration. For detailed configuration information, go to “Modifying the
Borland web container IIOP configuration” on page 41 under the Apache to
Borland web container connectivity section.

Microsoft Internet Information Services (IIS) server-specific
IIOP configuration

Before the IIS/IIOP redirector can be used on your system, you need to
complete the following IIS/IIOP redirector configuration by implementing the
following steps. For information on IIOP configuration for Windows 2003/IIS
version 6.0, go to: www.borland.com/devsupport/bes/faq.

Windows 2000/IIS version 5.0
1 Configure the System PATH variable to include <install_dir>\bin\ folder.

As IIS runs as a system process, in order for the IIS/IIOP redirector to load
successfully, the Visibroker ORB dlls need to be in the system path. Ensure
that the \<install_dir>\bin\ is included in the Windows 2000 system path.

2 Add the IIS/IIOP redirector as an ISAPI filter.

a Right-click My Computer and choose Manage.

The Computer Management dialog appears.

b Expand the tree, expand the Services and Applications node.

c Expand the Internet Information Services node.

d Right-click the Default Web Site node and choose Properties.

The Default Web Site Properties dialog appears.

e Go to the ISAPI Filters tab.

f Click Add.

56 BES Developer ’s Guide

IIS to Bor land web container connect iv i ty

g In the Filter Properties dialog, type a Filter Name and the path for the
Executable in the corresponding entry boxes.

By convention, the name of the filter should reflect its task, for example:

iisredir2

Also, the executable should point to the iisredir2.dll in the
<install_dir>\bin. For example:

C:\BDP\bin\iisredir2.dll

h Click OK.

Your new ISAPI filter appears on the list. You do not need to change the
filter Priority.

i Click OK.

3 Add a "borland" virtual directory to your IIS web site.

a In the Computer Management dialog, right-click Default Web Site and
choose New | Virtual Directory.

The Virtual Directory Creation Wizard appears.

b Click Next.

c For the Alias, enter "borland".

The borland virtual directory is required to allow the IIS/IIOP redirector
extension to be located by the IIS web server when it responds to a URI
of: http://localhost/borland/iisredir2.dll.

d For the Directory, browse to <install_dir>\bin.

e Click Next to proceed.

f For Access Permissions, select "Execute" in addition to "Read"and "Run
scripts" which are selected by default.

g Click Next.

h Click Finish.

4 Restart IIS by stopping then starting the IIS Service:

a In the Computer Management dialog, right-click the Internet Information
Services node and choose Restart IIS.

b In the Stop/Start/Reboot dialog, from the dropdown choose "Stop
Internet Services on <name of your IIS web server>"

c Click OK.

The web service unloads any dlls loaded by the IIS administrator.

d After shut down of the server is complete, right-click the Internet
Information Services node and choose Restart IIS.

e In the Stop/Start/Reboot dialog, choose "Start Internet Services on
<your IIS web server name>".

f Click OK.

The web service reloads any dlls loaded by the IIS administrator.

Chapter 5: Web server to web conta iner connect iv i ty 57

I IS to Bor land web conta iner connect iv i ty

5 Make sure the iisredir2 filter is active.

a In the Computer Management dialog, right-click the Default Web Site
node and choose Properties.

b In the Default Web Site Properties dialog, go to the ISAPI Filters tab.

c The iisredir2 filter should be marked with a green up-pointing arrow
indicating that it has been activated.

If not, then check the iisredir2.log file for details of why it may not have
loaded correctly. This file can be found in:

<install_dir>\etc\iisredir2\logs.

d To exit, click OK.

6 Attempt to access the \examples context via the IIS web-server.

If you have followed the previous steps, the \examples context should be
accessible following a restart of your IIS Server.

Note In the example the port number of the web server should match that
configured for your site. For instance, if your IIS administrator has
configured IIS to listen on port 6060, then a valid URL is:

http://localhost:6060/examples

Of course, if your IIS is configured as per Microsoft defaults, then it listens
on port 80, in which case you may dispense with a port number. For
example:

http://localhost/examples

Windows XP/IIS version 5.1
1 Configure the System PATH variable to include <install_dir>\bin\ folder.

As IIS runs as a system process, in order for the IIS/IIOP redirector to load
successfully, the Visibroker ORB dlls need to be in the system path. Ensure
that the <\install_dir>\bin\ is included in the Windows 2000 system path.

2 Add the IIS/IIOP redirector as an ISAPI filter.

a Right-click My Computer and choose Manage.

The Computer Management dialog appears.

b Expand the tree, expand the Services and Applications node.

c Expand the Internet Information Services node and the Web Sites node.

d Under the Web Sites node, right-click the Default Web Site node and
choose Properties.

The Default Web Site Properties dialog appears.

e Go to the ISAPI Filters tab.

f Click Add.

g In the Filter Properties dialog, type a Filter Name and the path for the
Executable in the corresponding entry boxes.

By convention, the name of the filter should reflect its task, for example:

58 BES Developer ’s Guide

IIS to Bor land web container connect iv i ty

iisredir2

Also, the executable should point to the iisredir2.dll in the
<install_dir>\bin. For example:

C:\BDP\bin\iisredir2.dll

h Click OK.

Your new ISAPI filter appears on the list. You do not need to change the
filter Priority.

i Click OK.

3 Add a "borland" virtual directory to your IIS web site.

a In the Computer Management dialog, right-click Default Web Site and
choose New | Virtual Directory.

The Virtual Directory Creation Wizard appears.

b Click Next.

c For the Alias, enter "borland".

The borland virtual directory is required to allow the IIS/IIOP redirector
extension to be located by the IIS web server when it responds to a URI
of: http://localhost/borland/iisredir2.dll.

d For the Directory, browse to <install_dir>\bin.

e Click Next to proceed.

f For Access Permissions, select "Execute" in addition to "Read"and "Run
scripts" which are selected by default.

g Click Next.

h Click Finish.

4 Restart IIS by stopping then starting the IIS Service:

a In the Computer Management dialog, right-click the Internet Information
Services node and choose All Tasks | Restart IIS.

b In the Stop/Start/Reboot dialog, from the dropdown choose "Stop
Internet Services on <name of your IIS web server>"

c Click OK.

The web service unloads any dlls loaded by the IIS administrator.

d After shut down of the server is complete, right-click the Internet
Information Services node and choose All Tasks | Restart IIS.

e In the Stop/Start/Reboot dialog, choose "Start Internet Services on
<your IIS web server name>".

f Click OK.

The web service reloads any dlls loaded by the IIS administrator.

5 Make sure the iisredir2 filter is active.

a In the Computer Management dialog, right-click the Default Web Site
node and choose Properties.

Chapter 5: Web server to web conta iner connect iv i ty 59

I IS to Bor land web conta iner connect iv i ty

b In the Default Web Site Properties dialog, go to the ISAPI Filters tab.

c The iisredir2 filter should be marked with a green up-pointing arrow
indicating that it has been activated.

If not, then check the iisredir2.log file for details of why it may not have
loaded correctly. This file can be found in:

<install_dir>\etc\iisredir2\logs.

d To exit, click OK.

6 Attempt to access the \examples context via the IIS web-server.

If you have followed the previous steps, the \examples context should be
accessible following a restart of your IIS Server.

Note In the example the port number of the web server should match that
configured for your site. For instance, if your IIS administrator has
configured IIS to listen on port 6060, then a valid URL is:

http://localhost:6060/examples

Of course, if your IIS is configured as per Microsoft defaults, then it listens
on port 80, in which case you may dispense with a port number. For
example:

http://localhost/examples

IIS/IIOP redirector configuration

The IIS/IIOP redirector has a set of configuration files that you must update
with web server cluster information. By default, these IIOP redirector
configuration files are located in the following directory:

<install_dir>/etc/iisredir2/conf

The configuration files are:

Note Modifying either of these configuration files can be done so without starting up
or shutting down the IIS web server(s) or Borland web container(s) because
the file is automatically loaded by the IIOP redirector.

Adding new clusters
The WebClusters.properties file tells the IIOP redirector:
� the name of each available cluster: (ClusterList).

Table 5.6 IIS/IIOP redirector configuration files

IIOP configuration file Description

WebClusters.properties Specifies the cluster(s) and the
corresponding web container(s) for each
cluster.

UriMapFile.properties Maps URI references to the clusters
defined in the WebClusters.properties file.

60 BES Developer ’s Guide

IIS to Bor land web container connect iv i ty

� the web container identification.
� whether to provide automatic load balancing (enable_loadbalancing) for a

particular cluster.

To add a new cluster, in the WebClusters.properties file:

1 add the name of the configured cluster to the ClusterList. For example:

ClusterList=cluster1,cluster2,cluster3

2 define each cluster by adding a line in the following format specifying the
cluster name, the required webcontainer_id attribute, and any additional
attributes (see the following table, “Cluster definition attributes” on
page 60). For example:

 <clustername>.webcontainer_id = <id> <attribute>

Note Failover and smart session are always enabled, for more information go to
Chapter 7, “Clustering web components”.

For example:

 ClusterList=cluster1,cluster2,cluster3

 cluster1.webcontainer_id = tc_inst1

 cluster2.webcontainer_id =
corbaloc::127.20.20.2:20202,:127.20.20.3:20202/tc_inst2
 cluster2.enable_loadbalancing = true

 cluster3.webcontainer_id = tc_inst3
 cluster3.enable_loadbalancing = false

In the above example, the following three clusters are defined:

1 The first, uses the osagent naming scheme and is enabled for load
balancing.

2 The second cluster employs the corbaloc naming scheme, and is also
enabled for load balancing.

Table 5.7 Cluster definition attributes

Attribute Required Definition

webcontainer_id yes the object "bind" name or corbaloc string
identifying the web container(s) implementing
the cluster.

enable_loadbalancing =
true|false

no To enable load balancing, do not include this
attribute or include and set to true; load
balancing is enabled by default. To disable
load balancing, set to false indicating that this
cluster instance should not employ load-
balancing techniques. Warning: Ensure that
when entering the enable_loadbalancing
attribute you give it a legal value (true or
false).

Chapter 5: Web server to web conta iner connect iv i ty 61

I IS to Bor land web conta iner connect iv i ty

3 The third uses the osagent naming scheme, but has the load balancing
features disabled.

Note To disable use of a particular cluster, simply remove the cluster name from the
ClusterList list. However, we recommend you do not remove clusters with
active http sessions attached to the web server (attached users), because
requests to these "live" sessions will fail.

Note Modifications you make to the WebClusters.properties file automatically take
effect on the next request. You do not need to restart your server(s).

Adding new web applications
Important By default, your web applications are not made available through IIS. In order

to make a web application available through IIS, you must add some
information to the web application descriptor. For step-by-step instructions on
how to do so, go to the Management Console User's Guide, Using the
Deployment Descriptor Editor, Web Deploy Paths section.

The \examples context is useful for verifying your IIS/IIOP installation
configuration, however, for new applications that you have deployed to the
Borland web container, you need to do the following to make them available
through the IIS web server. Use the UriMapFile.properties file to map HTTP URI
strings to web cluster names configured in the WebClusters.properties file (see
“Adding new clusters” on page 47).
� In the UriMapFile.properties file, type:

<uri-mapping> = <clustername>

where <uri-mapping> is a standard URI string or a wild-card string, and
<clustername> is the cluster name as it appears in the ClusterList entry in the
WebClusters.properties file.

For example:

 /examples = cluster1
 /examples/* = cluster1

 /petstore/index.jsp = cluster2
 /petstore/servlet/* = cluster2

In this example:
� Any URI that starts with /examples will be forwarded to a web container

running in the "cluster1" web cluster.
� URIs matching either /petstore/index.jsp or starting with /petstore/servlet

will be routed to "cluster2".

Note With the URI mappings, the wild-card "*" is only valid in the last term of the
URI and may represent the follow cases:
� the whole term (and all inferior references) as in /examples/*.
� the filename part of a file specification as in /examples/*.jsp.

62 BES Developer ’s Guide

IIS to Bor land web container connect iv i ty

Note Modifications you make to the UriMapFile.properties file automatically take
effect on the next request. You do not need to restart your server(s).

If the WebCluster.properties or UriMapFile.properties is altered, then it is
automatically loaded by the IIOP redirector. This means that the adding and
removing of web applications and the altering of cluster configurations may be
done so without starting up or shutting down the IIS web server(s) or Borland
web container(s).

Chapter 6: Java Session Serv ice (JSS) conf igurat ion 63

C h a p t e r

6
Chapter6Java Session Service (JSS)

configuration
The Java Session Service (JSS) is a service that stores information pertaining
to a specific user session. JSS is used to store session information for
recovery in case of container failure.

Borland provides an Interface Definition Language (IDL) interface for the use
of JSS. Two implementations are bundled, one using DataExpress and
another with any JDBC capable database.

JSS provides a mechanism to easily store session information in a database.
For example, in a shopping cart scenario, information about your session (the
number of items in the shopping cart, and such) is stored by the JSS. So, if a
session is interrupted by a Borland web container unexpectedly going down,
the session information is recoverable by another Borland web container
instance through the JSS. The JSS must be running on the local network. Any
web container (within the cluster configuration) finds the JSS and connects to
it and continues session management.

For more information about the Borland web container, go Chapter 4, “Web
components”.

Session management with JSS
The following diagrams show typical landscapes of web components and how
session information is managed by the JSS. The JSS session management is
completely transparent to the client.

64 BES Developer ’s Guide

Session management with JSS

In the diagram, “JSS Management with a Centralized JSS and Two Web
Containers” on page 64, there are four virtual machines:
� The first machine hosts the Apache web server,
� two other machines contain an instance of the Borland web container,
� and the fourth machine hosts the JSS and relational database (JDataStore

or a JDBC datasource).

If an interruption occurs between the Apache web server (Machine 1) which is
passing a client request to the first web container instance (Machine 2), then
the second web container instance (Machine 3) can continue processing the
client request by retrieving the session information from the JSS (Machine 4).
The items in the Shopping Cart are retained and the client request continues
to be processed.

Figure 6.1 JSS Management with a Centralized JSS and Two Web Containers

In the diagram, “JSS Management with Two Web Containers and a
Centralized Backend Datastore” on page 66, are the following four virtual
machines:

Chapter 6: Java Session Serv ice (JSS) conf igurat ion 65

Session management wi th JSS

� The first machine hosts the Apache web server,
� the two other machines contain an instance of the Borland web container

as well as each hosting the JSS,
� and the fourth machine hosts the relational database (JDataStore or a

JDBC datasource).

If an interruption occurs between the Apache web server (Machine 1) which is
passing a client request to the first web container instance (Machine 2), then
the second web container instance (Machine 3) can continue processing the
client request by retrieving the session information from the JSS (Machine 4).
The items in the Shopping Cart are retained and the client request continues
to be processed.

66 BES Developer ’s Guide

Managing and conf igur ing the JSS

Figure 6.2 JSS Management with Two Web Containers and a Centralized Backend
Datastore

Managing and configuring the JSS
The JSS configuration is defined through its properties. BES supports two
types of configurations; the default is to use a JDatastore, but BES supports
any JDBC datasource.
� If JSS is configured to use a JDataStore file, the database tables are

automatically created by JSS.
� If JSS is configured to use a JDBC datasource, three database tables

needs to be pre-created in the backend database by your system
administrator using the following SQL statements:

CREATE TABLE "JSS_KEYS" ("STORAGE_NAME" STRING PRIMARY KEY, "KEY_BASE"
BIGINT);
CREATE TABLE "JSS_WEB" ("KEY" STRING PRIMARY KEY, "VALUE" BINARY,
"EXPIRATION" BIGINT);

Chapter 6: Java Session Serv ice (JSS) conf igurat ion 67

Managing and conf igur ing the JSS

CREATE TABLE "JSS_EJB" ("KEY" STRING PRIMARY KEY, "VALUE" BINARY,
"EXPIRATION" BIGINT);

The JSS can run as part of the Partition side-by-side with other Partition
services.

Configuring the JSS Partition service

As a "Partition service", JSS configuration information is located in each
Partition's data directory in the partition.xml file. By default, this file is located
in the following directory:

<install_dir>/var/domains/base/configurations/<configuration_name>/mos/
<partition_name>/adm/properties.

For example, for a Partition named "MyPartition", by default the JSS
configuration information is located in:

<install_dir>/var/domains/base/configurations/<configuration_name>/mos/
mypartition/adm/properties/partition.xml

For more information, go to the Chapter 30, “Partition XML reference”,
<service> element section.

Otherwise, for the location of a Partition data directory, go to the
configuration.xml file located in:

<install_dir>/var/domains/base/configurations/<configuration_name>/

and search for the Partition managed object (mo) directory attribute:

<partition-process directory=

For more information about the configuration.xml, go to the BDOC Reference,
Configurations and the configuration.xml file section.

For a listing and description of the session service (JSS) level properties, go to
Chapter 31, “EJB, JSS, and JTS Properties”.

68 BES Developer ’s Guide

Chapter 7 : Cluster ing web components 69

C h a p t e r

7
Chapter7Clustering web components

This section discusses the clustering of multiple web components which
includes Apache web servers and the Tomcat-based Borland web containers.
In a typical deployment scenario, you can use multiple Borland Partitions to
work together in providing a scalable n-tier solution.

Each Borland Partition can have the same or different services. Depending on
your clustering scheme, these services can be turned off or on. In any case,
leveraging these resources together or clustering, makes deployment of your
web application more efficient. Clustering of the web components involves
session management, load balancing and fault tolerance (failover).

Stateless and stateful connection services
Interaction between the client and server involves two types of services:
stateless and stateful. A stateless service does not maintain a state between
the client and the server. There is no "conversation" between the server and
the client while processing a client request. In a stateful service, the client and
server maintains a dialog of information.

For information about the location of the Borland web container configuration
files, go to Chapter 4, “Web components”.

Important For documentation updates, go to www.borland.com/techpubs/bes.

70 BES Developer ’s Guide

The Bor land I IOP connector

The Borland IIOP connector
The IIOP connector is software that is designed to allow an http web server to
redirect requests to the Borland web container. The Borland Enterprise Server
includes the IIOP connector for the Apache 2.0 and Microsoft Internet
Information Server(IIS) versions 5.0, 5.1 and 6.0 web servers. The job of
handling the redirection of http requests is split between two components:
� a native library running on the web server.
� a jar file running of the web container.

BES supports clustering of web components. The Borland IIOP connector
uses the IIOP protocol. The following unique features are provided:
� “Load balancing support” on page 70
� “Fault tolerance (failover)” on page 71
� “Smart session handling” on page 72

Load balancing support

Load balancing is the ability to direct http requests across a set of web
containers. This enables the system administrator to spread the load of the
http traffic across multiple web containers. Load balancing techniques can
significantly improve the scalability of a given system. The Borland IIOP
connector can be configured to offer load balancing in the following two ways:
� “OSAgent based load balancing” on page 70
� “Corbaloc based load balancing” on page 70

OSAgent based load balancing
This is simple to achieve and requires the least amount of configuration. In this
setup, you start a number of Borland web container instances and name the
IIOP connector in those Borland web container with the same name.

For more information about setting the name attribute, go to Chapter 5, “Web
server to web container connectivity”.

Apache does load balancing across Borland web container instances for each
request. Essentially, Apache does a new bind for each request. The newly
started Borland web container containers can be dynamically discovered.

Important All Borland web containers and Apache must be running in the same ORB
domain; osagent based load balancing is not possible in cases where you are
using different Partitions on different ORB domains.

Corbaloc based load balancing
This approach uses a static configuration of the web containers that make up
the cluster. However, it can span ORB domains. In this case you specify the

Chapter 7 : Cluster ing web components 71

The Bor land I IOP connector

locations where the web containers are running using the CORBA corbaloc
semantics. For example:

corbaloc::172.20.20.28:30303,:172.20.20.29:30304/tc_inst1

In the above corbaloc example string:
� two TCP/IP endpoints are configured for a web container named "tc_inst1"
� a web container with an object name of "tc_inst1" is running on host

172.20.20.28 with its IIOP connector at port 30303
� there is another web container running with the same object name on host

172.20.20.29 with it's IIOP connector listening on port 30304.

For more information about setting the port attribute, go to Chapter 5, “Web
server to web container connectivity”.

The web server side IIOP connector converts this corbaloc string into CORBA
objects using orb.string_to_object and uses the underlying features of
VisiBroker to load balance across these "endpoints" specified in the corbaloc
string. There can be any number of endpoints.

Note All of the listed web containers do not have to be running for the load
balancing to function. The ORB simply moves on to the next endpoint until a
valid connection is obtained.

However, corbaloc based load balancing does require the web container's
IIOP connector be started at a known port and be available for corbaloc kind of
object naming. The following is a snippet of the web container IIOP connector
configuration that is required:

<Connector className="org.apache.catalina.connector.iiop.IiopConnector"
name="tc_inst1" port="30303"/>

This snippet starts the IIOP connector at port 30303 and names the Borland
web container object "tc_inst1". The port attribute is optional. However, if you
do not specify the port, a random port gets picked up by the ORB and you will
be unable to use the corbaloc scheme to locate the object.

Your organization can impose policies on how to name web containers and
the IIOP port or port ranges used.

Fault tolerance (failover)

Failover using osagent bind naming and corbaloc naming is automatic in both
cases. In corbaloc naming, the next configured endpoint in the corbaloc name
string is tried and so on in a cyclic fashion until all endpoints in the corbaloc
string are tried.

For osagent bind naming, the osagent automatically redirects the client to an
alternative (but equivalent) object instance.

Note If there is no object available to the osagent, or none of the endpoints
specified in the corbaloc name string are running, then the http request fails.

72 BES Developer ’s Guide

Smart session handling

When there is no session involved, the IIOP connector can do indiscriminate
round robining. However, when sessions are involved, it is important that
Apache routes its session requests to the web container that initiated the
session.

In other http-to-servlet redirectors (and in the earlier version of the IIOP
connector) this is achieved by maintaining a list of sessions-ids-to-web-
container-id's in the web server's cache. This presents numerous issues with
maintaining the state of this list. This list can be very large and wasteful of
system resources. It can become out of date, for example, sessions can
timeout and, in general, is an inefficient and problematic facet of the web
server to web container redirection paradigm.

The IIOP connector resolves this by utilizing a technique called "smart session
ids". This is where the IOR of the web container is embedded within the
session id returned by the web container as part of the session cookie (or URL
in the case of url-rewriting).

When the web container generates the session ID, it first determines if the
request originated from the IIOP connector. If so, it obtains the stringified IOR
of the IIOP connector through which the request is received. The web
container generates the normal session ID as it always generates, but pre-
fixes the stringified IOR in front of it. For example:

Stringified IOR: IOR:xyz
Normal session ID: abc
The new session ID: xyz_abc

In the case where the original web container has stopped running, failover is
employed to locate another instance of an equivalent web container.

In the case of corbaloc identified web containers, where automatic osagent
failover is not guaranteed, the IIOP connector performs a manual "rebind" to
obtain a valid reference to the running equivalent web container.

Obviously, if there are no other running instances of the web container, then
the http request fails.

The new web container obtains the old state from the session database and
continues to service the request. When returning the response the new web
container changes the session ID to reflect its IOR. This should be transparent
to Apache as it does not look at the session ID on the way back to the browser
client.

Setting up your web container with JSS
To properly failover when sessions are involved, you must set up the web
containers with the same JSS backend.

Chapter 7 : Cluster ing web components 73

Sett ing up your web container wi th JSS

Modifying a Borland web container for failover

In the Borland web container configuration file, server.xml, you need to add an
entry similar to the following code sample for each web application. For more
information about the server.xml file, go to Chapter 5, “Web server to web
container connectivity”.

<Manager className="org.apache.catalina.session.PersistentManager">
 <Store className="org.apache.catalina.session.BorlandStore"
 storeName="jss_factory"/>
 </Manager>

The preceding code specifies the use of a PersistentManager with a storage
class BorlandStore. It also specifies the connection to a BorlandStore factory
named jss_factory. There must be a JSS with that factory name running in the
local network.

For a description of jss.factoryName, go to Chapter 6, “Java Session Service
(JSS) configuration”.

Session storage implementation

There are two methods of implementing session storage for your clustered
web components:
� “Programmatic implementation” on page 73
� “Automatic implementation” on page 73

Programmatic implementation
The Programmatic implementation assumes that each time you change the
session attributes, you call session.SetAttribute() to notify the Borland web
container that you have changed the session attributes.

This is a common operation in servlet development and when executed, there
is no need to modify the server.xml file. Each time you change the session
data, it is immediately written to the database through the JSS. Then if your
web container instance unexpectedly goes down, the next web container
instance designated to pick up the session accesses the session data. In
essence, the Programmatic implementation guarantees to save changes
immediately.

Automatic implementation
The Automatic implementation lets you store the session data periodically to
JSS, regardless of whether the data has changed. By using this
implementation, you do not need to notify the web container that the session
attribute has changed.

For example, you can change state without calling setAttribute () as depicted
in the following code example:

74 BES Developer ’s Guide

Using HTTP sessions

Object myState = session.getAttribute("myState");

// Modify mystate here and do not call setAttribute ()

Your configuration file, server.xml, will have the following code snippet:

<Manager className=
"org.apache.catalina.session.PersistentManager"
 maxIdleBackup="xxx">
<Store className=
"org.apache.catalina.session.BorlandStore"
storeName="jss_factory">
</Manager>

where xxx is the time interval in seconds that you want the session data to be
stored.

For more information about the server.xml file, go to Chapter 5, “Web server to
web container connectivity”.

Note When using the Automatic implementation, you need to consider the following
limitations:

1 If the web container goes down between two save intervals, the latest
changes are not visible for the next web container instance. This is an
important concern when defining the time interval value for the heartbeat.

2 The data is saved at the specified time interval no matter if the data is
changed or not. This can be wasteful if a session frequently does not
change and the defined time interval value is set too low.

Using HTTP sessions
The HyperText Transfer Protocol (HTTP) is a stateless protocol. In the client/
server paradigm, it means that all client requests that the Apache web server
receives are viewed as independent transactions. There is no relationship
between each client request. This is a typical stateless connection between
the client and the server.

However, there are times when the client deems it necessary to have a
session concept for transaction completeness. A session concept typically
means having a stateful interaction between the client and server. An example
of the session concept is shopping online with an interactive shopping cart.
Every time you add a new item into your shopping cart, you expect to see that
new item added to a list of previously added items. HTTP is not usually
regarded for handling client request in a stateful manner. But it can.

BES supports the HTTP sessions through two methods of implementations:
� Cookies: The web server send a cookie to identify a session. The web

browser keeps sending back the same cookie with future requests. This
cookie helps the server-side components to determine how to handle the
transaction for a given session.

Chapter 7 : Cluster ing web components 75

Using HTTP sess ions

� URL rewriting: The URL that the user clicks on is dynamically rewritten to
have session information.

76 BES Developer ’s Guide

Chapter 8: Apache web server to CORBA server connect iv i ty 77

C h a p t e r

8
Chapter8Apache web server to CORBA

server connectivity
The Apache IIOP connector can be configured to enable your web server to
communicate with any standalone CORBA server implementing the
ReqProcessor Interface Definition Language (IDL). This means you can easily
put a web-based front-end on almost any CORBA server.

Note In order to implement the ReqProcessor IDL, you need to be running one of the
following BES product offerings:
� Team Edition
� VisiBroker Edition
� AppServer Edition

Important For documentation updates, go to www.borland.com/techpubs/bes.

Web-enabling your CORBA server
The following steps are required to make your CORBA server accessible over
the internet:
� “Determining the urls for your CORBA methods” on page 78.
� “Implementing the ReqProcessor IDL in your CORBA server” on page 78.

78 BES Developer ’s Guide

Web-enabl ing your CORBA server

Determining the urls for your CORBA methods

In order to make your CORBA server accessible over the internet, you need
to:

1 Decide what business operations you want to expose.

2 Provide a url for those business operations (CORBA methods).

For example, your banking company's CORBA server is implementing the
methods: debit(), credit(), and balance() and you want to expose these
business methods to users through the internet. You need to map each of the
CORBA server operations to what the user types in a browser.

Your bank company web site is http://www.bank.com.

To provide a url for each of the business operations you want to expose to the
internet users:

1 Append the web application name to the company root url.

For example:

http://www.bank.com/accounts

where accounts is the web application name.

Important By default, your web application is not made available through the web
server. In order to make it available through Apache, you must add some
information to the web application descriptor. For step-by-step instructions
on how to do so, go to the Management Console User's Guide, Using the
Deployment Descriptor Editor, Web Deploy Paths.

2 Append a name that is meaningful to users for the method in the web
application that you want to expose.

For example:

http://www.bank.com/accounts/balance

where balance is the meaningful name for the balance() method.

Implementing the ReqProcessor IDL in your CORBA server

The ReqProcessor IDL allows communication between a web server and a
CORBA server using IIOP. Once you implement the ReqProcessor IDL in your
CORBA server, http requests can be passed from your web server to your
CORBA server.

In implementing this IDL, you must expect the request url as part of the
HttpRequest and invoke the appropriate CORBA method in response to that url.

IDL Specification for ReqProcessor Interface

*/
module apache {
 struct NameValue {

Chapter 8: Apache web server to CORBA server connect iv i ty 79

Web-enabl ing your CORBA server

 string name;
 string value;
 };
 typedef sequence<NameValue> NVList;
 typedef sequence<octet> OctetSequence_t;

 struct HttpRequest {
 string authType; // auth type
(BASIC,FORM etc)
 string userid; // username
associated with request
 string appName; // application name
(context path)
 string httpMethod; // PUT, GET etc,
 string httpProtocol; // protocol HTTP/1.0, HTTP/
1.1 etc
 string uri; // URI associated
with request
 string args; // query string
associated with this request
 string postData; // POST (form) data
associated with request
 boolean isSecure; // whether client
specified https or http
 string serverHostname; // server hostname
specified with URI
 string serverAddr; // [optionally]
server IP address specified with URI
 long serverPort; // server port
number specified with URI
 NVList headers; // headers
associated with this request format: header-name:value
 };

 struct HttpResponse {
 long status; // HTTP status, OK etc.
 boolean isCommit; // server intends to commit
this request
 NVList headers; // header array
 OctetSequence_t data; // data buffer
 };

interface ReqProcessor {
 HttpResponse process(in HttpRequest req);
 };
};

The process() method
The ReqProcessor IDL includes the process() method which your Apache web
server calls for internet requests. The web server passes the user's request as
an argument to the process() method. Basically, the input for the process()

80 BES Developer ’s Guide

Conf iguring your Apache web server to invoke a CORBA server

method is a request from a browser: HttpRequest, and the output for the
process() method is an html page contained in: HttpResponse.

Configuring your Apache web server to invoke a CORBA server
Before an Apache web server can invoke a CORBA server, you must modify
the lines of code that pertain to the IIOP connector in the httpd.conf file. For
detailed information, go to Chapter 5, “Web server to web container
connectivity”.

Figure 8.1 Connecting from Apache to a CORBA server

Apache IIOP configuration

The Apache IIOP connector has a set of configuration files that you must
update with web server cluster information. By default, these IIOP connector
configuration files are located in:

<install_dir>/var/domains/<domain_name>/configurations/
<configuration_name>/mos/apache2/conf

Note "cluster" is used to represent a CORBA object instance(s) that is known to the
system by a single name or URI. The IIOP connector is able to load-balance
across multiple instances, hence the term "cluster" is used.

Chapter 8: Apache web server to CORBA server connect iv i ty 81

Conf igur ing your Apache web server to invoke a CORBA server

The two configuration files are:

Modifying either of these configuration files can be done so without starting up
or shutting down the Apache web server(s) or CORBA server(s) because the
file is automatically loaded by the IIOP connector.

Adding new CORBA servers (clusters)
CORBA servers are known as "clusters" to the IIOP connector. To configure
your CORBA server for use with the IIOP connector, you need to define and
add a "cluster" to the WebClusters.properties file.

The WebClusters.properties file tells the IIOP connector:
� The name of each available cluster - (ClusterList).
� The web container identification.
� Whether to provide automatic load balancing (enable_loadbalancing) for a

particular cluster.

To add a new cluster:
� In the WebClusters.properties file:

a add the name of the configured cluster to the ClusterList. For example:

 ClusterList=cluster1,cluster2,cluster3

b define each cluster by adding a line in the following format specifying the
cluster name, the required webcontainer_id attribute, and any additional
attributes (see the following table, “Cluster definition attributes” on
page 82). For example:

 <clustername>.webcontainer_id = <id> <attribute>

Table 8.1 Apache IIOP connection configuration files

IIOP configuration file Description

WebClusters.properties Specifies the cluster(s) and the
corresponding CORBA server(s) for each
cluster.

UriMapFile.properties Maps URI references to the clusters
defined in the WebClusters.properties file.

82 BES Developer ’s Guide

Conf iguring your Apache web server to invoke a CORBA server

Note Failover and smart session are always enabled, for more information go to
Chapter 7, “Clustering web components”..

For example:

 ClusterList=cluster1,cluster2,cluster3

 cluster1.webcontainer_id = tc_inst1

 cluster2.webcontainer_id =
corbaloc::127.20.20.2:20202,:127.20.20.3:20202/tc_inst2
 cluster2.enable_loadbalancing = true

 cluster3.webcontainer_id = tc_inst3
 cluster3.enable_loadbalancing = false

In the above example, the following three clusters are defined:

1 The first, uses the osagent naming scheme and is enabled for load
balancing.

2 The second cluster employs the corbaloc naming scheme, and is also
enabled for load balancing.

3 The third uses the osagent naming scheme, but has the load balancing
features disabled.

Note To disable use of a particular cluster, simply remove the cluster name from the
ClusterList list. However, we recommend you do not remove clusters with
active http sessions attached to the CORBA server (attached users), because
requests to these "live" sessions will fail.

Note Modifications you make to the WebClusters.properties file automatically take
effect on the next request. You do not need to restart your server(s).

Mapping URIs to defined clusters
Once the cluster entry is defined, all that remains is to identify which HTTP
requests received by the web server need to be forwarded to your CORBA

Table 8.2 Cluster definition attributes

Attribute Required Definition

webcontainer_id yes the object "bind" name or corbaloc string
identifying the web container implementing the
cluster.

enable_loadbalancing no Load balancing is enabled by default; to enable
load balancing, do not include this attribute or
include and set to true. To disable load
balancing, set to false indicating that this
cluster instance should not employ load-
balancing techniques. Warning: Ensure that
when entering the enable_loadbalancing attribute
you give it a legal value (true or false).

Chapter 8: Apache web server to CORBA server connect iv i ty 83

Conf igur ing your Apache web server to invoke a CORBA server

server. Use the UriMapFile.properties file to map http uri strings to web cluster
names (CORBA instances) configured in the WebClusters.properties file.
� In the UriMapFile.properties file, type:

<uri-mapping> = <clustername>

where <uri-mapping> is a standard URI string or a wild-card string, and
<clustername> is the cluster name as it appears in the ClusterList entry in the
WebClusters.properties file.

For example:

 /examples = cluster1
 /examples/* = cluster1

 /petstore/index.jsp = cluster2
 /petstore/servlet/* = cluster2

In this example:
� Any URI that starts with /examples will be forwarded to a CORBA server

running in the "cluster1" web cluster.
� URIs matching either /petstore/index.jsp or starting with /petstore/servlet

will be routed to "cluster2".

Note With the URI mappings, the wild-card "*" is only valid in the last term of the
URI and may represent the follow cases:
� the whole term (and all inferior references) as in /examples/*.
� the filename part of a file specification as in /examples/*.jsp.

Note Modifications you make to the UriMapFile.properties file automatically take
effect on the next request. You do not need to restart your server(s).

If the WebCluster.properties or UriMapFile.properties is altered, then it is
automatically loaded by the IIOP connector. This means that modifications to
either of these files can be done so without starting up or shutting down the
web server(s) or CORBA server(s).

84 BES Developer ’s Guide

Chapter 9: Bor land Enterpr ise Server Web Serv ices 85

C h a p t e r

9
Chapter9Borland Enterprise Server Web

Services
The Borland Enterprise Server provides an out-of-the-box web services
capability in all Borland Partitions.

Important For documentation updates, go to www.borland.com/techpubs/bes.

Web Services Overview
A Web Service is an application component that you can describe, publish,
locate, and invoke over a network using standardized XML messaging.
Defined by new technologies like Simple Object Access Protocol (SOAP),
Web Services Description Language (WSDL), and Universal Discovery,
Description and Integration (UDDI), this is a new model for creating e-
business applications from reusable software modules that are accessed on
the World Wide Web.

Web Services Architecture

The standard Web Service architecture consists of the three roles that perform
the web services publish, find, and bind operations:

1 The Service Provider registers all available web services with the Service
Broker.

86 BES Developer ’s Guide

Web Serv ices and Part i t ions

2 The Service Broker publishes the web services for the Service Requestor
to access. The information published describes the web service and its
location.

3 The Service Requestor interacts with the Service Broker to find the web
services. The Service Requestor can then bind or invoke the web services.

� The Service Provider hosts the web service and makes it available to
clients via the Web. The Service Provider publishes the web service
definition and binding information to the Universal Description, Discovery,
and Integration (UDDI) registry. The Web Service Description Language
(WSDL) documents contain the information about the web service,
including its incoming message and returning response messages.

� The Service Requestor is a client program that consumes the web service.
The Service Requestor finds web services by using UDDI or through other
means, such as email. It then binds or invokes the web service.

� The Service Broker manages the interaction between the Service Provider
and Service Requestor. The Service Broker makes available all service
definitions and binding information. Currently, SOAP (an XML-based,
messaging and encoding protocol format for exchange of information in a
decentralized, distributed environment) is the standard for communication
between the Service Requestor and Service Broker.

Figure 9.1 Standard Web Services Architecture

Web Services and Partitions
All BES Partitions are configured to support web services. You simply need to
start a Partition and deploy WARs (or EARs containing WARs) containing web
services.

Chapter 9: Bor land Enterpr ise Server Web Serv ices 87

Web Serv ices and Par t i t ions

Additionally, you can expose a previously deployed stateless session bean as
a web service. For more information, see the Management Console User's
Guide, Export EJB as a Web Service Wizard.

The Borland web services is based on the Apache Axis technology and
supports dispatch of incoming SOAP web services requests to the following
"Web Service providers":
� EJB providers
� RPC/Java providers
� VisiBroker providers (Java and/or C++)
� MDB/Java providers

88 BES Developer ’s Guide

Web Serv ice prov iders

Figure 9.2 Borland Web Services Architecture

Web Service providers
The Borland web services engine includes a number of providers. A provider
is the link that connects a client web service request to the user's class on the
server side.

All providers do the following:
� Create an instance of an object on which they can invoke methods. The

exact way of creating this object differs from provider to provider.
� Invoke the methods on that object and pass all the parameters that the

XML client sent.
� Pass the return value to the Axis Runtime engine, which then converts it to

XML and sends it back to the client.

Chapter 9: Bor land Enterpr ise Server Web Serv ices 89

Web Serv ice prov iders

Specifying web service information in a deploy.wsdd file

When installing a new web service, you must name the web service and
specify which provider the service is going to use. Each provider takes
different parameters. The following describes the service providers and the
required parameters for each.

Java:RPC provider
This provider assumes that the class serving the web service is in the
application archive (WAR). When a web service request arrives, the RPC
provider:

1 Loads the Java class associated with the service.

2 Creates a new instance of the object.

3 Invokes the specified method using reflection.

The parameters are:
� className: The name of the class that is loaded when a request arrives on

this service.
� allowedMethods: The methods that are allowed to be invoked on this class.

The class can have more methods than listed here; the methods listed here
are available for remote invocation.

Example:

<service name="Animal" provider="java:RPC">
 <parameter name="className" value="com.borland.examples.web
services.java.Animal"/>
 <parameter name="allowedMethods" value="talk sleep"/>
</service>

Java:EJB provider
This provider assumes that the class serving the web service is an EJB.

Note You can expose a previously deployed stateless session bean as a web
service. For more information, see the Management Console User's
Guide,Export EJB as a Web Service Wizard.

When a web service request arrives:

1 The EJB provider looks up the bean name in JNDI initial context.

2 Locates the home class and creates a bean.

3 Invokes the specified method using reflection on the EJB stub.

The actual EJB itself must be deployed to any Partition before a client can
access it.

The essential parameters are:
� beanJndiName: The name of the bean in JNDI.
� homeInterfaceName: The fully specified class of the home interface. This class

must be present in the WAR.

90 BES Developer ’s Guide

Web Serv ice prov iders

� className: The name of the EJB remote interface.
� allowedMethods: The methods that are allowed to be invoked on this EJB,

separated by spaces. The EJB can have more methods than listed here;
the methods listed here are available for remote invocation.

Example:

 <service name="Animal" provider="java:EJB">
 <parameter name="beanJndiName" value="Animal"/>
 <parameter name="homeInterfaceName"
value="com.borland.examples.webservices.ejb.AnimalHome"/>
 <parameter name="className"
value="com.borland.examples.webservices.ejb.Animal"/>
 <parameter name="allowedMethods" value="talk sleep"/>
 </service>

Java:VISIBROKER provider
This provider assumes that the class serving the web service is a Visibroker
server. When a web service request arrives, this provider:

1 Initializes the ORB.

2 Locates the CORBA object using "objectName" and "locateUsing"
properties.

3 Invokes the specified method on the CORBA stub.

The parameters are:
� objectName: The name of the object. This is a mandatory parameter.
� locateUsing: This parameter specifies which mechanism the provider uses

to locate the object.

Chapter 9: Bor land Enterpr ise Server Web Serv ices 91

Web Serv ice prov iders

The 3 possible values are:

� className: The name of the class that is loaded when a request arrives on
this service. Typically, this is the name of the CORBA class generated and
based on the IDL. The VisiBroker client stubs, including this class, must be
present in the WAR.

� allowedMethods: The methods that are allowed to be invoked on this class.
The CORBA object can have more methods than listed here; the methods
listed here are available for remote invocation.

� poaName: The name of the POA that hosts the CORBA object. This
parameter is relevant only when the locateUsing parameter value is osagent.

Example:

 <service name="Animal" provider="java:VISIBROKER">
 <parameter name="className" value="com.borland.examples.web
services.visibroker.AnimalModule.Animal"/>
 <parameter name="allowedMethods" value="talk sleep"/>
 <parameter name="objectName" value="BigAnimal"/>
 <parameter name="cacheObject" value="false"/>

osagent The object is assumed to be in osagent. The bind()
method on helper is used to locate the object. The
Server object must be registered with the same
osagent that the Partition is using. If poaName is also
specified, objectName is located under that POA. This is
the default value of the parameter.

nameservice The object is assumed to be in Naming Service. The
resolve() method on the root context is used to locate
the object. The objectName must be the full name of
the object starting from root context. For example:

USA/California/SanMateo/BigAnimal

The VisiBroker server object must be registered
with the same name service that the Partition is
using. Typically, a Partition starts a name service
with the name "namingService". For a server to use
the same name service, it must be started as
follows:

vbj -DSVCnameroot=namingservice Server

ior The objectName provided is assumed to be an IOR. The
string_to_object() method on the ORB is used to
obtain the object. The IOR can be in standard form.
For example:

corbaname::172.20.20.28:9999#USA/California/
SanMateo/BigAnimal
IOR:xxx
corbaloc::172.20.20.28:30303,:172.20.20.29:30304/
MyObject

92 BES Developer ’s Guide

How Borland Web Serv ices work

 </service>
 <service name="Animal2" provider="java:VISIBROKER">
 <parameter name="className" value="com.borland.examples.web
services.visibroker.AnimalModule.Animal"/>
 <parameter name="allowedMethods" value="talk sleep"/>
 <parameter name="objectName" value="corbaname::172.20.20.28:9999#USA/
California/SanMateo/BigAnimal"/>
 <parameter name="locateUsing" value="ior"/>
 </service>

Java:MDB provider
This provider assumes that the incoming message is meant for a message
queue or a topic. When a web service request arrives, this provider:

1 Looks up the connection factory.

2 Creates a Queue or a Topic connection.

3 Sends the message to the queue or topic.

The parameters are:
� connectionType: The type of connection. Can take value QUEUE or TOPIC.
� connectionFactory:; The name of the connection factory. This is the serial

name and not the JNDI name of the object. For example: serial://jms/qcf.
� destination: The name of the queue or topic to which the message is sent.

This is the serial name and not the JNDI name of the object. For example:
serial://jms/q

Examples:

 <service name="MDBQService" provider="java:MDB">
 <parameter name="ConnectionType" value="QUEUE"/>
 <parameter name="ConnectionFactory" value="serial://jms/qcf"/>
 <parameter name="Destination" value="serial://jms/"/>
 </service>

How Borland Web Services work
1 The web services server receives an XML SOAP message from a client.

2 It then:

a Interprets the SOAP message.

b Extracts the SOAP service name.

c Determines the appropriate provider who can respond to this service.

3 The mapping between the SOAP service and the type of provider is
obtained from the Web Service Deployment Descriptor (WSDD) as part of
WAR deployment.

4 The message is then passed onto the right provider. For information about
the different ways in which each provider deals with the message, go to:

Chapter 9: Bor land Enterpr ise Server Web Serv ices 93

Web Serv ice Deployment Descr ip tors

� “Java:RPC provider” on page 89
� “Java:EJB provider” on page 89
� “Java:VISIBROKER provider” on page 90
� “Java:MDB provider” on page 92

Web Service Deployment Descriptors
Web services are deployed as part of a WAR. A single WAR can contain
multiple web services. You can also deploy multiple WARs with each
containing many web services.

The difference between a normal WAR and a WAR containing web services is
the presence of an extra descriptor named server-config.wsdd in the WEB-INF
directory. The server-config.wsdd file provides configuration information (the
name of the web service, the provider, any corresponding Java classes and
allowed methods).

There is one WSDD file per WAR and it contains information about all
available web services within that WAR.

The typical component structure of a WAR containing web services has the
following elements:
� WEB-INF/web.xml

� WEB-INF/server-config.wsdd

� WEB-INF/classes/<classes corresponding to your web services are located
here>

� WEB-INF/lib/<classes corresponding to your web services are located here in
the packed JAR form>

The WEB-INF/lib also contains some standard JARs that are necessary for the
Axis Runtime engine.

To publish your Java classes as a web service, use the WSDD format to
define the items that you want to deploy to the Partition. For example, an entry
corresponding to a service named "BankService" can be:

 <service name="BankService" provider="java:RPC">
 <parameter name="allowedMethods" value="create_account query_account"/
>
 <parameter name="className" value="com.fidelity.Bank"/>
 </service>

In this case, the com.fidelity.Bank Java class links to web service BankService.
The class com.fidelity.Bank can have a number of public methods, but only the
methods create_account and query_account are available through the web
service.

NOTE For more information on the web services deployment descriptor (WSDD),
refer to the Axis User Guide located in <install_dir>/doc/axis/user-guide.html,
or go to the 3rd Party Documentation, Axis Documentation section.

94 BES Developer ’s Guide

Packaging Web Serv ice Appl icat ion Archives

Creating a server-config.wsdd file

To create the server-config.wsdd:
� Use JBuilder to generate the deployment descriptor as part of your WAR.

or

1 Use a text editor to write a deploy.wsdd file. Refer to the deploy.wsdd file in
<install_dir>/examples/webservices/java/server.

2 Run the “Tools Overview” on page 96 with the deploy.wsdd file by typing:

prompt>java org.apache.axis.utils.Admin server deploy.wsdd

The server-config.wsdd file is packaged as part of the WAR.

Viewing and Editing WSDD Properties

You can view and edit the properties of any web service deployment
descriptor (WSDD) (server-config.wsdd file) that is packaged in a WAR file
using either the Borland Management Console or the DDEditor. For more
information, go to the Management Console User's Guide, Viewing J2EE
component configurations, Viewing Web Services WSDD properties section,
or the Using the Deployment Descriptor Editor, Web Services section.

Packaging Web Service Application Archives
To Create a WAR that can be deployed to the web services archive:

1 Make sure your web service classes are in WEB-INF/classes or WEB-INF/lib.

2 Copy the Axis toolkit libraries to WEB-INF/lib. The Axis libraries can be found
in: <install_dir>/lib/axis

3 Copy the web.xml necessary for the Axis tool kit to WEB-INF directory. The
web.xml can be found in: <install_dir>/etc/axis

4 Create a deploy.wsdd that has deployment information about your web
services.

5 Run the “Tools Overview” on page 96 on this deploy.wsdd to generate the
server-config.wsdd as follows:

java org.apache.axis.utils.Admin server deploy.wsdd

6 Copy this server-config.wsdd to WEB-INF

7 JAR your web application into a WAR file.

Chapter 9: Bor land Enterpr ise Server Web Serv ices 95

Bor land Web Serv ices examples

Borland Web Services examples
To help you get started with developing and deploying web services, we
provide samples and examples for the Borland web services engine. These
examples are included in your Borland Enterprise Server installation in:

<install_dir>/examples/webservices/

The examples that illustrate the different “Web Service providers” on page 88,
are located in the web services examples directory in the Java, EJB, MDB or
VisiBroker folder.

Your Borland Enterprise Server installation also includes several “Apache Axis
Web Service samples” on page 96 in:

<install_dir>/examples/webservices/axis/samples/

Using the Web Service provider examples

BES examples must be built before they are deployed and deployed before
they are run. Building the examples involves generating the necessary WSDL
files and packaging the application's code and descriptors into a deployable
unit, in this case a WAR. This WAR can then be deployed to a Borland
Partition. The application is run by invoking its client from a command-line.
Building and running the examples is automated through the use of the “Tools
Overview” on page 96, while deployment is performed using Tools Overview
with BES.

Steps to build, deploy, and run the examples
1 Build. You can build all of the examples simultaneously or build each one

individually. To build them all simultaneously, navigate to the:

/examples/webservices/

directory and execute the Ant command. For example:

C:/BDP/examples/webservices>Ant

builds all the examples.

To build an individual example, navigate to its specific directory and
execute the Ant command.

For example:

C:/BDP/examples/webservices/java>Ant

builds only the Java Provider example.

2 Deploy. You deploy the examples to a running instance of BES. You can
use the ant deploy target, or any of the following to deploy your WAR and
JAR:
� iastool command-line utility, for more information go to Chapter 29,

“iastool command-line utility”.

96 BES Developer ’s Guide

Tools Overv iew

� Deployment Wizard, for more information go to the Management
Console User's Guide, Deployment Wizard section.

3 Run. To run an example, navigate to its directory and use the ant run-
client command.

For example, to run the Java Provider client:

C:/BDP/examples/webservices/java>Ant run-client

Apache Axis Web Service samples

The Apache Axis web service samples are already deployed in the axis-
samples.war file present in the Borland Partition. Since these are already pre-
deployed, you do not need to use the Apache Axis deploy commands
suggested in the Apache Axis User's Guide.

The Apache Axis User's Guide is also provided with the BES installation and is
located in:

<install_dir>/doc/axis/user-guide.html

or go to the Third Party Documentation, Axis Documentation section.

These samples illustrate the capabilities of Axis. They are unmodified from the
original Apache Axis implementation and are not guaranteed to run.

Tools Overview
This section describes the various tools used in examples.

Apache ANT tool

The Apache ANT utility is a platform-independent, java-based build tool used
to build the examples.

The XML build script build.xml is used to drive the tool. This build.xml file
describes the various targets available for a project and the commands
executed in response to those targets. The Borland Enterprise Server
conveniently provides all necessary JARs and scripts to run the Apache Ant
tool.

Java2WSDL tool

The Java2WSDL is an Apache Axis utility class that generates WSDL
corresponding to a Java class. This class can accept a number of command
line arguments. You can get the full usage help by running this utility without
arguments as follows:

java org.apache.axis.wsdl.Java2WSDL

Chapter 9: Bor land Enterpr ise Server Web Serv ices 97

Tools Overv iew

Note You must set your CLASSPATH to include all jar files in the <install-dir>\lib\
axis directory, before you run the following command.

WSDL2Java tool

The WSDL2Java is an Apache Axis utility class that generates Java classes
from a WSDL file. This tool can generate java stubs (used on the client side),
or java skeletons (used on the server side). The generated files make it easy
to develop your client or server for a given WSDL.

This class can accept a number of command line arguments. You can get the
full usage help by running this utility without arguments as follows:

java org.apache.axis.wsdl.WSDL2Java

Note You must set your CLASSPATH to include all jar files in the <install-dir>\lib\
axis directory, before you run the following command.

Axis Admin tool

The Apache Admin tool is a utility class that generates WAR level global
configuration files based on deployment information specific to some web
services.

The input to this utility is a XML file (typically named deploy.wsdd) containing
deployment information about one or more web services. The Apache Admin
utility adds some global definitions that are necessary and writes an output
file. Use this tool as follows:

java org.apache.axis.utils.Admin server|client deployment-file

Note You must set your CLASSPATH to include all jar files in the <install-dir>\lib\
axis directory, before you run the command.

This tool generates server-config.wsdd or client-config.wsdd based on what
option you choose.

98 BES Developer ’s Guide

Chapter 10: Web appl icat ions bundled with BES 99

C h a p t e r

10
Chapter10Web applications bundled with

BES
This section describes the Apache Cocoon and Apache Struts for which BES
includes support. For more information about Apache, go the 3rd Party
Documentation, Apache2 section.

The Cocoon servlet is pre-installed in the Tomcat web container upon which
the Borland web container is based. The Struts framework is also pre-installed
in the Borland web container.

For more information about the Borland web container, go to Chapter 4, “Web
components”.

About Cocoon
Cocoon is a web publishing framework that renders XML data into a number of
formats including HTML, WML, PDF, and the like. These formats are based on
a set of properties provided by an XSL stylesheet.

All BES product offerings include the Cocoon servlet pre-installed in the
Borland web container. The web.xml file contains specifications for the Cocoon
servlet, which is pre-configured to point to the cocoon properties file in the WEB-
INF directory of the context under which Cocoon is invoked. However, you can
change this specification to point to another location. Additionally, the web.xml
file includes a mapping for "*.xml" directing any such file to be processed by
Cocoon. This mapping can be modified or deleted.

100 BES Developer ’s Guide

About Cocoon

An unmodified copy of the properties file is included as part of the Cocoon
webapp (cocoon.war) distributed with BES. You can customize this file to create
your own cocoon.properties file. This unmodified cocoon.properties file is
compiled in with the Borland web container. As the default properties file, it is
used whenever the file specified in the Cocoon servlet definition cannot be
found.

Cocoon is an open-source product distributed by the Apache Software
Foundation. For additional information about Cocoon, see the web site:

http://xml.apache.org/cocoon

Chapter 11: Wr i t ing enterpr ise bean c l ients 101

C h a p t e r

11
Chapter11Writing enterprise bean clients

Important For documentation updates, go to www.borland.com/techpubs/bes.

Client view of an enterprise bean
A client of an enterprise bean is an application--a stand-alone application, an
application client container, servlet, or applet--or another enterprise bean. In
all cases, the client must do the following things to use an enterprise bean:
� Locate the bean's home interface. The EJB specification states that the

client should use the JNDI (Java Naming and Directory Interface) API to
locate home interfaces.

� Obtain a reference to an enterprise bean object's remote interface. This
involves using methods defined on the bean's home interface. You can
either create a session bean, or you can create or find an entity bean.

� Invoke one or more methods defined by the enterprise bean. A client does
not directly invoke the methods defined by the enterprise bean. Instead, the
client invokes the methods on the enterprise bean object's remote
interface. The methods defined in the remote interface are the methods that
the enterprise bean has exposed to clients.

102 BES Developer ’s Guide

Initializing the client

The SortClient application imports the necessary JNDI classes and the
SortBean home and remote interfaces. The client uses the JNDI API to locate
an enterprise bean's home interface.

A client application can also use logical names (as recommended in the
various J2EE specifications) to access resources such as database
connections, remote enterprise beans, and environment variables. The
container, per the J2EE specification, exposes these resources as
administered objects in the local JNDI name space (that is, java:comp/env).

Locating the home interface

A client locates an enterprise bean's home interface using JNDI, as shown in
the code sample below. The client first needs to obtain a JNDI initial naming
context. The code instantiates a new javax.naming.Context object, which in our
example it calls initialContext. Then, the client uses the context lookup()
method to resolve the name to a home interface. Note that the initialization of
the initial naming context factory is EJB container/server specific.

A client application can also use logical names to access a resource such as
the home interface. Go to “Initializing the client” on page 102 for more
information.

The context's lookup() method returns an object of type java.lang.Object. Your
code must cast this returned object to the expected type. The following code
sample shows a portion of the client code for the sort example. The main()
routine begins by using the JNDI naming service and its context lookup
method to locate the home interface. You pass the name of the remote
interface, which in this case is sort, to the context.lookup() method. Notice that
the program eventually casts the results of the context.lookup() method to
SortHome, the type of the home interface.

// SortClient.java
import javax.naming.InitialContext;
import SortHome; // import the bean's home interface
import Sort; // import the bean's remote interface
public class SortClient {
 ...
 public static void main(String[] args) throws Exception {
 javax.naming.Context context;

 // preferred JNDI context lookup
 // get a JNDI context using a logical JNDI name in the local JNDI
context, i.e.,ejb-ref
 javax.naming.Context context = new javax.naming.InitialContext();
 Object ref = context.lookup("java:comp/env/ejb/Sort");
 SortHome home = (SortHome) javax.rmi.PortableRemoteObject.narrow
 (ref, SortHome.class);
 Sort sort = home.create();

Chapter 11: Wr i t ing enterpr ise bean c l ients 103

Client v iew of an enterpr ise bean

 ... //do the sort and merge work
 sort.remove();
 }
}

The main() routine of the client program throws the generic exception
Exception. When coded this way, the SortClient program does not have to
catch any exceptions that might occur, though if an exception occurs it will
terminate the program.

Obtaining the remote interface

Now that we have obtained the home interface of an enterprise bean we can
get a reference to the enterprise bean's remote interface. To do this, we use
the home interface's create or finder methods. The exact method to invoke
depends on the type of the enterprise bean and the methods the enterprise
bean provider has defined in the home interface.

For example, the first code sample shows how SortClient obtains a reference
to the Sort remote interface. Once SortClient obtains the reference to the
home interface and casts it to its proper type (SortHome), then the code can
create an instance of the bean and call its methods. It calls the home
interface's create() method, which returns a reference to the bean's remote
interface, Sort. (Because SortBean is a stateless session bean, its home
interface has only one create() method and that method by definition takes no
parameters.) SortClient can then call the methods defined on the remote
interface--sort() and merge()--to do its sorting work. When the work finishes,
the client calls the remote interface's remove() method to remove the instance
of the enterprise bean.

Session beans
A client obtains a reference to a session bean's remote interface by calling
one of the create methods on the home interface.

All session beans must have at least one create() method. A stateless session
bean must have only one create() method, and that method must have no
arguments. A stateful session bean can have one create() method, and may
have additional create() methods whose parameters vary. If a create() method
does have parameters, the values of these parameters are used to initialize
the session bean.

The default create() method has no parameters. For example, the sort
example uses a stateless session bean. It has, by definition, one create()
method that takes no parameters:

Sort sort = home.create();

The cart example, on the other hand, uses a stateful session bean, and its
home interface, CartHome, implements more than one create() method. One
of its create() methods takes three parameters, which together identify the
purchaser of the cart contents, and returns a reference to the Cart remote
interface. The CartClient sets values for the three parameters--cardHolderName,

104 BES Developer ’s Guide

creditCardNumber, and expirationDate--then calls the create() method. This is
shown in the code sample below:

Cart cart;
 {
 String cardHolderName = "Jack B. Quick";
 String creditCardNumber = "1234-5678-9012-3456";
 Date expirationDate = new GregorianCalendar(2001, Calendar.JULY,
1).getTime();
 cart = home.create(cardHolderName, creditCardNumber, expirationDate);
 }

Session beans do not have finder methods.

Entity beans
A client obtains a reference to an entity object either through a find operation
or a create operation. Recall that an entity object represents some underlying
data stored in a database. Because the entity bean represents persistent data,
entity beans typically exist for quite a long time; certainly for much longer than
the client applications that call them. Thus, a client most often needs to find
the entity bean that represents the piece of persistent data of interest, rather
than creating a new entity object, which would create and store new data in
the underlying database.

A client uses a find operation to locate an existing entity object, such as a
specific row within a relational database table. That is, find operations locate
data entities that have previously been inserted into data storage. The data
may have been added to the data store by an entity bean or it may have been
added outside of the EJB context, such as directly from within the database
management system (DBMS). Or, in the case of legacy systems, the data may
have existed prior to the installation of the EJB container.

A client uses an entity bean object's create() method to create a new data
entity that will be stored in the underlying database. An entity bean's create()
method inserts the entity state into the database, initializing the entity's
variables according to the values in the create() method's parameters. A
create() method for an entity bean always returns the remote interface, but the
corresponding ejbCreate() method returns primary key of the entity instance.

Every entity bean instance must have a primary key that uniquely identifies it.
An entity bean instance can also have secondary keys that can be used to
locate a particular entity object.

Find methods and primary key class
The default find method for an entity bean is the findByPrimaryKey() method,
which locates the entity object using its primary key value. Its signature is as
follows:

<remote interface> findByPrimaryKey(<key type> primaryKey)

Every entity bean must implement a findByPrimaryKey() method. The primaryKey
parameter is a separate primary key class that is defined in the deployment
descriptor. The key type is the type for the primary key, and it must be a legal

Chapter 11: Wr i t ing enterpr ise bean c l ients 105

Client v iew of an enterpr ise bean

value type in RMI-IIOP. The primary key class can be any class--a Java class
or a class you've written yourself.

For example, you have an Account entity bean that defines the primary key
class AccountPK. AccountPK is a String type, and it holds the identifier for the
Account bean. You can obtain a reference to a specific Account entity bean
instance by setting the AccountPK to the account identifier and invoking the
findByPrimaryKey() method, as shown in the following code sample.

AccountPK accountPK = new AccountPK("1234-56-789");
Account source = accountHome.findByPrimaryKey(accountPK);

The bean provider can define additional finder methods that a client can use.

Create and remove methods
A client can also create entity beans using create methods defined in the
home interface. When a client invokes a create() method for an entity bean,
the new instance of the entity object is saved in the data store. The new entity
object always has a primary key value that is its identifier. Its state may be
initialized to values passed as parameters to the create() method.

Keep in mind that an entity bean exists for as long as data is present in the
database. The life of the entity bean is not bound by the client's session. The
entity bean can be removed by invoking one of the bean's remove() methods--
these methods remove the bean and the underlying representation of the
entity data from the database. It is also possible to directly delete an entity
object, such as by deleting a database record using the DBMS or with a
legacy application.

Invoking methods

Once the client has obtained a reference to the bean's remote interface, the
client can invoke the methods defined in the remote interface for this
enterprise bean. The methods pertaining to the bean's business logic are of
most interest to the client. There are also methods for getting information
about the bean and its interfaces, getting the bean object's handle, testing if
one bean is identical to another bean, and methods for removing the bean
instance.

The next code sample illustrates how a client calls methods of an enterprise
bean, in this case, a cart session bean. We pick up the client code from the
point where it has created a new session bean instance for a card holder and
retrieved a Cart reference to the remote interface. At this point, the client is
ready to invoke the bean methods.

First, the client creates a new book object, setting its title and price
parameters. Then, it invokes the enterprise bean business method addItem() to
add the book object to a shopping cart. The addItem() method is defined on the
CartBean session bean, and is made public through the Cart remote interface.
The client adds other items (not shown here), then calls its own summarize()
method to list the items in the shopping cart. This is followed by the remove()
method to remove the bean instance. Notice that a client calls the enterprise

106 BES Developer ’s Guide

bean methods in the same way that it invokes any method, such as its own
method summarize().

...
Cart cart;
{
 ...
 // obtain a reference to the bean's remote interface
 cart = home.create(cardHolderName, creditCardNumber, expirationDate);
}
// create a new book object
Book knuthBook = new Book("The Art of Computer Programming", 49.95f);
// add the new book item to the cart
cart.addItem(knuthBook);

...
// list the items currently in the cart
summarize(cart);
cart.removeItem(knuthBook);
...

Removing bean instances

The remove() method operates differently for session beans than for entity
beans. Because a session object exists for one client and is not persistent, a
client of a session bean should call the remove() method when finished with a
session object. There are two remove() methods available to the client: the
client can remove the session object with the javax.ejb.EJBObject.remove()
method, or the client can remove the session handle with the
javax.ejb.EJBHome.remove(Handle handle) method. Go to “Using a bean's handle”
on page 106 for more information on handles.

While it is not required that a client remove a session object, it is considered to
be good programming practice. If a client does not remove a stateful session
bean object, the container eventually removes the object after a certain time,
specified by a timeout value. The timeout value is a deployment property.
However, a client can also keep a handle to the session for future reference.

Clients of entity beans do not have to deal with this problem as entity beans
are only associated with a client for the duration of a transaction and the
container is in charge of their life cycles, including their activation and
passivation. A client of an entity bean calls the bean's remove() method only
when the entity object is to be deleted from the underlying database.

Using a bean's handle

A handle is an another way to reference an enterprise bean. A handle is a
serializable reference to a bean. You can obtain a handle from the bean's
remote interface. Once you have the handle, you can write it to a file (or other

Chapter 11: Wr i t ing enterpr ise bean c l ients 107

Client v iew of an enterpr ise bean

persistent storage). Later, you can retrieve the handle from storage and use it
to reestablish a reference to the enterprise bean.

However, you can only use the remote interface handle to recreate the
reference to the bean; you cannot use it to recreate the bean itself. If another
process has removed the bean, or the system crashed or shutdown and
removed the bean instance, then an exception is thrown when the client
application tries to use the handle to reestablish its reference to the bean.

When you are not sure that the bean instance will still be in existence, rather
than using a handle to the remote interface, you can store the bean's home
handle and recreate the bean object later by invoking the bean's create or find
methods.

After the client creates a bean instance, it can use the getHandle() method to
obtain a handle to this instance. Once it has the handle, it can write it to a
serialized file. Later, the client program can read the serialized file, casting the
object that it reads in to a Handle type. Then, it calls the getEJBObject() method
on the handle to obtain the bean reference, casting the results of
getEJBObject() to the correct type for the bean.

To illustrate, the CartClient program might do the following to utilize a handle
to the CartBean session bean:

import java.io;
import javax.ejb.Handle;
...
Cart cart;
...
cart = home.create(cardHolderName, creditCardNumber, expirationDate);
// call getHandle on the cart object to get its handle
cartHandle = cart.getHandle();
// write the handle to serialized file
FileOutputStream f = new FileOutputStream ("carthandle.ser");
ObjectOutputStream o = new ObjectOutputStream(f);
o.writeObject(myHandle);
o.flush();
o.close();
...
// read handle from file at later time
FileInputStream fi = new FileInputStream ("carthandle.ser");
ObjectInputStream oi = new ObjectInputStream(fi);
//read the object from the file and cast it to a Handle
cartHandle = (Handle)oi.readObject();
oi.close();
...
// Use the handle to reference the bean instance
try {
 Object ref = context.lookup("cart");
 Cart cart1 = (Cart) javax.rmi.PortableRemoteObject.narrow(ref,
Cart.class);
 ...
} catch (RemoteException e) {
 ...

108 BES Developer ’s Guide

}
...

When finished with the session bean handle, the client can remove it with the
javax.ejb.EJBHome.remove(Handle handle) method.

Managing transactions
A client program can manage its own transactions rather than letting the
enterprise bean (or container) manage the transaction. A client that manages
its own transaction does so in exactly the same manner as a session bean
than manages its own transaction.

When a client manages its own transactions, it is responsible for delimiting the
transaction boundaries. That is, it must explicitly start the transaction and end
(commit or roll back) the transaction.

A client uses the javax.transaction.UserTransaction interface to manage its own
transactions. It must first obtain a reference to the UserTransaction interface,
using JNDI to do so. Once it has the UserTransaction context, the client uses
the UserTransaction.begin() method to start the transaction, followed later by
the UserTransaction.commit() method to commit and end the transaction (or
UserTransaction.rollback() to rollback and end the transaction). In between,
the client does its queries and updates.

This code sample shows the code that a client would implement to manage its
own transactions. The parts that pertain specifically to client-managed
transactions are highlighted in bold.

...
import javax.naming.InitialContext;
import javax.transaction.UserTransaction;
...
public class clientTransaction {
 public static void main (String[] argv) {
 UserTransaction ut = null;
 InitialContext initContext = new InitialContext();
 ...
 ut = (UserTransaction)initContext.lookup("java:comp/
UserTransaction");
 // start a transaction
 ut.begin();
 // do some transaction work
 ...
 // commit or rollback the transaction
 ut.commit(); // or ut.rollback();
 ...
]
]

Chapter 11: Wr i t ing enterpr ise bean c l ients 109

Gett ing informat ion about an enterpr ise bean

Getting information about an enterprise bean
Information about an enterprise bean is referred to as metadata. A client can
obtain metadata about a bean using the enterprise bean's home interface
getMetaData() method.

The getMetaData() method is most often used by development environments
and tool builders that need to discover information about an enterprise bean,
such as for linking together beans that have already been installed. Scripting
clients might also want to obtain metadata on the bean.

Once the client retrieves the home interface reference, it can call the
getEJBMetaData() method on the home interface. Then, the client can call the
EJBMetaData interface methods to extract such information as:
� The bean's EJBHome home interface, using EJBMetaData.getEJBHome().
� The bean's home interface class object, including its interfaces, classes,

fields, and methods, using EJBMetaData.getHomeInterfaceClass().
� The bean's remote interface class object, including all class information,

using EJBMetaData.getRemoteInterfaceClass().
� The bean's primary key class object, using

EJBMetaData.getPrimaryKeyClass().
� Whether the bean is a session bean or an entity bean, using

EJBMetaData.isSession(). The method returns true if this is a session bean.
� Whether a session bean is stateless or stateful, using

EJBMetaData.isStatelessSession(). The method returns true if the session
bean is stateless.

Support for JNDI
The EJB specification defines the JNDI API for locating home interfaces. JNDI
is implemented on top of other services, including CORBA's Naming Service,
LDAP/X.500, flat files, and proprietary directory services. The diagram below
illustrates the different implementation choices. Typically, the EJB server
provider selects a particular implementation of JNDI.

The technology implemented beneath JNDI is of no concern to the client. The
client needs to use only the JNDI API.

110 BES Developer ’s Guide

EJB to CORBA mapping
There are a number of aspects to the relationship between CORBA and
Enterprise JavaBeans. Three important ones are the implementation of an
EJB container/server with an ORB, the integration of legacy systems into an
EJB middle tier, and the access of enterprise beans from non-Java
components, specifically clients. The EJB specification is currently only
concerned with the third aspect.

CORBA is a very suitable and natural platform on which to implement an EJB
infrastructure. CORBA addresses all of the concerns of the EJB specification
with the CORBA Core specification or the CORBA Services:
� Support for distribution. CORBA Core and CORBA Naming Service
� Support for transactions. CORBA Object Transaction Service
� Support for security. CORBA Security Specification, including IIOP-over-

SSL

Additionally, CORBA allows the integration of non-Java components into an
application. These components can be legacy systems and applications, plus
different kinds of clients. Back-end systems can be easily integrated using
OTS and any programming language for which an IDL mapping exists. This
requires an EJB container to provide OTS and IIOP APIs.

The EJB specification is concerned with the accessibility of enterprise beans
from non-Java clients and provides an EJB to CORBA mapping. The goals of
the EJB/CORBA mapping are:
� Supporting interoperability between clients written in any CORBA-

supported programming language and enterprise beans running on a
CORBA-based EJB server.

� Enabling client programs to mix and match calls to CORBA objects and
enterprise beans within the same transaction.

� Supporting distributed transactions involving multiple enterprise beans
running on CORBA-based EJB servers provided by different vendors.

The mapping is based on the Java-to-IDL mapping. The specification includes
the following parts: mapping of distribution-related aspects, the mapping of
naming conventions, the mapping of transactions, and the mapping of
security. We explain each of these aspects in the following sections. Since the
mapping uses new IDL features introduced by the OMG's Object-by-Value
specification, interoperability with other programming languages requires
CORBA 2.3-compliant ORBs.

Mapping for distribution

An enterprise bean has two interfaces that are remotely accessible: the
remote interface and the home interface. Applying the Java/IDL mapping to
these interfaces results in corresponding IDL specifications. The base classes
defined in the EJB specification are mapped to IDL in the same manner.

Chapter 11: Wr i t ing enterpr ise bean c l ients 111

EJB to CORBA mapping

For example, look at the IDL interface for an ATM enterprise session bean that
has methods to transfer funds between accounts and throws an insufficient
funds exception. By applying the Java/IDL mapping to the home and the
remote interface, you get the following IDL interface.

module transaction {
 module ejb {
 valuetype InsufficientFundsException : ::java::lang::Exception {};
 exception InsufficientFundsEx {
 ::transaction::ejb::InsufficientFundsException value;
 };
 interface Atm : ::javax::ejb::EJBObject{
 void transfer (in string arg0, in string arg1, in float arg2)
 raises (::transaction::ejb::InsufficientFundsEx);
 };
 interface AtmHome : ::javax::ejb::EJBHome {
 ::transaction::ejb::Atm create ()
 raises (::javax::ejb::CreateEx);
 };
};};};};

Mapping for naming

A CORBA-based EJB runtime environment that wants to enable any CORBA
clients to access enterprise beans must use the CORBA Naming Service for
publishing and resolving the home interfaces of the enterprise beans. The
runtime can use the CORBA Naming Service directly or indirectly via JNDI
and its standard mapping to the CORBA Naming Service.

JNDI names have a string representation of the following form "directory1/
directory2/.../directoryN/objectName". The CORBA Naming Service defines
names as a sequence of name components.

typedef string Istring;
 struct NameComponent {
 Istring id;
 Istring kind;
 };
typedef sequence<NameComponent> Name;

Each "/" separated name of a JNDI string name is mapped to a name
component; the leftmost component is the first entry in the CORBA Naming
Service name.

A JNDI string name is relative to some naming context, which calls the JNDI
root context. The JNDI root context corresponds to a CORBA Naming Service
initial context. CORBA Naming Service names are relative to the CORBA
initial context.

A CORBA program obtains an initial CORBA Naming Service naming context
by calling resolve_initial_references("NameService") on the ORB (pseudo)
object. The CORBA Naming Service does not prescribe a rooted graph for
organizing naming context and, hence, the notion of a root context does not

112 BES Developer ’s Guide

apply. The initialization of the ORB determines the context returned by
resolve_initial_references().

For example, a C++ Client can locate the home interface to the ATMSession
bean, which has been registered with a JNDI string name "transaction/
corbaEjb/atm". You first obtain the initial naming context.

Object_ptr obj = orb->resolve_initial_refernces("NameService");
NamingContext initialNamingContext= NamingContext.narrow(obj);
if(initialNamingContext == NULL) {
 cerr << "Couldn't initial naming context" << endl;
 exit(1);
}

Then you create a CORBA Naming Service name and initialize it according to
the mapping explained previously.

Name name = new Name(1);
name[0].id = "atm";
name[0].kind = "";

Now resolve the name on the initial naming context. Assume that you have
successfully performed the initialization and that you have the context of the
naming domain of the enterprise bean. We narrow the resulting CORBA object
to the expected type and make sure that the narrow was successful.

Object_ptr obj = initialNamingContext->resolve(name);
ATMSessionHome_ptr atmSessionHome = ATMSessionHome.narrow(obj);
if(atmSessionHome == NULL) {
 cerr << "Couldn't narrow to ATMSessionHome" << endl;
 exit(1);
}

Mapping for transaction

A CORBA-based enterprise bean runtime environment that wants to enable a
CORBA client to participate in a transaction involving enterprise beans must
use the CORBA Object Transaction Service for transaction control.

When an enterprise bean is deployed it can be installed with different
transaction policies. The policy is defined in the enterprise bean's deployment
descriptor.

The following rules have been defined for transactional enterprise beans: A
CORBA client invokes an enterprise through stubs generated from the IDL
interfaces for the enterprise bean's remote and home interface. If the client is
involved in a transaction, it uses the interfaces provided by CORBA Object
Transaction Service. For example, a C++ client could invoke the ATMSession
bean from the previous example as follows:

try {
 ...
 // obtain transaction current
 Object_ptr obj = orb->resolve_initial_refernces("Current");

Chapter 11: Wr i t ing enterpr ise bean c l ients 113

EJB to CORBA mapping

 Current current = Current.narrow(obj);
 if(current == NULL) {
 cerr << "Couldn't resolve current" << endl;
 exit(1);
 }
// execute transaction
 try {
 current->begin();
 atmSession->transfer("checking", "saving", 100.00);
 current->commit(0);
 } catch(...) {
 current->rollback();
 }
}
catch(...) {
 ...
}

Mapping for security

Security aspects of the EJB specification focuses on controlling access to
enterprise beans. CORBA defines a number of ways to define the identities,
including the following cases:
� Plain IIOP. CORBA's principal interface was deprecated in early 1998. The

principal interface was intended for determining the identity of a client.
However, the authors of the CORBA security services implemented a
different approach, GIOP.

� The GIOP specification contains a component called service context, which
is an array of value pairs. The identifier is a CORBA long and the value is a
sequence of octet. Among other purposes, entries in the service context
can be used to identify a caller.

� Secure IIOP. The CORBA security specification defines an opaque data
type for the identity. The real type of the identity is determined by the
chosen security mechanism; for example, GSS Kerberos, SPKM, or CSI-
ECMA.

� IIOP over SSL. SSL uses X.509 certificates to identify servers and,
optionally, clients. When a server requests a client certificate, the server
can use the certificate as a client identity.

114 BES Developer ’s Guide

Chapter 12: The Vis iCl ient Container 115

C h a p t e r

12
Chapter12The VisiClient Container

VisiClient is a container that provides a J2EE environment for services for
application clients.

Containers are an integral part of J2EE applications. Most applications provide
containers for each application type. Application clients depend on their
containers to supply system services to all J2EE components.

Important For documentation updates, go to www.borland.com/techpubs/bes.

Application Client architecture
J2EE application clients are first tier client programs that execute in their own
Java virtual machines. Application clients obey the model for Java technology-
based applications, in that they are invoked at their main method and run until
the virtual machine is terminated. Like other J2EE application components,
application clients depend on a container to provide system services; though
in the case of application clients, these services are limited.

116 BES Developer ’s Guide

Appl icat ion Cl ient archi tecture

Figure 12.1 VisiClient architecture

Packaging and deployment

Deploying the application client components into a VisiClient container
requires the specification of deployment descriptors using XML. (Refer to
J2EE 1.3 Specification for more information about application clients, and their
deployment into a J2EE 1.3 compliant container.)

Application clients are packaged in JAR files and include a deployment
descriptor (similar to other J2EE application components). The deployment
descriptor defines the EJB and the external resources referenced by the
application. You can use the Borland Enterprise Server Deployment
Descriptor Editor for packaging and editing application client components. For
more information, go to the Management Console User’s Guide, Using the
Deployment Descriptor Editor section..

The deployment descriptor is necessary because there are a number of
functions that must be configured at deployment time, such as assigning
names to EJBs and their resources. The minimum requirements for
deployment of an application client into a VisiClient container are:
� All the client-side classes are packaged into a JAR. See below section on

required client JARs and files. A well-formed JAR should have the
following:
� Application specific classes including the class containing the application

entry point (main class)
� The JAR file must have a META-INF subdirectory with the following:

� A manifest file
� A standard XML file (application-client.xml), as required by J2EE 1.3

specifications
� A vendor-specific XML file (application-client-borland.xml)

� RMI-IIOP stubs which can also be packaged separately. In this case, the
file needs the classpath attribute of the manifest file set to the appropriate
value. The JAR formed in this manner is deployable to a standalone

Chapter 12: The Vis iCl ient Container 117

Document Type Def in i t ions (DTDs)

container or to an EAR file. The following sections in this chapter describe
this process in detail.

Benefits of the VisiClient Container

VisiClient offers users a range of benefits from the use of J2EE applications.
These include:
� Client code portability: Applications can use logical names (as

recommended in the J2EE specifications) to access resources such as
database connections, remote EJBs and environment variables. The
container, per the J2EE specification, exposes the resources as
administered objects in the local JNDI namespace (java:comp/env).

� JDBC Connection Pooling: Client applications in Borland Enterprise
Server can use JDBC 2-based datasources (factories). VisiClient Container
provides connection pooling to client applications in the Server that employ
a JDBC 2-based datasource. For example, the VisiClient container's
application uses java.net.URL, JMS, and Mail factories.

Datasource and URL factories are deployed in the in-process local JNDI
subcontext that resides in the client container virtual machine on startup.
Other res-ref-types (such as JMS and Mail) are configured and deployed using
the relevant tools from the vendor of these products. Refer to the Deployment,
Datasources and Transaction chapters of the Borland Enterprise Server
Developer's Guide for more information about configuration and deployment.

Document Type Definitions (DTDs)
There are two deployment descriptors for each J2EE compliant application
client module. One is a J2EE standard deployment descriptor, and the other is
a vendor specific file.

The XML grammar for a J2EE application client deployment descriptor is
defined in the J2EE application-client Document Type Definition (DTD). The
root element of the deployment descriptor for an application client is the
application-client.

Note The content of XML elements are generally case sensitive. All valid application
client deployment descriptors must contain the following DOCTYPE
declaration:

<!DOCTYPE application-client PUBLIC '-//Sun Microsystems, Inc.//DTD J2EE
Application Client
 1.3//EN';';http://java.sun.com/j2ee/dtds/application-client_1_3.dtd'>

The vendor-specific deployment descriptor for an application client must
contain the following DOCTYPE declaration:

<!DOCTYPE application-client PUBLIC "-//Borland Corporation//DTD J2EE
Application Client

118 BES Developer ’s Guide

Document Type Def ini t ions (DTDs)

 1.3//EN""http://www.borland.com/devsupport/appserver/dtds/application-
client_1_3-borland.dtd">

The contents of the Borland-specific application client DTD are:

 <!ELEMENT application-client (ejb-ref*, resource-ref*, property*)>
 <!ELEMENT ejb-ref (ejb-ref-name, jndi-name)>
 <!ELEMENT resource-ref (res-ref-name, jndi-name)>
 <!ELEMENT property (prop-name, prop-type, prop-value)>
 <!ELEMENT prop-name (#PCDATA)>
 <!ELEMENT prop-type (#PCDATA)>
 <!ELEMENT prop-value (#PCDATA)>
 <!ELEMENT ejb-ref-name (#PCDATA)>
 <!ELEMENT jndi-name (#PCDATA)>
 <!ELEMENT res-ref-name (#PCDATA)>

Here ejb-ref-name and res-ref-names are the names of the corresponding
elements in the J2EE XML file, and jndi-name is the absolute JNDI name with
which the object is deployed in JNDI.

Example XML using the DTD

As discussed, every application client needs a pair of XML files; a standard file
and a vendor-specific file.

Example of a standard file:

<?xml version="1.0" encoding="ISO8859_1"?>

<!DOCTYPE application-client PUBLIC '-//Sun Microsystems, Inc.//DTD J2EE
Application Client 1.3//EN' 'http://java.sun.com/j2ee/dtds/application-
client_1_3.dtd'>
<application-client>
 <display-name>SimpleSort</display-name>
 <description>J2EE AppContainer spec compliant Sort client</description>
 <env-entry>
 <description>
 Testing environment entry
 </description>
 <env-entry-name>myStringEnv</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>MyStringEnvEntryValue</env-entry-value>
 </env-entry>
 <ejb-ref>
 <ejb-ref-name>ejb/Sort</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>SortHome</home>
 <remote>Sort</remote>
 <ejb-link>sort</ejb-link>
 </ejb-ref>
 <resource-ref>

Chapter 12: The Vis iCl ient Container 119

Document Type Def in i t ions (DTDs)

 <description>
 reference to a jdbc datasource mentioned down in the DD section
 </description>
 <res-ref-name>jdbc/CheckingDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref></application-client>

Example of a vendor-specific file:

<?xml version="1.0"?>

<!DOCTYPE application-client PUBLIC "-//Borland Corporation//DTD J2EE
Application Client 1.3//EN"
 "http://www.borland.com/devsupport/appserver/dtds/application-client_1_3-
borland.dtd">
<application-client>
 <ejb-ref>
 <ejb-ref-name>ejb/Sort</ejb-ref-name>
 <jndi-name>sort</jndi-name>
 </ejb-ref>
 <resource-ref>
 <res-ref-name>jdbc/CheckingDataSource</res-ref-name>
<jndi-name>file:///net/machine/datasources/OracleDataSource</jndi-name>
 </resource-ref>
</application-client>

For more information about environment entries, ejb-refs, or resource-refs,
see the relevant sections of Sun Microsystem's EJB 2.0 specifications at
www.java.sun/com/j2ee.

Sample code
This example shows the usage of the logical local JNDI naming context. It
shows how a client uses the deployment descriptors specified in the preceding
section.

// get a JNDI context using the Naming service and create a remote object

 javax.naming.Context context = new javax.naming.InitialContext();
 Object ref = context.lookup("java:comp/env/ejb/Sort");
 SortHome home = (SortHome) javax.rmi.PortableRemoteObject.narrow(ref,
SortHome.class);
 Sort sort = home.create();
 // get the value of an environment entry using JNDI
 Object envValue = context.lookup("java:comp/env/myStringEnv");
 System.out.println("Value of env entry = "+ (java.lang.String) envValue
);
 // locate a UserTransaction object
 javax.transaction.UserTransaction userTransaction =
 (javax.transaction.UserTransaction) context.lookup("java:comp/
UserTransaction");

120 BES Developer ’s Guide

Suppor t o f re ferences and l inks

userTransaction.begin();
 // locate the datasource using resource-ref name
 Object resRef = context.lookup("java:comp/env/jdbc/
CheckingDataSource");
 java.sql.Connection conn =
((javax.sql.DataSource)resRef).getConnection();
 //do some database work.
 userTransaction.commit();
...............

Support of references and links
During application assembly and deployment you must verify that all EJB and
resource references have been properly linked. For more information about
EJB and resource references, consult Sun Microsystem's EJB 2.0 and J2EE
1.3 specifications.

The Borland Enterprise Server client container supports the use of ejb-links. In
the case of a standalone JAR file, the ejb-links have to be resolved before the
JAR is deployed. There must be a JNDI name specified for the target bean in
the vendor-specific section of the client deployment descriptor.

For a client JAR that is part of an Enterprise Application Archive (EAR), the
JNDI name of the target EJB may live in a different ejb-jar. The client verify
tool checks that the target EJB with the name specified in the ejb-link tag
exists.

During runtime, the container resolves (locates) the target EJB corresponding
to the ejb-link name in the EAR and uses the JNDI name of the target EJB.
Note that application clients run in their own Java virtual machines. EJB-links
are not optimized for application clients like they are for EJBs referring to
another EJB located in the same container.

Keep the following rules in mind when working with EJB references and ejb-
links in deployment descriptors for application client containers:

1 An ejb-ref that is not an ejb-link must have an entry in a Borland-specific file
containing the JNDI name of the referenced (target) EJB.

2 An ejb-ref that has an ejb-link element must follow these rules:
� If the ejb-ref is in a client JAR and is a standalone JAR, rule 1 applies.

That is, it should have a Borland-specific file with the JNDI name
resolved in the deployment descriptor within the (same) JAR.

� If the ejb-ref is in a client-jar embedded in an application archive (an
EAR), the JNDI name of the target EJB is not required to exist in the
application-client-borland.xml file. In this case, the name in the ejb-link
element is composed of a path name specifying the fully qualified path to
the ejb-jar containing the referenced enterprise bean with the ejb-name
of the target bean appended and separated from the path name by "#".
The path name is relative to the JAR file containing the application client

Chapter 12: The Vis iCl ient Container 121

Support o f re ferences and l inks

that is referencing the enterprise bean. This allows multiple enterprise
beans with the same ejb-name to be uniquely identified.

If the path is not specified, container picks first matching EJB-name that it
finds from list of EJB JARs inside EAR and throws an exception if doesn't
find a bean with same name in ejb-link element.>

Using the VisiClient Container

The following command line demonstrates the use of the VisiClient Container:

Prompt% appclient <client-archive> [-uri <uri>] [client-arg1 client-arg2
..]

The following table describes VisiClient container command line elements and
definitions

VisiClient Container usage example

The following command lines demonstrate usage of an application client. In
the example, the appclient launcher sets the classpath required to launch
VisiClient.

This example is also located in the Hello example in the install_dir/examples/
j2ee/hello directory. When your server (EJB container) is up, to run a client
embedded inside an EAR file, the command is:

appclient me install_dir\examples\j2ee\build\hello\hello.ear -uri
helloclient.jar

To run a client in a standalone JAR file, the command is:

appclient me install_dir\examples\j2ee\build\hello\client\helloclient.jar

Running a J2EE client application on machines not running
BES

To run a J2EE application client on a client machine that does not have
Borland Enterprise Server installed on it, make sure to copy the following
VisiClient files to your client machine and run the following processes.

Table 12.1 Elements in a VisiClient container command

Element Definition

<client-archive> A standalone client JAR or EAR
containing client JAR.

-uri The relative location of the client JAR
inside an EAR file. This is required for
EAR contained JAR files.

<client-args> Space separated list of arguments
passed to the client's main class.

122 BES Developer ’s Guide

Embedding V is iCl ient Conta iner funct ional i ty in to an exis t ing appl icat ion

1 Copy the following JAR files from <install_dir>/lib to client machine:
� lm.jar

� xmlrt.jar

� asrt.jar

� vbjorb.jar

� vbsec.jar

� jsse.jar

� jaas.jar

� jcert.jar

� jnet.jar

� vbejb.jar

2 Copy the following JAR file from <install_dir>/jms/tibco/clients/java to
client machine:
� tibjms.jar

3 Copy <install_dir>/bin/appclient.config to client machine.

4 Copy <install_dir>/BES/bin/appclient.exe to client machine.

To run the J2EE client using the appclient:

1 Set the PATH to appclient.exe and JDK.

2 Edit the appclient.config to change JAVA_HOME, and lib PATH.

3 Run the J2EE client from <client_application_folder>/client.

Embedding VisiClient Container functionality into an existing
application

As an alternative to deploying and running a client application in the VisiClient
container, it is possible to use a programmatic approach to embed the client
container's functionality into an existing application. In this case, the client
application can be started in a common Java fashion by running a class
implementing the main() method.

To embed the VisiClient container functionality into your application, you need
to call the following method:

public static void com.borland.appclient.Container.init
 (java.io.InputStream deploymentDescriptorSun,
 java.io.InputStream deploymentDescriptorBorland)
throws IllegalArgumentException;

This method will create and populate the "java:comp/env" naming context
based on the information provided in the pair of Sun and Borland deployment
descriptors. The deploymentDescriptorSun and deploymentDescriptorBorland
parameters must represent text XML data corresponding to the deployment

Chapter 12: The Vis iCl ient Container 123

Use of Mani fest f i les

descriptors. An IllegalArgumntException exception is thrown if the data provided
is not recognized as a valid deployment descriptor.

Sample code
This example shows usage of this method:

public static void main (String[] args) {
 . . .
 // load deployment descriptor files
 java.io.FileInputStream ddSun = new
 java.io.FileInputStream("META-INF/application-client.xml");
 java.io.FileInputStream ddBorland = new
 java.io.FileInputStream("META-INF/application-client-borland.xml");
 // initialize client container
 com.borland.appclient.Container.init(ddSun, ddBorland);
 // lookup ejb in JNDI using an ejb-ref
 javax.naming.Context context = new javax.naming.InitialContext();
 Object ref = context.lookup ("java:comp/env/ejb/hello");
 . . .
}

Note Only application client descriptors can be loaded using this method. This
means that all ejb-refs must be resolved or located by specifying the jndi-
name in the Borland descriptor. This cannot be done using the ejb-link in the
Sun descriptor since using ejb-link requires complete knowledge of the whole
application including application and EJB JAR deployment descriptors.

Use of Manifest files
VisiClient container relies on the presence of a manifest file to obtain
information about launching an application. The manifest file should be saved
in the META-INF subdirectory of the client archive. The relevant attributes in
the manifest file for the VisiClient container are:
� The main class to be launched by the container on startup. This is an

application entry point which must be present in the manifest file.
� The classpath of the dependencies of the main class. If the client-jar is self-

contained, or if dependencies are specified using the system CLASSPATH
during application launch, this attribute can be ignored.

Example of a Manifest file

An example of a Manifest file is shown below.

Manifest-Version: 1.0
Main-Class: SortClient
Class-Path:

This example shows the container will execute by loading the main method of
the class specified in the Main-Class attribute of the Manifest file. In this

124 BES Developer ’s Guide

Except ion handl ing

example it is SortClient. The container expects to have a method with the
following signature in this class:

public static void main(String[] args) throws Exception {...}

The container will report an error and exit if it doesn't find the main method.
The client verify utility, which comes with VisiClient, tries to locate a main class
and reports an error if it doesn't find one.

Exception handling
Application client code is responsible for taking care of any exceptions that are
generated during the program execution. Any unhandled exceptions are
caught by the container which will log them and terminate the Java virtual
machine process.

Using resource-reference factory types
The client application deployed in a client container can use the VisiTransact
JDBC connection pooling and Prepared Statement re-use facilities. Refer to
the Deployment, and Transaction chapters of the Borland Enterprise Server
Developer's Guide for details about configuration and deployment. Client
applications in Borland Enterprise Server can use JDBC 2-based datasources.

Note that just like javax.sql.DataSource (which is one of the possible res-ref-
types) VisiClient allows the application to use URL, JMS, and Mail factories as
the resource-ref types.

java.net.url and java_mail.session factories are deployed in the in-process
local JNDI subcontext that resides in the client container virtual machine on
startup. Other res-ref-types like JMS and Mail should be configured and
deployed using the relevant vendor tools for these products.

Other features
Borland Enterprise Server includes a number of extra features in the VisiClient
container in addition to the requirements for the J2EE specification. These
include:
� User Transaction interface: This is available in the java:comp/env name

space and can be looked up using JNDI. It supports transaction
demarcation, and propagation.

� Client Verify Tool: This runs on standalone client JARs or client JARs
embedded in an EAR file. The verify tool enforces the following rules:
� The manifest file in the client JAR has the main class specified.
� The JAR/EAR is valid (it has the correct required manifest entries).

Chapter 12: The Vis iCl ient Container 125

Other features

� ejb-refs are valid (that is, a JNDI name for the target EJB is specified in
the Borland-specific file).

� If ejb-ref is an ejb-link, then the archive should be an EAR file. There
must also be an EJB with the same name as the ejb-link value in the
EAR file.

� Resource references are valid.

Using the Client Verify tool

The following command line demonstrates the use of the Client Verify tool:

iastool -verify -src <srcjar> -role <DEVELOPER| ASSEMBLER| DEPLOYER>

Usage examples of Client Verify tool:

iastool -verify -src sort.jar -role DEVELOPER
iastool -verify -src sort.ear clients/sort_client.jar -role DEVELOPER

For more information see Chapter 29, “iastool command-line utility”, iastool
verify section on the available options.

126 BES Developer ’s Guide

Chapter 13: Caching of Stateful Session Beans 127

C h a p t e r

13
Chapter13Caching of Stateful Session

Beans
The EJB Container supports stateful session enterprise beans using a high-
performance caching architecture based on the Java Session Service (JSS).
There are two pools of objects: the ready pool and the passive pool.
Enterprise beans transition from the ready pool to the passive pool after a
configurable timeout. Transitioning an enterprise bean to the passive pool
stores the enterprise bean's state in a database. Passivation of stateful
sessions exists for two purposes:

1 Maximize memory resources

2 Implement failover

Configuring Borland's JSS implementation (including the setting of properties)
is discussed in Chapter 6, “Java Session Service (JSS) configuration”. This
document explains the use of the properties that control the passivation and
persistence of individual session objects.

Important For documentation updates, go to www.borland.com/techpubs/bes.

Passivating Session Beans
At deployment time, the deployer uses the Borland Enterprise Server's tools to
set a passivation timeout for the EJB Container in a particular Partition. The
container regularly polls active session beans to determine when they are last
accessed. If a session bean has not been accessed during the timeout period,

128 BES Developer ’s Guide

Passivat ing Session Beans

its state is sent to persistent storage and the bean instance is removed from
memory.

Simple Passivation

Passivation timeouts are set at the container-level. You use the property
ejb.sfsd.passivation_timeout to configure the length of time a session bean can
go un-accessed before its state is persisted and its instance removed from
memory. This length of time is specified in seconds. The default value is five
seconds. This property can be set in the partition.xml properties file for the
Partition you are configuring. This file is located in:

<install_dir>/var/domains/base/configurations/<configuration_name>
/ mos/<partition_name>/adm/properties

Edit this file to set the ejb.sfsb.passivation_timeout property.

If you set this property to a non-zero value, you can also set the integer
property ejb.sfsb.instance_max for each deployed session bean in their
deployment descriptors. This property defines the maximum number of
instances of a particular stateful session bean that are allowed to exist in the
EJB container's memory at the same time. If this number is reached and a
new instance of a stateful session needs to be allocated, the EJB container
throws an exception indicating lack of resources. 0 is a special value. It means
no maximum set.

If the maximum number of stateful sessions defined by the
ejb.sfsb.instance_max property is reached, the EJB container blocks a request
for an allocation of a new bean for the time defined by the integer property
ejb.sfsb.instance_max_timeout. The container will then wait for the number to
drop below this value before throwing an exception indicating a lack of
resources. This property is defined in ms (1/1000th of second). 0 is a special
value. It means not to wait and throw an exception indicating lack of resources
immediately.

Aggressive Passivation

One of the key advantages in the use of JSS is its ability to fail over. Several
containers implementing JSS can be configured to use the same persistent
store, allowing them to fail over to each other. Setting up the JSS for failover is
discussed in Chapter 6, “Java Session Service (JSS) configuration”. To
facilitate taking advantage of the JSS failover capability, Borland provides the
option of using aggressive passivation.

Aggressive passivation is the storage of session state regardless of its
timeout. A bean that is set to use aggressive passivation will have its session
state persisted every time it is polled, although its instance will not be removed
from memory unless it times out. In this way, if a container instance fails in a
cluster, a recently-stored version of the bean is available to other containers
using identical JSS instances communicating with the same backend. As in
simple passivation, if the bean times out, it will still be removed from memory.

Chapter 13: Caching of Stateful Session Beans 129

Sessions in secondary s torage

Again, aggressive passivation is set Partition-wide using the boolean property
ejb.sfsb.aggressive_passivation. Setting the property to true (the default) stores
the session's state regardless of whether it was accessed before the the last
passivation attempt. Setting the property to false allows the container to use
only simple passivation. Again, this property is set in the container's properties
file partition.xml located in:

<install_dir>/var/domains/base/configurations/<configuration_name>
/ mos/<partition_name>/adm/properties

Bear in mind that although using aggressive passivation aids in failover, it also
results in a performance hit since the container accesses the database more
often. If you configure the JSS to use a non-native database (that is, you
choose not to use JDataStore), the loss of performance can be even greater.
Be aware of the tradeoff between availability and performance before you
elect to use aggressive passivation.

Sessions in secondary storage
Most sessions are not kept in persistent storage forever after they timeout.
Borland provides a mechanism for removing stored sessions from the
database after a discrete period of time known as the keep alive timeout. The
keep alive timeout specifies the minimum amount of time in seconds to persist
a passivated session in stateful storage. The actual amount of time it is kept in
the database can vary, since it is not wise from a performance standpoint to
constantly poll the database for unused sessions. The actual amount of time a
session is persisted is at least the value of the keep alive timeout and not more
than twice the value of the keep alive timeout.

Unlike the other passivation properties discussed above, the keep alive
timeout can be specified either Partition-wide and/or on the individual session
bean. If you set a keep alive timeout for a specific bean, its value will take
precedence over any container-wide values. If you do not specify a keep alive
timeout for a particular bean, it will use the Partition-wide value.

Setting the keep alive timeout in Containers

The Borland JSS implementation uses the property
ejb.sfsb.keep_alive_timeout to specify the amount of time (in seconds) to
maintain a passivated session in stateful storage. The default value is 86,400
seconds, or twenty-four hours. Like the other properties discussed above, you
set the keep alive timeout in the container properties file:

<install_dir>/var/domains/base/configurations/<configuration_name>
/ mos/<partition_name>/adm/properties

Remember that any value you specify here can be overridden by setting a
keep alive timeout for a specific session bean.

130 BES Developer ’s Guide

Sessions in secondary s torage

Setting the keep alive timeout for a particular session bean

You may wish to have certain session beans hosted in your container have
their passivated states stored for greater or lesser periods of time than others.
You can use the <timeout> element in the ejb-borland.xml file to set the keep
alive timeout for a particular bean. The DTD element for a session bean
provides this element:

<!ELEMENT session (ejb-name, bean-home-name?, bean-local-home-name?,
timeout?,
ejb-ref*, elb-local-ref*, resource-ref*, resource-env-ref*, property*)>

For example, let's say we have a simple stateful session bean called
personInfo collecting a bit of personal information for simple message forum.
We might be inclined to keep this session highly-available, without aggressive
passivation, and have little need to store it in our database for more than a few
minutes if it passivates. Since the rest of our session beans need to be kept in
stateful storage a bit longer if they passivate, we'll use the Borland-specific
deployment descriptor for the bean's JAR to set a shorter keep alive timeout,
say 300 seconds (five minutes). In our ejb-borland.xml deployment descriptor,
we'd have the following:

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>personInfo</ejb-name>
 <timeout>300</timeout>
 </session>
 </enterprise-beans>
</ejb-jar>

This value will override any values we entered in the ejbcontainer.properties
file while allowing other hosted sessions to use the default value found there.

Chapter 14: Ent i ty Beans and CMP 1.1 in Bor land Enterpr ise Server 131

C h a p t e r

14
Chapter14Entity Beans and CMP 1.1 in

Borland Enterprise Server
Here we'll examine how entity beans are deployed in the Borland Enterprise
Server and how persistence of entities can be managed. This is not, however,
an introduction to entity beans and should not be treated as such. Rather, this
document will explore the implications of using entity beans within Borland
Partitions. We'll discuss descriptor information, persistence options, and other
container-optimizations. Information on the Borland-specific deployment
descriptors and implementations of Container-Managed Persistence (CMP)
will be documented in favor of general EJB information that is generally
available from the J2EE Specifications from Sun Microsystems.

Important For documentation updates, go to www.borland.com/techpubs/bes.

Entity Beans
Entity beans represent a view of data stored in a database. Entity beans can
be fine-grained entities mapping to a single table with a one-to-one
correspondence between entity beans and table rows. Or, entity beans can
span multiple tables and present data independent of the underlying database
schema. Entity beans can have relationships with one another, can be queried
for data by clients, and can be shared among different clients.

Deploying your Entity Bean to one of the Borland Enterprise Server Partitions
requires that it be packaged as a part of a JAR. The JAR must include two
descriptor files: ejb-jar.xml and the proprietary ejb-borland.xml file. The ejb-

132 BES Developer ’s Guide

Container-managed pers is tence and Relat ionships

jar.xml descriptor is fully-documented at the Sun Java Center. The DTD for
ejb-borland.xml is reproduced in this document and its usage documented
here. The Borland proprietary descriptor contains a number of properties that
can be set to optimize container performance and manage the persistence of
your entity beans.

Container-managed persistence and Relationships
Borland's EJB container provides tools that generate the database access
calls at the time that the entity bean is deployed; that is, when the entity bean
is installed into a Partition. The tools use the deployment descriptors to
determine the instance fields for which they must generate database access
calls. Instead of coding the database access directly in the bean, the bean
provider of a container-managed entity bean must specify in the deployment
descriptor those instance fields for which the container tools must generate
access calls. The container has sophisticated deployment tools capable of
mapping the fields of an entity bean to its data source.

Container-managed persistence has many advantages over bean-managed
persistence. It is simpler to code because bean provider does not have to
code the database access calls. Handling of persistence can also be changed
without having to modify and recompile the entity bean code. The Deployer or
Application Assembler can do this by modifying the deployment descriptor
when deploying the entity bean. Shifting the database access and persistence
handling to the container not only reduces the complexity of code in the bean,
it also reduces the scope of possible errors. The bean provider can focus on
debugging the business logic of the bean rather than the underlying system
issues.

The EJB 2.0 specification allows entity beans that use container-managed
persistence to also have container-managed relationships among themselves.
The container automatically manages bean relationships and maintain the
referential integrity of these relationships. This differs from the EJB 1.1
specification, which only allowed you to expose a bean's instance state
through its remote interface.

Just as you defined container-managed persistence fields in a bean's
deployment descriptor, you can now define container-managed relationship
fields in the deployment descriptor. The container supports relationships of
various cardinalities, including one-to-one, one-to-many, and many-to-many.

Implementing an entity bean
Implementing an entity bean follows the rules defined in the EJB 1.1 and 2.0
specifications. You must implement a home interface, a remote interface or a
local interface (if using the 2.0 container-managed persistence), and the entity
bean implementation class. The entity bean class must implement the

Chapter 14: Ent i ty Beans and CMP 1.1 in Bor land Enterpr ise Server 133

Implement ing an ent i ty bean

methods that correspond to those declared in the remote or local and home
interfaces.

Packaging Requirements

Like session beans, entity beans can expose their methods with their
interfaces. Each Entity Bean must also have corresponding entries in its JAR's
deployment descriptors. The standard deployment descriptor, ejb-jar.xml
contains essentially three different types of deployment information. These
are:

1 General Bean Information: This corresponds to the <enterprise-beans>
elements found in the descriptor file and is used for all three types of beans.
This information also includes information on the bean's interfaces and
class, security information, environmental information, and even query
declarations.

2 Relationships: This corresponds to the <relationships> elements found in
the descriptor file and applies to entity beans using CMP only. This is where
container-managed relationships are spelled out.

3 Assembly Information: This corresponds to the <assembly-descriptor>
element which explains how the beans interact with the application as a
whole. Assembly information is broken down into four categories:
� Security Roles: simple definitions of security roles used by the

application. Any security role references you defined for your beans
must also be defined here.

� Method Permissions: each method of each bean can have certain rules
about their execution. These are set here.

� Container-Transactions: this specifies the transaction attributes as per
the EJB 2.0 specification for each method participating in a transaction

� Exclude List: methods to be uncalled by anyone

All of these can be accessed through the Deployment Descriptor Editor. You
should refer to the EJB 2.0 specification for DTD information and the proper
use of the descriptor files.

Entity Bean Primary Keys

Each Entity Bean must have a unique primary key that used to identify the
bean instance. The primary key can be represented by a Java class that must
be a legal value type in RMI-IIOP. Therefore, it extends the
java.io.Serializable interface. It must also provide an implementation of the
Object.equals(Object other) and Object.hashCode() methods.

Normally, the primary key fields of entity beans must be set in the ejbCreate()
method. The fields are then used to insert a new record into the database.
This can be a difficult procedure, however, bloating the method, and many
databases now have built-in mechanisms for providing appropriate primary

134 BES Developer ’s Guide

Implement ing an ent i ty bean

key values. A more elegant means of generating primary keys is for the user
to implement a separate class that generates primary keys. This class can
also implement database-specific programming logic for generating primary
keys.

Generating primary keys from a user class
With enterprise beans, the primary key is represented by a Java class
containing the unique data. This primary key class can be any class as long as
that class is a legal value type in RMI-IIOP, meaning it extends the
java.io.Serializable interface. It must also provide an implementation of the
Object.equals(Object other) and Object.hashCode() methods, two methods
which all Java classes inherit by definition.

The primary key class can be specific to an particular entity bean class. That
is, each entity bean can define its own primary key class. Or, multiple entity
beans can share the same primary key class.

The bank application uses two different entity beans to represent savings and
checking accounts. Both types of accounts use the same field to uniquely
identify a particular account record. In this case, they both use the same
primary key class, AccountPK, to represent the unique identifier for either type
of account. The following code shows the definition of the account primary key
class:

public class AccountPK implements java.io.Serializable {
 public String name;
 public AccountPK() {}
 public AccountPK(String name) {
 this.name = name;
 }
}

Generating primary keys from a custom class
To generate primary keys from a custom class, you must write a class that
implements the com.borland.ejb.pm.PrimaryKeyGenerationListener interface.

Support for composite keys
Primary keys are not restricted to a single column. Sometimes, a primary key
is composed of more than one column. In a more realistic example, a course
is not identified merely by its name. Instead, the primary key for each course
record can be the department in which the course is offered and the course
number itself. The department code and the course number are separate
columns in the Course table. A select statement that retrieves a particular
course, or all courses in which a student is enrolled, must use the entire
primary key; that is, it must consider both columns of the primary key.

The Borland CMP engine supports composite primary keys. You can use keys
with multiple columns in the where clause of a select statement. You can also
select all fields of a compound key in the select clause portion of the
statement.

Chapter 14: Ent i ty Beans and CMP 1.1 in Bor land Enterpr ise Server 135

Conta iner-Managed Pers is tence in Bor land Enterprise Server

For the where clause, specify multiple field names in the same manner that
you specify single field names. Use "and" to separate each field. The format is

<column> = :<parameter>[ejb/<entity bean>]

Note that the equal (=) sign is one of several possible notations. You could
also specify greater than (>), less than (<), greater than or equal (>=), or less
than or equal (<=). The colon (:) notation indicates parameter substitution. The
parameter field is specified with the bean name first, followed by a dot (.), then
the bean attribute.

For example, to find all students taking Art 205, Renaissance Art where
classes are identified by the department (Art) and the course number (205),
you might have the following select statement defined for the finder method
findByCourse():

SELECT sname FROM Enrollment WHERE course_department = :c.department[ejb/
Course] AND
 course_number = :c.number[ejb/Course]

You can also have the select statement return multiple fields from a compound
key. In the select clause of the select statement, list the fields, separated by
commas. Note that you use the same dot notation as for parameters; that is,
specify the entity bean name, followed by a dot (.), then the attribute name.
For example, the finder method findByStudent() can have the following select
statement:

SELECT c.department, c.number FROM Entrollment WHERE student_name = :s

Reentrancy

By default, entity beans are not reentrant. When a call within the same
transaction context arrives at the entity bean, it causes the exception
java.rmi.RemoteException to be thrown.

You can declare an entity bean reentrant in the deployment descriptor;
however, take special care in this case. The critical issue is that a container
can generally not distinguish between a (loopback) call within the same
transaction and a concurrent invocation (in the same transaction context) on
that same entity bean.

When the entity bean is marked reentrant, it is illegal to allow a concurrent
invocation within the same transaction context on the bean instance. It is the
programmer's responsibility to ensure this rule.

Container-Managed Persistence in Borland Enterprise Server
The Borland Enterprise Server's EJB Container is fully J2EE 1.3 compliant.
The bean provider designs persistence schemas for their entity beans,
determined the methods for accessing container-managed fields and
relationships, and defines these in the beans' deployment descriptor. The

136 BES Developer ’s Guide

Container-Managed Pers is tence in Bor land Enterpr ise Server

deployer maps this persistence schema to the database and creates any other
necessary classes for the beans' maintenance.

Information on J2EE 1.3 entity beans and CMP 2.0 is found in the Chapter 16,
“Using BES Properties for CMP 2.x”.

BES CMP engine's CMP 1.1 implementation

While you don't have to be an expert on all aspects of the Borland CMP
engine to use it effectively, it is helpful to have some knowledge of certain
areas. This section provides information on the areas that users of the CMP
engine should understand. In particular, it focuses on the deployment
descriptor file and the XML statements contained within the file.

Before continuing, there are some key things to note in the implementation of
an entity bean that uses 1.1 container-managed persistence:
� The entity bean has no implementations for finder methods. The EJB

Container provides the finder method implementations for entity beans with
container-managed persistence. Rather than providing the implementation
for finder methods in the bean's class, the deployment descriptor contains
information that enables the container to implement these finder methods.

� The entity bean declares all fields public that are managed by the container
for the bean. The CheckingAccount bean declares name and balance to be
public fields.

� The entity bean class implements the seven methods declared in the
EntityBean interface: ejbActivate(), ebjPassivate(), ejbLoad(), ejbStore(),
ejbRemove(), setEntityContext(), and unsetEntityContext(). However, the
entity bean is required to provide only skeletal implementations of these
methods, though it is free to add application-specific code where
appropriate. The CheckingAccount bean saves the context returned by
setEntityContext() and releases the reference in unsetEntityContext().
Otherwise, it adds no additional code to the EntityBean interface methods.

� There is an implementation of the ejbCreate() method (because this entity
bean allows callers of the bean to create new checking accounts), and the
implementation initializes the instance's two variables, account name and
balance amount, to the argument values. The ejbCreate() method returns a
null value because, with container-managed persistence, the container
creates the appropriate reference to return to the client.

� The entity bean provides the minimal implementation for the ejbPostCreate()
method, though this method could have performed further initialization work
if needed. For beans with container-managed persistence, it is sufficient to
provide just the minimal implementation for this method because
ejbPostCreate() serves as a notification callback. Note that the same rule
applies to the methods inherited from the EntityBean interface as well.

Chapter 14: Ent i ty Beans and CMP 1.1 in Bor land Enterpr ise Server 137

Conta iner-Managed Pers is tence in Bor land Enterprise Server

Providing CMP metadata to the Container
According to the EJB Specification, the deployer must provide CMP metadata
to the EJB container. The Borland Container captures the CMP-relevant
metadata in the XML deployment descriptor. Specifically, the Borland
Container uses the vendor-specific portion of the deployment descriptor for
the CMP metadata.

This section illustrates some of the information that needs to be provided for
container-managed finder methods, particularly if you are constructing
container-managed finder methods at the command line level. Because it is
not an exhaustive reference, you should refer to the DTD of the deployment
descriptor for the detailed syntax. Look for the syntax for the finder methods
and Object-Relation (OR) mapping metadata.

Constructing finder methods
When you construct a finder method, you are actually constructing an SQL
select statement with a where clause. The select statement includes a clause
that states what records or data are to be found and returned. For example,
you might want to find and return checking accounts in a bank. The where
clause of the select statement sets limits on the selection process; that is, you
might want to find only those checking accounts with a balance greater than
some specified amount, or accounts with a certain level of activity per month.
When the Container uses container-managed persistence, you must specify
the terms of the where clause in the deployment descriptor.

For example, suppose you have a finder method called
findAccountsLargerThan(int balance) and you are using container-managed
persistence. This finder method attempts to find all bank accounts with a
balance greater than the specified value. When the Container executes this
finder method, it actually executes a select statement whose where clause
tests the account balances against the int value passed as a parameter to the
method. Because we're using container-managed persistence, the
deployment descriptor needs to specify the conditions of the where clause;
otherwise, the Container does not know how to construct the complete select
statement.

The value of the where clause for the findAccountsLargerThan(int
balance)method is "balance > :balance". In English, this translates to: "the value
of the balance column is greater than the value of the parameter named
balance." (Note that there is only one argument to the finder method, an int
value.)

The default container-managed persistence implementation supports this
finder method by constructing the complete SQL select statement, as follows:

select * from Accounts where ? > balance

The CMP engine then substitutes "?" with the int parameter. Lastly, the
engine converts the result set into either an Enumeration or Collection of primary
keys, as required by the EJB Specification.

It is possible to inspect the various SQL statements that the CMP
implementation constructs. To do this, enable the EJBDebug flag on the

138 BES Developer ’s Guide

Container-Managed Pers is tence in Bor land Enterpr ise Server

container. When that flag is enabled, it prints the exact statements constructed
by the Container.

While other EJB Container products use code generation to support CMP, the
Borland Container does not use code generation because it has serious
limitations. For example, code generation makes it difficult to support a "tuned
update" feature, because of the great number of different update statements
to container-managed fields that are required.

Constructing the where clause
The where clause is a necessary part of select statements when you want to
delimit the extent of the returned records. Because the where clause syntax can
be fairly complex, you must follow certain rules in the XML deployment
descriptor file so that the EJB Container can correctly construct this clause.

To begin with, you are not obligated to use the literal "where" in your <where-
clause>. You can construct a where clause without this literal and rely on the
Container to supply it. However, the Container only does this if the <where-
clause> is not an empty string; it leaves empty strings empty. For example, you
could define a where clause as either:

<where-clause> where a = b </where-clause>

or:

<where-clause> a = b </where-clause>

The Container converts a = b to the same where clause, where a = b. However,
it leaves unmodified an empty string defined as <where-clause> "" </where-
clause>.

Note The empty string makes it easy to specify the findAll() method. When you
specify just an empty string, the Container construes that to mean the
following:

select [values] from [table];

Such a select statement would return all values from a particular table.

Parameter substitution
Parameter substitution is an important part of the where clause. The Borland
EJB Container does parameter substitution wherever it finds the standard
SQL substitution prefix colon (:). Each parameter for substitution corresponds
to a name of a parameter in the finder specification found in the XML
descriptor.

For example, in the XML deployment descriptor, you might define the following
finder method which takes a parameter balance (note that balance is preceded
by a colon):

<finder>
 <method-signature>findAccountsLargerThan(float balance)</method-
signature>
 <where-clause>balance > :balance</where-clause>
</finder>

Chapter 14: Ent i ty Beans and CMP 1.1 in Bor land Enterpr ise Server 139

Conta iner-Managed Pers is tence in Bor land Enterprise Server

The Container composes a SQL select statement whose where clause is:

balance > ?

Note that the :balance parameter in the deployment descriptor becomes a
question mark (?) in the equivalent SQL statement. When invoked, the
Container substitutes the value of the parameter :balance for the ? in the where
clause.

Compound parameters
The Container also supports compound parameters; that is, the name of a
table followed by a column within the table. For this, it uses the standard dot
(.) syntax, where the table name is separated from the column name by a dot.
These parameters are also preceded by a colon.

For example, the following finder method has the compound parameters
:address.city and :address.state:

<finder>
 <method-signature>findByCity(Address address)</method-signature>
 <where-clause>city = :address.city AND state = :address.state</where-
clause>
</finder>

The where clause uses the city and state fields of the address compound object
to select particular records. The underlying Address object could have Java
Beans-style getter methods that correspond to the attributes city and state.
Or, alternatively, it could have public fields that correspond to the attributes.

Entity beans as parameters
An entity bean can also serve as a parameter in a finder method. You can use
an entity bean as a compound type. To do so, you must tell the CMP engine
which field to use from the entity bean's passed reference to the SQL query. If
you do not use the entity bean as a compound type, then the Container
substitutes the bean's primary key in the where clause.

For example, suppose you have a set of OrderItems entity beans associated
with an Order entity object. You might have the following finder method:

java.util.Collection OrderItemHome.findByOrder(Order order);

This method returns all OrderItems associated with a particular Order. The
deployment descriptor entry for its where clause would be:

<finder>
 <method-signature>findByOrder(Order order)</method-signature>
 <where-clause>order_id = :order[ejb/orders]</where-clause>
</finder>

To produce this where clause, the Container substitutes the primary key of the
Order object for the string :order[ejb/orders]. The string between the brackets
(in this example, ejb/orders) must be the <ejb-ref> corresponding to the home
of the parameter type. In this example, ejb/orders corresponds to an <ejb-ref>
pointing to OrderHome.

140 BES Developer ’s Guide

Container-Managed Pers is tence in Bor land Enterpr ise Server

When you use an EJBObject as a compound type (using the dot notation), you
are actually accessing the underlying get method for the field in the <finder>
definition. For example, the following in the <finder> definition:

order_id = :order.orderId

calls the getOrderId() method on the order EJBObject and uses the result of the
call in the selection criterion.

Specifying relationships between entities
Relational databases (RDBMS) permit records in one table to be associated
with records in another table. The RDBMS accomplishes this using foreign
keys; that is, a record in one table maintains a field (or column) that is a
foreign key or reference to (usually) the primary key of a related record in
another table. You can map these same references among entity beans.

For the CMP engine to map references among entity beans, you use an <ejb-
link> entry in the deployment descriptor. The <ejb-link> maps field names to
their corresponding entities. The CMP engine uses this information in the
deployment descriptor to locate the field's associated entity. (Refer to the pigs
example for an illustration of the <ejb-link> entry.)

Any container-managed persistence field can correspond to a foreign key field
in the corresponding table. When you look at the entity bean code, these
foreign key CMP fields appear as object references.

For example, suppose you have two database tables, an address table and a
country table. The address table contains a reference to the country table. The
SQL create statements for these tables might look as shown below.

create table address (
 addr_id number(10),
 addr_street1 varchar2(40),
 addr_street2 varchar(40),
 addr_city varchar(30),
 addr_state varchar(20),
 addr_zip varchar(10),
 addr_co_id number(4) * foreign key *
);
create table country (
 co_id number(4),
 co_name varchar2(50),
 co_exchange number(8, 2),
 co_currency varchar2(10)
);

Note that the address table contains the field addr_co_id, which is a foreign key
referencing the country table's primary key field, co_id.

There are two classes that represent the entities which correspond to these
tables, the Address and Country classes. The Address class contains a direct
pointer, country, to the Country entity. This direct pointer reference is an
EJBObject reference; it is not a direct Java reference to the implementation
bean.

Chapter 14: Ent i ty Beans and CMP 1.1 in Bor land Enterpr ise Server 141

Conta iner-Managed Pers is tence in Bor land Enterprise Server

Now examine the code for both classes:

//Address Class
public class Address extends EntityBean {
 public int id;
 public String street1;
 public String street1;
 public String city;
 public String state;
 public String zip;
 public Country country; // this is a direct pointer to the Country
}
//Country Class
public class Country extends EntityBean {
 public int id;
 public String name;
 public int exchange;
 public String currency;
}

In order for the Container to resolve the reference from the Address class to the
Country class, you must specify information about the Country class in the
deployment descriptor. Using the <ejb-link> entry in the deployment
descriptor, you instruct the Container to link the reference to the field
Address.country to the JNDI name for the home object, CountryHome. (Look at the
pigs example for a more detailed explanation.) The container optimizes this
cross-entity reference; because of the optimization, using the cross reference
is as fast as storing the value of the foreign key.

However, there are two important differences between using a cross reference
and storing the foreign key value:
� When you use a cross reference pointer to another entity, you do not have

to call the other entity's home object findByPrimaryKey() method to retrieve
the corresponding object entity. Using the above example as an illustration,
the Address.country pointer to the Country object lets you retrieve the country
object directly. You do not have to call
CountryHome.findByPrimaryKey(address.country) to get the Country object that
corresponds to the country id.

� When you use a cross reference pointer, the state of the referenced entity
is only loaded when you actually use it. It is not automatically loaded when
the entity containing the pointer is loaded. That is, merely loading in an
Address object does not actually load in a Country object. You can think of the
Address.country field as a "lazy" reference, though when the underlying
object is actually used does a "lazy" reference load in its corresponding
state. (Note that this "lazy" behavior is a part of the EJB model.) This facet
of the EJB model results in the decoupling of the life cycle of Address.country
from the life cycle of the Address bean instance itself. According to the
model, Address.country is a normal entity EJBObject reference; thus, the
state of Address.country is only loaded when and if it is used. The Container
follows the EJB model and controls the state of AddressBean.country as it
does with any other EJBObject.

142 BES Developer ’s Guide

Sett ing Proper t ies

Container-managed field names
The Borland Container has changed the container-managed persistent field
names so that they are more Java friendly. SQL column names often prepend
a shortened form of the table name, followed by an underscore, to each
column name. For example, in the address table, there is a column for the city
called addr_city. The full reference to this column is address.addr_city. With the
Borland Container, this maps to the Java field Address.city, rather than the
more redundant and more awkward Address.addr_city.

You can achieve this Java-friendly column-to-field-name mapping using the
deployment descriptor. While this section shows you how to manually edit the
deployment descriptor, it is best to use the Deployment Descriptor Editor GUI
to accomplish this. See the Management Console User’s Guide, Using the
Deployment Descriptor Editor section for instructions on using the GUI
screens.

Should you choose to manually edit the deployment descriptor, use the <env-
entry-name>, <env-entry-type>, and <env-entry-value> subtags within the <env-
entry> tag. Place the more friendly Java field name in the <env-entry-name> tag,
noting that it is referencing a JDBC column. Put the type of the field in the
<env-entry-type> tag. Lastly, place the actual SQL column name in the <env-
entry-value> tag. The following deployment descriptor code segment illustrates
this:

<env-entry>
 <env-entry-name>ejb.cmp.jdbc.column:city</env-entry-name>
 <env-entry-type>String</env-entry-type>
 <env-entry-value>addr_city</env-entry-value>
</env-entry>

Setting Properties
Most properties for Enterprise JavaBeans can be set in their deployment
descriptors. The Borland Deployment Descriptor Editor (DDEditor) also allows
you to set properties and edit descriptor files. Use of the Deployment
Descriptor Editor is described in the Borland Enterprise Server User's Guide.
Use properties in the deployment descriptor to specify information about the
entity bean's interfaces, transaction attributes, and so forth, plus information
that is unique to an entity bean. In addition to the general descriptor
information for entity beans, here are also three sets of properties that can be
set to customize CMP implementations, entity properties, table properties, and
column properties. Entity properties can be set either by the EJB Designer
Tab in the Deployment Descriptor Editor or in the XML directly.

Using the Deployment Descriptor Editor

You can use the Deployment Descriptor Editor, which is part of the Borland
Enterprise Server AppServer Edition, to set up all of the container-managed
persistence information. You should refer to the Borland Enterprise Server

Chapter 14: Ent i ty Beans and CMP 1.1 in Bor land Enterpr ise Server 143

Sett ing Propert ies

User's Guide for complete information on the use of the Deployment
Descriptor Editor and other related tools.

J2EE 1.2 Entity Bean using BMP or CMP 1.1

Descriptor Element
Navigation Tree Node/
Panel Name DDEditor Tab

Entity Bean name Bean General

Entity Bean class Bean General

Home Interface Bean General

Remote Interface Bean General

Home JNDI Name Bean General

Persistence Type (CMP or
BMP)

Bean General

Primary Key Class Bean General

Reentrancy Bean General

Icons Bean General

Environment Entries Bean Environment

EJB References to other
Beans

Bean EJB References

EJB Links Bean EJB References

Resource References to
data objects/connection
factories

Bean Resource References

Resource Reference type Bean Resource References

Resource Reference
Authentication Type

Bean Resource References

Security Role References Bean Security Role References

Entity Properties Bean Properties

Container Transactions Bean:Container
Transactions

Container Transactions

Transactional Method Bean:Container
Transactions

Container Transactions

Transactional Method
Interface

Bean:Container
Transactions

Container Transactions

Transactional Attribute Bean:Container
Transactions

Container Transactions

Method Permissions Bean:Method Permissions Method Permissions

CMP Description Bean:CMP1.1 CMP 1.1

CMP Tables Bean:CMP1.1 CMP 1.1

Container-Managed Fields
Description

Bean:CMP1.1 CMP 1.1

Finders Bean:CMP1.1 Finders

Finder Method Bean:CMP1.1 Finders

144 BES Developer ’s Guide

Sett ing Proper t ies

Container-managed data access support

For container-managed persistence, the Borland EJB Container supports all
data types supported by the JDBC specification, plus some other types
beyond those supported by JDBC.

The following table shows the basic and complex types supported by the
Borland EJB Container:

Keep in mind that the Borland Container supports classes implementing the
java.io.Serializable interface, such as Hashtable and Vector. The container
supports other data types, such as Java collections or third party collections,
because they also implement java.io.Serializable. For classes and data types
that implement the Serializable interface, the Container merely serializes their
state and stores the result into a BLOB. The Container does not do any "smart"
mapping on these classes or types; it just stores the state in binary format.
The Container's CMP engine observes the following rule: the engine serializes
as a BLOB all types that are not one of the explicitly supported types.

In this context, the Container follows the JDBC specification: a BLOB is the type
to which LONGVARBINARY maps. (For Oracle, this is LONG RAW.)

Using SQL keywords
The CMP engine for the Borland Container can handle all SQL keywords that
comply with the SQL92 standard. However, you should keep in mind that
vendors frequently add their own keywords. For example, Oracle uses the
keyword VARCHAR2. If you want to ensure that the CMP engine can handle
vendor keywords that may differ from the SQL standard, set up an
environment property in the deployment descriptor that maps the CMP field
name to the column name. By using this sort of environment property, you do
not have to modify your code.

Finder WHERE Clause Bean:CMP1.1 Finders

Finder Load State option Bean:CMP1.1 Finders

Basic types: boolean Boolean byte Byte char Character

double Double float Float int Integer

long Long short Short String
java.sql.Date

BigDecimal
java.util.Date

byte[] java.sql.Time
java.sql.TimeStamp

Complex types: Any class implementing java.io.Serializable, such as
Vector and Hashtable

Other entity bean references

Descriptor Element
Navigation Tree Node/
Panel Name DDEditor Tab

Chapter 14: Ent i ty Beans and CMP 1.1 in Bor land Enterpr ise Server 145

Sett ing Propert ies

For example, suppose you have a CMP field called "select". You can use the
following environment property to map "select" to a column called "SLCT", as
shown below.

<cmp-info>
 <database-map>
 <table>Data</table>
 <column-map>
 <field-name>select</field-name>
 <column-name>SLCT</column-name>
 </column-map>
 </database-map>
</cmp-info>

Using null values
It is possible that your database values can contain SQL null values. If so, you
must map them to fields whose Java data types are permitted to contain Java
null values. Typically, you do this by using Java types instead of primitive
types. Thus, you use a Java Integer type rather than a primitive int type, or a
Java Float type rather than a primitive float type.

Establishing a database connection
You must specify a DataSource so that the CMP engine can open a database
connection. The DataSource defines the information necessary for
establishing a database connection, such as username and password. Define
a DataSource and then use a resource-ref to refer to the DataSource in the
XML deployment descriptor for the bean. The CMP engine can then use the
DataSource to access the database via JDBC.

At the point in the vendor-specific XML file where you provide the jndi binding
for the resource-ref, add the element

<cmp-resource>True</cmp-resource>

For cases where the entity bean declares only one resource-ref, you do not
need to provide the above XML element. When the entity bean has only one
resource-ref, the Borland Container knows to automatically choose that one
resource as the cmp-resource.

Container-created tables
You can instruct the Borland EJB Container to automatically create tables for
container-managed entities based on the entity's container-managed fields.
Because table creation and data type mappings vary among vendors, you
must specify the JDBC database dialect in the deployment descriptor to the
Container. For all databases (except for JDataStore) if you specify the dialect,
then the Container automatically creates tables for container-managed entities
for you. The Container will not create these tables unless you specify the
dialect.

146 BES Developer ’s Guide

Sett ing Proper t ies

However, the Container can detect the dialect from the URL for the
JDataStore database. Thus, for JDataStore, the Container will create these
tables regardless of whether you explicitly specify the dialect.

The following table shows the names or values for the different dialects (case
is ignored for these values):

Mapping Java types to SQL types
When you develop an enterprise bean for an existing database, you must map
the SQL data types specified in the database schema to Java programming
language data types.

The Borland EJB Container follows the JDBC rules for mapping Java
programming language types to SQL types. JDBC defines a set of generic
SQL type identifiers that represent the most commonly used SQL types. You
must use these default JDBC mapping rules when you develop an enterprise
bean to model an existing database table. (These types are defined in the
class java.sql.Types.)

The following table shows the default SQL to Java type mapping as defined by
the JDBC specification.

Database Name Dialect Value

JDataStore jdatastore

Oracle oracle

Sybase sybase

MSSQLServer mssqlserver

DB2 db2

Interbase interbase

Informix informix

No database none

Java type JDBC SQL type

boolean/Boolean BIT

byte/Byte TINYINT

char/Character CHAR(1)

double/Double DOUBLE

float/Float REAL

int/Integer INTEGER

long/Long BIGINT

short/Short SMALLINT

String VARCHAR

java.math.BigDecimal NUMERIC

byte[] VARBINARY

java.sql.Date DATE

java.sql.Time TIME

Chapter 14: Ent i ty Beans and CMP 1.1 in Bor land Enterpr ise Server 147

Sett ing Propert ies

Automatic table mapping

The Borland EJB container has the capability to automatically map Java types
defined in the enterprise bean code to database table types. However, while it
may create these tables automatically, it does not necessarily use the most
optimal mapping approach. In fact, automatically generating these mappings
and tables is more of a convenience for developers.

The Borland-generated tables are not optimized for performance. Often, they
overuse database resources. For example, the container maps a Java String
field to the corresponding SQL VARCHAR type. However, the mapping is not
sensitive to the actual length of the Java field, and so it maps all string fields to
the maximum VARCHAR length. Thus, it might map a two-character Java String to
a VARCHAR(2000) column.

In a production situation, it is preferable for database administrators (DBA) to
create the tables and do the type mapping. The DBA can override the default
mappings and produce a table optimized for performance and use of database
resources.

While all relational databases implement SQL types, there may be significant
variations in how they implement these types. Even when they support SQL
types with the same semantics, they may use different names to identify these
types. For example, Oracle implements a Java boolean as aNUMBER(1,0), while
Sybase implements it as a BIT and DB2 implements it as a SMALLINT.

When the Borland EJB Container creates the database tables for your
enterprise beans, it automatically maps entity bean fields and database table
columns. The container must know how to properly specify the SQL types so
that it can correctly create the tables in each supported database. As a result,
the EJB Container maps some Java types differently, depending on the
database in use. The following table shows the mapping for Oracle, Sybase/
MSSQL, and DB2:

java.sql.Timestamp TIMESTAMP

java.util.Date TIMESTAMP

java.io.Serializable VARBINARY

Java types Oracle Sybase/MSSQL DB2

boolean/Boolean NUMBER(1,0) BIT SMALLINT

byte/Byte NUMBER(3,0) TINYINT SMALLINT

char/Character CHAR(1) CHAR(1) CHAR(1)

double/Double NUMBER FLOAT FLOAT

float/Float NUMBER REAL REAL

int/Integer NUMBER(10,0) INT INTEGER

long/Long NUMBER(19,0) NUMERIC(19,0) BIGINT

short/Short NUMBER(5,0) SMALLINT SMALLINT

Java type JDBC SQL type

148 BES Developer ’s Guide

Sett ing Proper t ies

The following table shows the Java to SQL type mapping for JDatastore,
Informix, and Interbase:

String VARCHAR(2000) TEXT VARCHAR(2000)

java.math.BigDecima
l

NUMBER(38) DECIMAL(28,28) DECIMAL

byte[] LONG RAW IMAGE BLOB

java.sql.Date DATE DATETIME DATE

java.sql.Time DATE DATETIME TIME

java.sql.Timestamp DATE DATETIME TIMESTAMP

java.util.Date DATE DATETIME TIMESTAMP

java.io.Serializabl
e

RAW(2000) IMAGE BLOB

Java types JDatastore Informix Interbase

boolean/Boolean BOOLEAN SMALLINT SMALLINT

byte/Byte SMALLINT SMALLINT SMALLINT

char/Character CHAR(1) CHAR(1) CHAR(1)

double/Double DOUBLE FLOAT DOUBLE PRECISION

float/Float FLOAT SMALLFLOAT FLOAT

int/Integer INTEGER INTEGER INTEGER

long/Long LONG DECIMAL(19,0) NUMBER(15,0)

short/Short SMALLINT SMALLINT SMALLINT

String VARCHAR VARCHAR(2000) VARCHAR(2000)

java.math.BigDecima
l

NUMERIC DECIMAL(32) NUMBER(15,15)

byte[] OBJECT BYTE BLOB

java.sql.Date DATE DATE DATE

java.sql.Time TIME DATE DATE

java.sql.Timestamp TIMESTAMP DATE DATE

java.util.Date TIMESTAMP DATE DATE

java.io.Serializabl
e

OBJECT BYTE BLOB

Java types Oracle Sybase/MSSQL DB2

Chapter 15: Ent i ty Beans and Table Mapping for CMP 2.0 149

C h a p t e r

15
Chapter15Entity Beans and Table Mapping

for CMP 2.0
Here we'll examine how entity beans are deployed in the Borland Enterprise
Server and how persistence of entities can be managed. This is not, however,
an introduction to entity beans and should not be treated as such. Rather, this
document will explore the implications of using entity beans within Borland
Partitions. We'll discuss descriptor information, persistence options, and other
container-optimizations. Information on the Borland-specific deployment
descriptors and implementations of Container-Managed Persistence (CMP)
will be documented in favor of general EJB information that is generally
available from the J2EE Specifications from Sun Microsystems.

Important For documentation updates, go to www.borland.com/techpubs/bes.

Entity Beans
Entity beans represent a view of data stored in a database. Entity beans can
be fine-grained entities mapping to a single table with a one-to-one
correspondence between entity beans and table rows. Or, entity beans can
span multiple tables and present data independent of the underlying database
schema. Entity beans can have relationships with one another, can be queried
for data by clients, and can be shared among different clients.

Deploying your Entity Bean to one of the Borland Enterprise Server Partitions
requires that it be packaged as a part of a JAR. The JAR must include two
descriptor files: ejb-jar.xml and the proprietary ejb-borland.xml file. The ejb-

150 BES Developer ’s Guide

Container-managed pers is tence and Relat ionships

jar.xml descriptor is fully-documented in the J2EE 1.3 Specification. The DTD
for ejb-borland.xml is reproduced in this document and aspects of its usage
documented here. The Borland proprietary descriptor allows for the
configuration of a number of properties that can be set to optimize container
performance and manage the persistence of your entity beans.

Container-managed persistence and Relationships
Borland's EJB container provides tools that generate the persistence calls at
the time that the entity bean is deployed; that is, when the entity bean is
installed into a Partition. The tools use the deployment descriptors to
determine the instance fields which must be persisted. Instead of coding the
database access directly in the bean, the bean provider of a container-
managed entity bean must specify in the deployment descriptor those
instance fields for which the container tools must generate access calls. The
container has sophisticated deployment tools capable of mapping the fields of
an entity bean to its data source.

Container-managed persistence has many advantages over bean-managed
persistence. It is simpler to code because the bean provider does not have to
code the database access calls. Handling of persistence can also be changed
without having to modify and recompile the entity bean code. The Deployer or
Application Assembler can do this by modifying the deployment descriptor
when deploying the entity bean. Shifting the database access and persistence
handling to the container not only reduces the complexity of code in the bean,
it also reduces the scope of possible errors. The bean provider can focus on
debugging the business logic of the bean rather than the underlying system
issues.

Borland's Persistence Manager (PM) not only persists CMP fields but also
CMP relationships. The container manages bean relationships and maintains
the referential integrity of these relationships. Just as you defined container-
managed persistence fields in a bean's deployment descriptor, you can now
define container-managed relationship fields in the deployment descriptor.
The container supports relationships of various cardinalities, including one-to-
one, one-to-many, and many-to-many.

Packaging Requirements

Like session beans, entity beans can expose their methods with a remote
interface or with a local interface. The remote interface exposes the bean's
methods across the network to other, remote components. The local interface
exposes the bean's methods only to local clients; that is, clients located on the
same EJB container.

Entity beans that use EJB 2.0 container-managed persistence should use the
local model. That is, the entity bean's local interface extends the EJBLocalObject
interface. The bean's local home interface extends the EJBLocalHome interface.

Chapter 15: Ent i ty Beans and Table Mapping for CMP 2.0 151

Conta iner-managed pers is tence and Relat ionships

You must deploy these interfaces as well as an implementation of your bean's
class.

Each Entity Bean must also have corresponding entries in its JAR's
deployment descriptors. The standard deployment descriptor, ejb-jar.xml
contains essentially three different types of deployment information. These
are:

1 General Bean Information: This corresponds to the <enterprise-beans>
elements found in the descriptor file and is used for all three types of beans.
This information also includes information on the bean's interfaces and
class, security information, environmental information, and even query
declarations.

2 Relationships: This corresponds to the <relationships> elements found in
the descriptor file and applies to entity beans using CMP only. This is where
container-managed relationships are spelled out.

3 Assembly Information: This corresponds to the <assembly-descriptor>
element which explains how the beans interact with the application as a
whole. Assembly information is broken down into four categories:
� Security Roles: simple definitions of security roles used by the

application. Any security role references you defined for your beans
must also be defined here.

� Method Permissions: each method of each bean can have certain
rules about their execution. These are set here.

� Container-Transactions: this specifies the transaction attributes as per
the EJB 2.0 specification for each method participating in a transaction.

� Exclude List: methods not to be called by anyone.

In addition, each Entity Bean also provides persistence information in the
Borland-specific descriptor file, ejb-borland.xml. In this descriptor file, you
specify information used by the Borland CMP engine and PM to persist
entities in a backing store. This information includes:
� General Bean Information: Information about deployed Enterprise

JavaBeans, including interface locations.
� Table and Column Properties: Information about database tables and

columns used by entity beans in the JAR.
� Security Roles: Authorization information for the deployed Enterprise

JavaBeans.

All of these can be accessed from the Deployment Descriptor Editor. You
should refer to the EJB 2.0 specification for DTD information and the proper
use of the descriptor files.

A note on reentrancy

By default, entity beans are not reentrant. When a call within the same
transaction context arrives at the entity bean, it causes the exception
java.rmi.RemoteException to be thrown.

152 BES Developer ’s Guide

Container-Managed Pers is tence in Bor land Enterpr ise Server

You can declare an entity bean reentrant in the deployment descriptor;
however, take special care in this case. The critical issue is that a Container
can generally not distinguish between a (loopback) call within the same
transaction and a concurrent invocation (in the same transaction context) on
that same entity bean.

When the entity bean is marked reentrant, it is illegal to allow a concurrent
invocation within the same transaction context on the bean instance. It is the
programmer's responsibility to ensure this rule.

Container-Managed Persistence in Borland Enterprise Server
The Borland Enterprise Server's EJB Container is fully J2EE 1.3 compliant. It
implements both container-managed persistence (CMP) for Enterprise
JavaBeans implementing either the EJB 1.1 and/or EJB 2.0 specifications.
The bean provider designs persistence schemas for their entity beans,
determines the methods for accessing container-managed fields and
relationships, and defines these in beans' deployment descriptors. The
deployer maps this persistence schema to the database and creates any other
necessary classes for the beans' maintenance.

The EJB 2.0 Specification from Sun Microsystems details the specifics for the
bean and container contracts in Chapters 10 and 11. Creating the persistence
schema is not in the scope of this document, but is well discussed in both the
Sun specification and in the Borland JBuilder documentation, the relevant
parts of which are the Enterprise JavaBeans Developer's Guide and the
Distributed Application Developer's Guide.

About the Persistence Manager

The Persistence Manager (PM) provides a data-access layer for reading and
writing entity beans. It also provides navigation and maintenance support for
relationships between entities and extensions to EJB-QL. Currently, the PM
only supports data access to relational database by means of JDBC. The PM
uses an optimistic concurrency approach to data access. Conflicts in resource
state are resolved before transaction commit or rollback by use of verified SQL
update and delete statements.

Although the PM does not manage transactions (this is the Container's
responsibility), it is aware of transaction start and completion and can
therefore manage entity state. The PM uses the TxContext class to represent
the root of managed entities during transaction lifecycles. When the container
manages a transaction it asks the PM for the associated TxContext instance. If
none exists, as is the case when a new transaction has started, one is created
by the PM. When a transaction is completing, the container calls the method
TxContext.beforeCompletion() to alert the PM to verify entity state.

The PM has complete responsibility for entity data storage and the
maintenance of the state of relationships between entities. Relationship

Chapter 15: Ent i ty Beans and Table Mapping for CMP 2.0 153

Conta iner-Managed Pers is tence in Bor land Enterprise Server

editing is also managed by the PM. This simplifies interactions with the
container and allows the PM to optimize its read and write operations. This
approach also suppresses duplicate find requests by tracking returned
primary keys for requested entities. Data from duplicate find operations can
then be returned from the first load of the entity's data.

Borland CMP engine's CMP 2.0 implementation

In CMP 2.0, the details of constructing finder and select methods have been
pushed into the EJB 2.0 specification. Users should thoroughly inspect the
specification for details on implementing their database SQL. The Borland
EJB Container is fully-compliant with the EJB 2.0 specification and supports all
of its features.

The implementation class for an entity bean using 2.0 container-managed
persistence is different from that of a bean using 1.1 container-managed
persistence. The major differences are as follows:
� The class is declared as an abstract class.
� There are no public declarations for the fields that are container-managed

fields. Instead, there are abstract get and set methods for container-
managed fields. These methods are abstract because the container
provides their implementation. For example, rather than declaring the fields
balance and name, the CheckingAccount class might include these get and set
methods:

public abstract float getBalance();
public abstract void setBalance(float bal);
public abstract String getName();
public abstract void setName(String n);

� Container-managed relationship fields are likewise not declared as
instance variables. The class instead provides abstract get and set
methods for these fields, and the container provides the implementation for
these methods.

Table Mapping for CMP 2.0 is accomplished using the vendor-specific ejb-
borland.xml deployment descriptor. The descriptor is a companion to the ejb-
jar.xml descriptor described in the EJB 2.0 specification. Borland uses the
XML tag <cmp2-info> as an enclosure for table mapping data as needed. Then
you use the <table-properties> and its associated <column-properties> elements
to specify particular information about the entity bean's implementation. Use
Chapter 32, “ejb-borland.xml” for syntax of the XML grammar.

Optimistic Concurrency Behavior

The container uses optimistic or pessimistic concurrency to control the
behavior of multiple transactions accessing the same data. BES has four
optimistic concurrency behaviors which are specified as Table Properties.
These behaviors are:

154 BES Developer ’s Guide

Container-Managed Pers is tence in Bor land Enterpr ise Server

� SelectForUpdate

� SelectForUpdateNoWAIT

� UpdateAllFields

� UpdateModifiedFields

� VerifyModifiedFields

� VerifyAllFields

The behavior exhibited by the container corresponds to the value of the
optimisticConcurrencyBehavior, found in the Table Properties section of
Chapter 16, “Using BES Properties for CMP 2.x”.

Pessimistic Behavior
In this mode, the container will allow only one transaction at a time to access
the data held by the entity bean. Other transactions seeking the same data will
block until the first transaction has committed or rolled back. This is achieved
by setting the SelectForUpdate table property and issuing a tuned SQL
statement with the FOR UPDATE statement included. You can issue this SQL by
overriding SQL generated from EJB-QL by the CMP engine. For more
information, go to Chapter 17, “EJB-QL and Data Access Support”. Other
selects on the row are blocked until then. The tuned SQL generated looks like
this:

SELECT ID, NAME FROM EMP_TABLE WHERE ID=? FOR UPDATE

You can also specify the SelectForUpdateNoWAIT table property. Doing so
instructs the database again to lock the row until the current transaction is
committed or rolled back. However, other selects on the row will fail (rather
than blocking). The following SQL illustrates a SELECT statement for the
above:

SELECT ID, NAME FROM EMP_TABLE WHERE ID=? FOR UPDATE NOWAIT

These options should be used with caution. Although it does ensure the
integrity of the data, your application's performance could suffer considerably.
This option will also not function if you are using the Option A cache, since the
entity bean remains in memory in this mode and calls to ejbLoad() are not
made between transactions.

Optimistic Concurrency
This mode permits the container to allow multiple transactions to operate on
the same data at the same time. While this mode is superior in performance,
there is the possibilty that data integrity could be compromised.

The Borland Enterprise Server has four optimistic concurrency behaviors
which are specified as Table Properties. These behaviors are:
� SelectForUpdate

� SelectForUpdateNoWAIT

� UpdateAllFields

Chapter 15: Ent i ty Beans and Table Mapping for CMP 2.0 155

Conta iner-Managed Pers is tence in Bor land Enterprise Server

� UpdateModifiedFields

� VerifyModifiedFields

� VerifyAllFields

SelectForUpdate
Use this option for pessimistic concurrency. With this option specified, the
database locks the row until the current transaction is committed or rolled
back. Other selects on the row are blocked until then.

SelectForUpdateNoWAIT
Use this option for pessimistic concurrency. With this option specified, the
database locks the row until the current transaction is committed or rolled
back. Other selects on the row will fail.

UpdateAllFields
With this option specified, the container issues an update on all fields,
regardless of whether or not they were modified. For example, consider a
CMP entity bean with three fields, KEY, VALUE1, and VALUE2. The following
update will be issued at the terminus of every transaction, regardless of
whether or not the bean was modified:

UPDATE MyTable SET (VALUE1 = value1, VALUE2 = value2) WHERE KEY = key

UpdateModifiedFields
This option is the default optimistic concurrency behavior. The container
issues an update only on the fields that were modified in the transaction, or
suppresses the update altogether if the bean was not modified. Consider the
same bean from the previous example, and assume that only VALUE1 was
modified in the transaction. Using UpdateModifiedFields, the container would
issue the following update:

UPDATE MyTable SET (VALUE1 = value1) WHERE KEY = key

This option can provide a significant performance boost to your application.
Very often data access is read-only. In such cases, not sending an update to
the database upon every transaction saves quite a bit of processing time.
Suppressing these updates also prevents your database implementation from
logging them, also enhancing performance. The JDBC driver is also taxed far
less, especially in large-scale EJB applications. Even for well-tuned drivers,
the less work they have to perform, the better.

VerifyModifiedFields
This option, when enabled, orders the CMP engine to issue a tuned update
while verifying that the updated fields are consistent with their previous values.
If the value has changed in between the time the transaction originally read it
and the time the transaction is ready to update, the transaction will roll back.

156 BES Developer ’s Guide

Container-Managed Pers is tence in Bor land Enterpr ise Server

(You will need to handle these rollbacks appropriately.) Otherwise, the
transaction commits. Again using the same table, the CMP engine generates
the following SQL using the VerifyModifiedFields behavior if only VALUE1 was
updated:

UPDATE MyTable SET (VALUE1 = value1) WHERE KEY = key AND VALUE1 = old-
VALUE1

VerifyAllFields
This option is very similar to VerifyModifiedFields, except that all fields are
verified. Again using the same table, the CMP engine generates the following
SQL using this option:

UPDATE MyTable SET (VALUE1 = value1) WHERE KEY = key AND VALUE1 = old-
VALUE1 AND VALUE2 = old-VALUE2

Note The two verify settings can be used to replicate the SERIALIZABLE isolation level
in the Container. Often your applications require serializable isolation
semantics. However, asking the database to implement this can have a
significant performance impact. Using the verify settings allows the CMP
engine to implement optimistic concurrency using field-level locking. The
smaller the granularity of the locking, the better the concurrency.

Persistence Schema

The Borland CMP 2.0 engine can create the underlying database schema
based on the structure of your entity beans and the information provided in the
entity bean deployment descriptors. You don't need to provide any CMP
mapping information in such cases. Simply follow the instructions for
"Specifying tables and datasources," below. Or, the CMP engine can adapt to
an existing underlying database schema. Doing so, however, requires you to
provide information to the CMP engine about your database schema. In such
cases, you should refer to “Basic Mapping of CMP fields to columns” on
page 158, below, as well as CASE 2 in "Specifying tables and datasources."

Specifying tables and datasources
The minimum information required in ejb-borland.xml is an entity bean name
and an associated datasource. A datasource is a class used to obtain
connections to a database, JMS implementation, or backing store of some
other type. Information on datasource configuration is in Chapter 21,
“Connecting to Resources with BES: using the Definitions Archive (DAR)”.
There are two means of providing this information.

CASE 1: A development environment without existing database tables using
either JDataStore or Cloudscape databases.
In this case, the Borland CMP engine creates tables automatically, assuming
that the entity bean name is the same as the desired table name. You need
only provide the bean's name and its associated datasource as a property:

Chapter 15: Ent i ty Beans and Table Mapping for CMP 2.0 157

Conta iner-Managed Pers is tence in Bor land Enterprise Server

<entity>
 <ejb-name>CustomerEJB</ejb-name>
 <property>
 <prop-name>ejb.datasource</property>
 <prop-value>serial://ds/myDatasource</prop-value>
 </property>
</entity>

The Borland CMP engine will automatically create tables in this datasource
based on the bean's name and fields.

CASE 2: A deployment environment with (or without) existing database tables
using supported databases.
In this case, you need to supply information on the tables to which the entities
map. You'll provide a table name in the <entity> portion of the descriptor, and
some properties in the <table-properties> portion:

<entity>
 <ejb-name>CustomerEJB</ejb-name>
 <cmp2-info>
 <table-name>CUSTOMER</table-name>
 </cmp2-info>
</entity>
.
.
<table-properties>
 <table-name>CUSTOMER</table-name>
 <property>
 <prop-name>datasource</prop-name>
 <prop-value>serial://ds/myDatasource</prop-value>
 </property>
</table-properties>

Note that the datasource property is called datasource when specified in the
<table-properties> element and ejb.datasource when in the <entity> element. If
you are using a database other than JDataStore or Cloudscape and would like
to have the Borland CMP engine automatically create this table, add the
following XML to the <table-properties> element:

.

.
<table-properties>
 <table-name>CUSTOMER</table-name>
 <property>
 <prop-name>create-tables</prop-name>
 <prop-value>True</prop-value>
 </property>
</table-properties>

158 BES Developer ’s Guide

Container-Managed Pers is tence in Bor land Enterpr ise Server

Basic Mapping of CMP fields to columns
Basic field mapping is accomplished using the <cmp-field> element in the ejb-
borland.xml deployment descriptor. In this element, you specify a field name
and a corresponding column to which it maps. Consider the following XML for
an entity bean called LineItem, which maps two fields, orderNumber and line, to
two columns, ORDER_NUMBER and LINE:

<entity>
 <ejb-name>LineItem</ejb-name>
 <cmp2-info>
 <cmp-field>
 <field-name>orderNumber</field-name>
 <column-name>ORDER_NUMBER</column-name>
 </cmp-field>
 <cmp-field>
 <field-name>line</field-name>
 <column-name>LINE</column-name>
 </cmp-field>
 </cmp2-info>
</entity>

Mapping one field to multiple columns
Many users may employ coarse-grained entity beans that implement a Java
class to represent more fine-grained data. For example, an entity bean might
use an Address class as a field, but may need to map elements of the class
(like AddressLine1, AddressCity, and so forth) to an underlying database. To do
this, you use the <cmp-field-map> element, which defines a field map between
your fine-grained class and its underlying database representation. Note that
such classes must implement java.io.Serializable and all their data members
must be public.

Consider an entity bean called Customer that uses the class Address to represent
a customer's address. The Address class has fields for AddressLine, AddressCity,
AddressState, and AddressZip. Using the following XML, we can map the class to
its representation in a database with corresponding columns:

<entity>
 <ejb-name>Customer</ejb-name>
 .
 .
 <cmp2-info>
 <cmp-field>
 <field-name>Address</field-name>
 <cmp-field-map>
 <field-name>Address.AddressLine</field-name>
 <column-name>STREET</column-name>
 </cmp-field-map>
 <cmp-field-map>
 <field-name>Address.AddressCity</field-name>
 <column-name>CITY</column-name>
 </cmp-field-map>

Chapter 15: Ent i ty Beans and Table Mapping for CMP 2.0 159

Conta iner-Managed Pers is tence in Bor land Enterprise Server

 <cmp-field-map>
 <field-name>Address.AddressState</field-name>
 <column-name>STATE</column-name>
 </cmp-field-map>
 <cmp-field-map>
 <field-name>Address.AddressZip</field-name>
 <column-name>ZIP</column-name>
 </cmp-field-map>
 </cmp-field>
 </cmp2-info>
 .
 .
</entity>

Note that we use one <cmp-field-map> element per database column.

Mapping CMP fields to multiple tables
You may have an entity that contains information persisted in multiple tables.
These tables must be linked by at least one column representing a foreign key
in the linked table. For example, you might have a LineItem entity bean
mapping to a table LINE_ITEM with a primary key LINE that is a foreign key in a
table called QUANTITY. The LineItem entity also contains some fields from the
QUANTITY table that correspond to LINE entries in LINE_ITEM. Here's what our
LINE_ITEM table might look like:

QUANTITY, COLOR, and SIZE are all values that are also stored in the
QUANITY table, shown here. Note the identical values for some of the fields.
This is because the LINE_ITEM table itself stores information in the
QUANTITY table, using the LineItem entity to provide composite information.

Again, we can describe these relationships using a combination of <cmp-field>
elements and a <table-ref> element. The <cmp-field> elements define the
fields found in LineItem. Since there are some fields that require information
from QUANTITY, we'll specify that generically by using a TABLE_NAME.COLUMN_NAME
syntax. For instance, we'd define LINE_ITEM's COLOR column as QUANITY.COLOR.
Finally, we'll specify the linking column, LINE, that makes up our primary key/
foreign key relationship. We'll do this using the <table-ref> element.

Now let's look at the XML. First we define the CMP fields for the LineItem entity
bean:

<entity>
 <ejb-name>LineItem</ejb-name>

LINE ORDER_NO ITEM QUANTITY COLOR SIZE

001 XXXXXXX0
1

Kitty
Sweater

2 red XL

LINE QUANTITY COLOR SIZE

001 2 red XL

160 BES Developer ’s Guide

Container-Managed Pers is tence in Bor land Enterpr ise Server

 .
 .
 <cmp2-info>
 <cmp-field>
 <field-name>orderNumber</field-name>
 <column-name>ORDER_NO</column-name>
 </cmp-field>
 <cmp-field>
 <field-name>line</field-name>
 <column-name>LINE</column-name>
 </cmp-field>
 <cmp-field>
 <field-name>item</field-name>
 <column-name>ITEM</column-name>
 </cmp-field>
 <cmp-field>
 <field-name>quantity</field-name>
 <column-name>QUANTITY.QUANTITY</column-name>
 </cmp-field>
 <cmp-field>
 <field-name>color</field-name>
 <column-name>QUANTITY.COLOR</column-name>
 </cmp-field>
 <cmp-field>
 <field-name>size</field-name>
 <column-name>QUANTITY.SIZE</column-name>
 </cmp-field>

Next, we specify the linking column between LINE_ITEM and QUANTITY by using a
<table-ref> element.

 <table-ref>
 <left-table>
 <table-name>LINE_ITEM</table-name>
 <column-list>
 <column-name>LINE</column-name>
 </column-list>
 </left-table>
 <right-table>
 <table-name>QUANTITY</table-name>
 <column-list>
 <column-name>LINE</column-name>
 </column-list>
 </right-table>
 </table-ref>
 </cmp2-info>
</entity>

Specifying relationships between tables
To specify relationships between tables, you use the <relationships> element
in ejb-borland.xml. Within the <relationships> element, you define an <ejb-
relationship-role> containing the role's source (an entity bean) and a <cmr-

Chapter 15: Ent i ty Beans and Table Mapping for CMP 2.0 161

Conta iner-Managed Pers is tence in Bor land Enterprise Server

field> element containing the relationship. The descriptor then uses <table-
ref> elements to specify relationships between two tables, a <left-table> and
a <right-table>. You must observe the following cardinalities:
� One <ejb-relationship-role> must be defined per direction; if you have a bi-

directional relationship, you must define an <ejb-relationship-role> for each
bean with each referencing the other.

� Only one <table-ref> element is permitted per relationship.

Within the <left-table> and <right-table> elements, you specify a column list
that contains the column names to be linked together. The column list
corresponds to the <column-list> element in the descriptor. The XML is:

<!ELEMENT column-list (column-name+)>

Let's look at some relationships to see how this XML is put into practice:

CASE 1: a unidirectional one-to-one relationship.
Here, we have a Customer entity bean with a primary key, CUSTOMER_NO, that is
also used as a primary key for an entity called SpecialInfo, which contains
special customer information stored in a separate table. We need to specify a
relationship between these two entities. The Customer entity uses a field called
specialInformation to map to the SpecialInfo bean. We specify two relationship
roles, one for each bean and assign either to left- and/or right-table. Then we
specify the name of their related column for both.

 <relationships>
 <ejb-relation>
 <ejb-relationship-role>
 <relationship-role-source>
 <ejb-name>Customer</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>specialInformation</cmr-field-name>
 <table-ref>
 <left-table>
 <table-name>CUSTOMER</table-name>
 <column-list>CUSTOMER_NO</column-list>
 </left-table>
 <right-table>
 <table-name>SPECIAL_INFO</table-name>
 <column-list>CUSTOMER_NO</column-list>
 </right-table>
 </table-ref>
 </cmr-field>
 </ejb-relationship-role>

Next, we finish the <ejb-relation> entry by providing its other half, the
SpecialInfo bean. Since this is a mono-directional relationship, we don't need
to specify any table elements. We only need add the following, defining the
other half of the relationship and its source:

162 BES Developer ’s Guide

Container-Managed Pers is tence in Bor land Enterpr ise Server

 <ejb-relationship-role>
 <relationship-role-source>
 <ejb-name>SpecialInfo</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 </ejb-relation>
</relationships>

CASE 2: a bidirectional one-to-many relationship.
Here, we have a Customer entity bean with a primary key, CUSTOMER_NO, that is
also a foreign key in an Order entity bean. We want the Borland EJB Container
to manage this relationship. The Customer bean uses a field called "orders" that
links a customer to his orders. The Order bean uses a field called "customers"
for linking in the reverse direction. First, we define the relationship and its
source for the first direction: setting up the mapping for a Customer's orders.

<relationships>
 <ejb-relation>
 <ejb-relationship-role>
 <relationship-role-source>
 <ejb-name>Customer</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>orders</cmr-field-name>

Then, we add the table references to specify the relationship between the
tables. We're basing this relationship on the CUSTOMER_NO column, which is a
primary key for Customer and a foreign key for Orders:

 <table-ref>
 <left-table>
 <table-name>CUSTOMER</table-name>
 <column-list>
 <column-name>CUSTOMER_NO</column-name>
 </column-list>
 </left-table>
 <right-table>
 <table-name>ORDER</table-name>
 <column-list>
 <column-name>CUSTOMER_NO</column-name>
 </column-list>
 </right-table>
 </table-ref>
 </cmr-field>
 </ejb-relationship-role>

We're not quite done with our relationship, though. Now, we need to complete
it by specifying the relationship role for the other direction:

 <ejb-relationship-role>
 <relationship-role-source>
 <ejb-name>Customer</ejb-name>
 </relationship-role-source>

Chapter 15: Ent i ty Beans and Table Mapping for CMP 2.0 163

Conta iner-Managed Pers is tence in Bor land Enterprise Server

 <cmr-field>
 <cmr-field-name>customers</cmr-field-name>
 <table-ref>
 <left-table>
 <table-name>ORDER</table-name>
 <column-list>
 <column-name>CUSTOMER_NO</column-name>
 </column-list>
 </left-table>
 <right-table>
 <table-name>CUSTOMER</table-name>
 <column-list>
 <column-name>CUSTOMER_NO</column-name>
 </column-list>
 </right-table>
 </table-ref>
 </cmr-field>
 </ejb-relationship-role>
 </ejb-relation>
 .
 .
</relationships>

CASE 3: a many-to-many relationship.
If you define a many-to-many relationship, you must also have the CMP
engine create a cross-table which models a relationship between the left table
and the right table. Do this using the <cross-table> element, whose XML is:

<!ELEMENT cross-table (table-name, column-list, column-list)>

You may name this cross-table whatever you like using the <table-name>
element. The two <column-list> elements correspond to columns in the left and
right tables whose relationship you wish to model. For example, consider two
tables, EMPLOYEE and PROJECT, which have a many-to-many relationship. An
employee can be a part of multiple projects, and projects have multiple
employees. The EMPLOYEE table has three elements, an employee number
(EMP_NO), a last name (LAST_NAME), and a project ID number (PROJ_ID). The
PROJECT table contains columns for the project ID number (PROJ_ID), the project
name (PROJ_NAME), and assigned employees by number (EMP_NO).

To model the relationship between these two tables, a cross-table must be
created.. For example, to create a cross-table that shows employee names
and the names of the projects on which they are working, the <table-ref>
element would look like the following:

<table-ref>
 <left-table>
 <table-name>EMPLOYEE</table-name>
 <column-list>
 <column-name>EMP_NO</column-name>
 <column-name>LAST_NAME</column-name>
 <column-name>PROJ_ID</column-name>

164 BES Developer ’s Guide

Container-Managed Pers is tence in Bor land Enterpr ise Server

 </column-list>
 </left-table>
 <cross-table>
 <table-name>EMPLOYEE_PROJECTS</table-name>
 <column-list>
 <column-name>EMP_NAME</column-name>
 <column-name>PROJ_ID</column-name>
 </column-list>
 <column-list>
 <column-name>PROJ_ID</column-name>
 <column-name>PROJ_NAME</column-name>
 </column-list>
 </cross-table>
 <right-table>
 <table-name>PROJECT</table-name>
 <column-list>
 <column-name>PROJ_ID</column-name>
 <column-name>PROJ_NAME</column-name>
 <column-name>EMP_NO</column-name>
 </column-list>
 </right-table>
</table-ref>

Since these are "secondary tables" and therefore have no primary keys, the
PROJ_ID column appears in both column lists. This could also be the common
column EMP_NO, depending upon how you wish to model the data.

Using cascade delete and database cascade delete

Use <cascade-delete> when you want to remove entity bean objects. When
cascade delete is specified for an object, the container automatically deletes
all of that object's dependent objects. For example you may have a Customer
bean which has a one-to-many, uni-directional relationship to an Address
bean. Because an address instance must be associated to a customer, the
container automatically deletes all addresses related to the customer when
you delete the customer.

To specify cascade delete, use the <cascade-delete> element in the ejb-
jar.xml file as follows:

<ejb-relation>
 <ejb-relation-name>Customer-Account</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Account-Has-Customer
 </ejb-relationship-role-name>
 <multiplicity>one</multiplicity>
 <cascade-delete/>
 </ejb-relationship-role>
</ejb-relation>

Chapter 15: Ent i ty Beans and Table Mapping for CMP 2.0 165

Conta iner-Managed Pers is tence in Bor land Enterprise Server

Database cascade delete support
Borland Enterprise Server supports the database cascade delete feature,
which allows an application to take advantage of a database's built in cascade
delete functionality. This reduces the number of SQL operations sent to the
database by the container, therefore improving performance.

To use database cascade delete, the tables corresponding to the entity beans
have to be created with the appropriate table constraints on the respective
database. For example, if you are using cascade delete in EJB 2.0 entity
beans on Order and LineItem entity beans, the tables have to be created as
follows:

create table ORDER_TABLE (ORDER_NUMBER integer, LAST_NAME varchar(20),
FIRST_NAME varchar(20), ADDRESS varchar(48));
create table LINE_ITEM_TABLE (LINE integer, ITEM varchar(100), QUANTITY
numeric, ORDER_NUMBER integer CONSTRAINT fk_order_number REFERENCES
ORDER_TABLE(ORDER_NUMBER) ON DELETE CASCADE);

The <cascade-delete-db> element in the ejb-borland.xml file specifies that a
cascade delete operation will use the cascade delete functionality of the
database. By default this feature is turned off.

Note If you specify the <cascade-delete-db> element in the ejb-borland.xml file, you
must specify <cascade-delete> in ejb-jar.xml.

The XML for <cascade-delete-db> in the ejb-borland.xml is shown in the
following relationship:

<relationships>
 <!--
 ONE-TO-MANY: Order LineItem
 -->
 <ejb-relation>
 <ejb-relationship-role>
 <relationship-role-source>
 <ejb-name>OrderEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>lineItems</cmr-field-name>
 <table-ref>
 <left-table>
 <table-name>ORDER_TABLE</table-name>
 <column-list>
 <column-name>ORDER_NUMBER</column-name>
 </column-list>
 </left-table>
 <right-table>
 <table-name>LINE_ITEM_TABLE</table-name>
 <column-list>
 <column-name>ORDER_NUMBER</column-name>
 </column-list>
 </right-table>
 </table-ref>
 </cmr-field>

166 BES Developer ’s Guide

Container-Managed Pers is tence in Bor land Enterpr ise Server

 </ejb-relationship-role>
 <ejb-relationship-role>
 <relationship-role-source>
 <ejb-name>LineItemEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>order</cmr-field-name>
 <table-ref>
 <left-table>
 <table-name>LINE_ITEM_TABLE</table-name>
 <column-list>
 <column-name>ORDER_NUMBER</column-name>
 </column-list>
 </left-table>
 <right-table>
 <table-name>ORDER_TABLE</table-name>
 <column-list>
 <column-name>ORDER_NUMBER</column-name>
 </column-list>
 <right-table>
 </table-ref>
 </cmr-field>
 </ejb-relationship-role>
 <cascade-delete-db />
 </ejb-relation>
 </relationships>

Chapter 16: Using BES Propert ies for CMP 2.x 167

C h a p t e r

16
Chapter16Using BES Properties for CMP

2.x

Setting Properties
Most properties for Enterprise JavaBeans can be set in their deployment
descriptors. The Borland Deployment Descriptor Editor (DDEditor) also allows
you to set properties and edit descriptor files. Use of the Deployment
Descriptor Editor is described in the Borland Enterprise Server User's Guide.
Use properties in the deployment descriptor to specify information about the
entity bean's interfaces, transaction attributes, and so forth, plus information
that is unique to an entity bean. In addition to the general descriptor
information for entity beans, here are also three sets of properties that can be
set to customize CMP implementations, entity properties, table properties, and
column properties. Entity properties can be set either by the EJB Designer
Tab in the Deployment Descriptor Editor or in the XML directly.

Important For documentation updates, go to www.borland.com/techpubs/bes.

Using the Deployment Descriptor Editor

You can use the Deployment Descriptor Editor, which is part of the Borland
Enterprise Server, to set up all of the container-managed persistence
information. You should refer to the Borland Enterprise Server Management
Console User's Guide for complete information on the use of the Deployment
Descriptor Editor and other related tools. Most operations for CMP 2.x are

168 BES Developer ’s Guide

Sett ing Proper t ies

performed via the EJB Designer, a component of the Deployment Descriptor
Editor. The following table shows descriptor information and where in the
Deployment Descriptor Editor that information can be entered.

The EJB Designer

CMP 2.x properties are set using the EJB Designer. The EJB Designer
appears as a Tab in the Deployment Descriptor Editor. See the Management
Console User’s Guide, Using the Deployment Descriptor Editor section for
details on this feature.

J2EE 1.3 Entity Bean

Descriptor Element
Navigation Tree Node/
Panel Name DDEditor Tab

Entity Bean name Bean General

Entity Bean class Bean General

Home Interface Bean General

Remote Interface Bean General

Local Home Interface Bean General

Local Interface Bean General

Home JNDI Name Bean General

Local Home JNDI Name Bean General

Persistence Type (CMP or
BMP)

Bean General

CMP Version Bean General

Primary Key Class Bean General

Reentrancy Bean General

Icons Bean General

Environment Entries Bean Environment

EJB References to other
Beans

Bean EJB References

EJB Links Bean EJB References

Resource References to
data objects/connection
factories

Bean Resource References

Resource Reference type Bean Resource References

Resource Reference
Authentication Type

Bean Resource References

Security Role References Bean Security Role References

Entity Properties Bean Properties

Security Identity Bean Security Identity

EJB Local References to
beans in the name JAR

Bean EJB Local References

Chapter 16: Using BES Propert ies for CMP 2.x 169

Sett ing Propert ies

Setting CMP 2.x Properties

Borland Enterprise Server uses its EJB Designer, a component of the
Deployment Descriptor Editor, to set CMP 2.x properties. The EJB Designer is
fully-documented in the User's Guide.

Editing Entity properties

To edit Entity properties using the EJB Designer:

1 Start the DDEditor and open the deployment descriptor for the JAR
containing your entity beans.

2 Select the top-level object in the DDEditor's Navigation Pane. In the
Properties Pane you will see three tabs -- General, XML, and EJB
Designer.

3 Choose the EJB Designer Tab and left-click on any of the bean
representations that appear. Click the Properties button. The Entity Beans
Properties window appears.

EJB Local Links Bean EJB Local References

Resource Environmental
References for JMS

Bean Resource Env Refs

Container Transactions Bean:Container
Transactions

Container Transactions

Transactional Method Bean:Container
Transactions

Container Transactions

Transactional Method
Interface

Bean:Container
Transactions

Container Transactions

Transactional Attribute Bean:Container
Transactions

Container Transactions

Method Permissions Bean:Method Permissions Method Permissions

Entity, Table, and Column
Properties

JAR EJB Designer (see below)

Descriptor Element
Navigation Tree Node/
Panel Name DDEditor Tab

170 BES Developer ’s Guide

Sett ing Proper t ies

4 Edit the properties you desire and click OK. The properties themselves are
discussed below.

Editing Table and Column properties

Table and Column properties can only be set by editing the ejb-borland.xml
descriptor file from the DDEditor's Vendor XML Tab, or by using the EJB
Designer. To edit or add Table and Column properties:

1 Start the DDEditor and open the deployment descriptor for the JAR
containing your entity beans.

2 Select the top-level object in the DDEditor's Navigation Pane. In the
Properties Pane you will see three tabs: General, XML, and EJB Designer.

Chapter 16: Using BES Propert ies for CMP 2.x 171

Sett ing Propert ies

3 Select the XML Tab. Two additional Tabs are now available in the
Properties Pane; Standard and Vendor. Choose Vendor.

4 Locate or add either the <column-properties> or <table-properties> elements
and add property definitions in accordance with the borland-specific DTD,
shown in Chapter 32, “ejb-borland.xml”. Germane entries are in bold.
Descriptions of the entity, table, and column properties follow, including
their data type, default values, and a property description.

172 BES Developer ’s Guide

Sett ing Proper t ies

Entity Properties

These properties are for CMP 1.1 and above implementations:

Property Type Default Description

ejb.maxBeans
InCache

lava.lang.Integer 1000 This option specifies the maximum
number of beans in the cache that
holds on to beans associated with
primary keys, but not transactions.
This is relevant for Option "A" and "B"
(see ejb.transactionCommitMode below).
If the cache exceeds this limit, entities
will be moved to the ready pool by
calling ejbPassivate.

ejb.maxBeans
InPool

java.lang.Integer 1000 The maximum number of beans in the
ready pool. If the ready pool exceeds
this limit, entities will be removed from
the container by calling
unsetEntityContext().

Chapter 16: Using BES Propert ies for CMP 2.x 173

Sett ing Propert ies

These properties are for CMP 2.x implementations only:

ejb.maxBeans
InTransactio
ns

lava.lang.Integer 500* see
Description

A transaction can access any/large
number of entities. This property sets
an upper limit on the number of
physical bean instances that EJB
container will create. Irrespective of
the number of database entities/rows
accessed, the container will manage
to complete the transaction with a
smaller number of entity objects
(dispatchers). The default for this is
calculated as ejb.maxBeansInCache/2. If
the ejb.maxBeansInCache property is not
set, this translates to 500.

ejb.Transact
ionCommitMod
e

Enumerated Shared Indicates the disposition of an entity
bean with respect to a transaction.
Acceptable values are:

Exclusive: This entity has exclusive
access to the particular table in the
database. The state of the bean at the
end of the last committed transaction
can be assumed to be the state of the
bean at the beginning of the next
transaction.

Shared: This entity shares access to
the particular table in the database.
However, for performance reasons, a
particular bean remains associated
with a particular primary key between
transactions to avoid extraneous calls
to ejbActivate() and ejbPassivate()
between transactions. The bean stays
in the active pool.

None: This entity shares access to the
particular table in the database. A
particular bean does not remain
associated with a particular primary
key between transactions, but goes
back to the ready pool after every
transaction.

Property Type Default Description

ejb.invalidateFinde
rCollectionAtCommit

java.lang.Boolean False Whether or not to optimize
transaction commit by
invalidating finder collections.
CMP 2.x only.

ejb.cacheCreate java.lang.Boolean True Whether or not to attempt to
cache the insert of the entity
bean until the ejbPostCreate is
processed.

Property Type Default Description

174 BES Developer ’s Guide

Sett ing Proper t ies

Table Properties

The following properties apply to CMP 2.x only. If you are migrating from CMP
1.1 to CMP 2.x, you must update your CMP properties. CMP 1.1 properties
were formerly of the format ejb.<property-name>, and were all specified in the
<entity> portion of the deployment descriptor. With CMP 2.x, BES adds Table

ejb.datasource java.lang.String N/A Default JDBC datasource to
use in case no table-properties
have been set. CMP 2.x only.

ejb.truncateTableNa
me

java.lang.Boolean False If no table name is specified,
CMP2.x engine will use the
EJB name as the table name.
EJB names can be more than
30 characters in length.
Moreover, certain databases
have a restriction on the table
length to be 30 characters or
less. This property is used to
force the table name to be
truncated to be 30 characters
or less. CMP 2.x only.

ejb.eagerLoad java.lang.Boolean False eager-loads the entire row and
keeps the data in the
transactional cache. After
loading, all database resources
are released. Subsequent
getters could get data in cache
and not having to require any
more database resources.
CMP 2.x only.

Property Type Default Description

Chapter 16: Using BES Propert ies for CMP 2.x 175

Sett ing Propert ies

and Column Properties, which manage persistence. Refer to these properties
below to see where migration issues may appear.

Property Type Default Description

datasource java.lang.String None JNDI datasource name of the
database for this table.

optimisticConcu
rrencyBehavior

java.lang.String UpdateM
odified
Fields

The container uses optimistic or
pessimistic concurrency to control
multiple transactions (updates) that
access shared tables. Acceptable
values are:

SelectForUpdate: database locks the
row until the current transaction is
committed or rolled back. Other
selects on the row are blocked (wait)
until then.

SelectForUpdateNoWAIT: database locks
the row until the current transaction is
committed or rolled back. Other
selects on the row will fail.

UpdateAllFields: perform an update on
all of an entity's fields, regardless if
they were modified or not.

UpdateModifiedFields: perform an
update only on fields known to have
been modified prior to the update
being issued.

VerifyModifiedFields: verify the entity's
modified fields against the database
prior to update.

VerifyAllFields: verify all the entity's
fields against the database prior to
update regardless if they were
modified or not.

Pessimistic concurrency specifies the
container to allow only one
transaction at a time to access the
entity bean. Other transactions that
try to access the same data will block
(wait) until the first transaction
completes. This is achieved by
issuing a tuned SQL with FOR UPDATE
when the entity bean is loaded. To
achieve pessimistic concurrency set
SelectForUpdate or
SelectForUpdateNoWAIT.

useGetGenerated
Keys

java.lang.Boolean False Whether to use the JDBC3
java.sql.Statement.getGeneratedKeys()
method to populate the primary key
from autoincrement/sequence SQL
fields. Currently, only Borland
JDataStore supports this statement.

176 BES Developer ’s Guide

Sett ing Proper t ies

primaryKeyGener
ationListener

java.lang.String None Specifies a class, written by the user,
that implements
com.borland.ejb.pm.PrimaryKeyGeneratio
nListener interface and generates
primary keys..

dbcAccesserFact
ory

java.lang.String None A factory class that can provide
accessor class implementations to
get values from a java.sql.ResultSet,
and set values for a
java.sql.PreparedStatement.

getPrimaryKeyBe
foreInsertSql

java.lang.String None SQL statement to execute before
inserting a row to provide primary key
column names.

getPrimaryKeyAf
terInsertSql

java.lang.String None SQL statement to execute after
inserting a row to provide primary key
column names.

useAlterTable java.lang.Boolean false Whether or not to use the SQL ALTER
statement to alter an entity's table to
add columns for fields that do not
have a matching column.

createTableSql java.lang.String None SQL statement used to create the
table if it needs to be created
automatically.

create-tables java.lang.Boolean false The Borland CMP engine
automatically creates tables for
Cloudscape and JDataStore
databases -- that is, in the
development environment. To enable
automatic table creation in other
databases, you must set this flag to
true.

Property Type Default Description

Chapter 16: Using BES Propert ies for CMP 2.x 177

Sett ing Propert ies

Column Properties

Property Type Default Description

ignoreOnInsert java.lang.String false Specifies the column that must not be
set during the execution of an INSERT
statement. This property is used in
conjunction with the
getPrimaryKeyAfterInsertSql property.

createColumnSql java.lang.String None Use this property to override the
standard data-type lookup and
specify the data type manually, use
this property.

Local transactions support the
javax.ejb.EJBContext methods
setRollbackOnly() and
getRollbackOnly().

Local transactions support time-outs
for database connections and
transactions.

Local transactions are lightweight
from a performance standpoint.

columnJavaType java.lang.String None Java type used to create this column
if the table needs to be created
automatically. The acceptable values
are:

java.lang.Boolean,java.lang.Bytejava.
lang.Character java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float,
java.math.BigDecimal,
java.lang.String, java.sql.Time,
java.sql.Date, java.sql.TimeStamp,
java.io.Serializable

This property is ignored if
createColumnSql is set.

178 BES Developer ’s Guide

Sett ing Proper t ies

Security Properties

These security properties are specified in the <entity> portion of the
deployment descriptor.

Property Type Default Description

ejb.security.transportType Enumerated SECURE_ONLY This property configures the
Quality of Protection of a
particular EJB. If set to
CLEAR_ONLY, only non-secure
connections are accepted
from the client to this EJB.
This is the default setting, if
the EJB does not have any
method permissions.

If set to SECURE_ONLY, only
secure connections are
accepted form the client to
this EJB. This is the default
setting, if the EJB has at
least one method permission
set.

If set to ALL, both secure and
non-secure connections are
accepted from the client.

Setting this property controls
a transport value of the
ServerQoPConfig policy.
See the "Security API"
chapter from the
Programmer's Reference for
details.

ejb.security.trustInClient java.lang.
Boolean

False This property configures the
Quality of Protection of a
particular EJB. If set to true,
the EJB container requires
the client to provide an
authenticated identity.

By default, the property is set
to false, if there is at least
one method with no method
permissions set. Otherwise,
it is set to true.

Setting this property controls
a transport value of the
ServerQoPConfig policy. See
the "Security API" chapter
from the Programmer's
Reference for details.

Chapter 17: EJB-QL and Data Access Support 179

C h a p t e r

17
Chapter 17EJB-QL and Data Access

Support
EJB-QL allows you to specify queries in an object oriented query language,
EJB-QL. The Borland CMP engine translates these queries into SQL queries.
The Borland Enterprise Server provides some extensions to the EJB-QL
functionality described in the Sun Microsystems EJB 2.x Specification.

Important For documentation updates, go to www.borland.com/techpubs/bes.

Selecting a CMP Field or Collection of CMP Fields
When only one cmp-field of an otherwise large EJB is required, you can use
EJB-QL to select a single instance of collection of that cmp-field. Using EJB-
QL in this way improves application performance by eliminating the need to
load an entire EJB. For example, this query method selects only the balance
field from the Account table:

<query>
 <query-method>
 <method-name>ejbSelectBalanceOfAccountLineItem</method-name>
 <method-params>
 <method-param>java.lang.Long</method-param>
 </method-params>
 </query-method>
 <result-type-mapping>Local</result-type-mapping>
 <ejb-ql>SELECT l.balance FROM Account a, IN (a.accountLineItem) l WHERE

180 BES Developer ’s Guide

Aggregate Funct ions in EJB-QL

l.lineItemId=?1</ejb-ql>
</query>

The return types of the EJB-QL query method are:
� If the Java type of the cmp-field is an object type, and the query method is a

single-object query method, the return type is an instance of that object
type.

� If the Java type of the cmp-field is an object type and the query method
returns multiple objects, a collection of instances of the object type is
returned.

� If the Java type of the cmp-field is a primitive Java type, and the SELECT
method is a single-object method, the return type is that primitive type.

� If the Java type of the cmp-field is a primitive Java type, and the SELECT
method is for multiple objects, a collection of the wrappered Java type is
returned.

Selecting a ResultSet

When more than one cmp-field is to be returned by a single query method, the
return type must be of type ResultSet. This allows you to select multiple cmp-
fields from the same or multiple EJBs in the same query method. You then
write code to extract the desired data from the ResultSet. This feature is a
Borland extension of the CMP 2.x specification.

Aggregate Functions in EJB-QL
Aggregate functions are MIN, MAX, SUM, AVG, and COUNT. For the
aggregate functions MIN, MAX, SUM, and AVG, the path expression that
forms the argument for the function must terminate in a cmp-field. Also,
database queries for MAX, MIN, SUM, and AVG will return a null value if there
are no rows correspoding to the argument to the aggregate function. If the
return type is an object-type, then null is returned. If the return type is a
primitive type, then the container will throw a ObjectNotFoundException (a sub-
class of FinderException) if there is no value in the query result.

The path expression to the COUNT functions may terminate in either a cmp-
field or cmr-field, or may be an identification variable.

For example, the following EJB-QL aggregate function terminates in a CMP
field:

<query>
 <query-method>
 <method-name>ejbSelectMaxLineItemId</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>

Chapter 17: EJB-QL and Data Access Support 181

Aggregate Funct ions in EJB-QL

 <result-type-mapping>Local</result-type-mapping>
 <ejb-ql>SELECT MAX(l.lineItemId) FROM Account AS a, IN
(a.accountLineItem) l WHERE l.accountId=?1</ejb-ql>
</query>

The following restrictions must be observed for aggregate functions:
� Arguments to the SUM and AVG functions must be numeric (Integer, Byte,

Long, Short, Double, Float, and BigDecimal).
� Arguments to the MAX and MIN functions must correspond to orderable

cmp-field types (numeric, string, character, and dates).
� The path expression that forms the argument for the COUNT function can

terminate in either a cmp-field or a cmr-field. Application performance is
greatly enhanced when the COUNT function is used to determine the size
of a collection of cmr-fields.

Data Type Returns for Aggregate Functions

The following table shows the data types that can be arguments for the
various aggregate functions in EJB-QL selecting a single object, and what
data types will be returned.

An aggregate function that selects multiple objects returns a collection of the
wrappered Java data type that is returned.

Aggregate Function Argument data type Expected return type

MIN, MAX, SUM java.lang.Integer java.lang.Integer

AVG java.lang.Integer java.lang.Double

COUNT java.lang.Integer java.lang.Long

MIN, MAX, SUM java.lang.Integer java.lang.Integer

AVG java.lang.Integer java.lang.Double

COUNT java.lang.Integer java.lang.Long

MIN, MAX, SUM java.lang.Byte java.lang.Byte

AVG java.lang.Byte java.lang.Double

COUNT java.lang.Byte java.lang.Long

MIN, MAX, SUM java.lang.Byte java.lang.Byte

AVG java.lang.Byte java.lang.Double

COUNT java.lang.Byte java.lang.Long

MIN, MAX, SUM java.lang.Long java.lang.Long

AVG java.lang.Long java.lang.Double

COUNT java.lang.Long java.lang.Long

MIN, MAX, SUM java.lang.Long lonjava.lang.Long

AVG java.lang.Long java.lang.Double

COUNT java.lang.Long java.lang.Long

MIN, MAX, SUM java.lang.Short java.lang.Short

AVG java.lang.Short java.lang.Double

182 BES Developer ’s Guide

Support for ORDER BY

Support for ORDER BY
The EJB 2.0 Specification supports three SQL clauses in EJB-QL: SELECT, FROM,
and WHERE.

The Borland CMP engine also supports the SQL clause ORDER BY in the same
EJB-QL statement, provided it is placed after the WHERE clause. This is done in
the standard ejb-jar.xml deployment descriptor in the <ejb-ql> entity. For
example, the following EJB-QL statement selects distinct objects from a
Customer Bean and orders them by the LNAME field:

<query>
 <description></description>

COUNT java.lang.Short java.lang.Long

MIN, MAX, SUM java.lang.Short java.lang.Short

AVG java.lang.Short java.lang.Double

COUNT java.lang.Short java.lang.Long

MIN, MAX, SUM java.lang.Double java.lang.Double

AVG java.lang.Double java.lang.Double

COUNT java.lang.Double java.lang.Long

MIN, MAX, SUM java.lang.Double java.lang.Double

AVG java.lang.Double java.lang.Double

COUNT java.lang.Double java.lang.Long

MIN, MAX, SUM java.lang.Float java.lang.Float

AVG java.lang.Float java.lang.Double

COUNT java.lang.Float java.lang.Long

MIN, MAX, SUM java.lang.Float java.lang.Float

AVG java.lang.Float java.lang.Double

COUNT java.lang.Float java.lang.Long

MIN, MAX, SUM java.math.BigDecimal java.math.BigDecimal

AVG java.math.BigDecimal java.lang.Double

COUNT java.math.BigDecimal java.lang.Long

MIN, MAX java.lang.String java.lang.String

COUNT java.lang.String java.lang.Long

MIN, MAX java.util.Date java.util.Date

COUNT java.util.Date java.lang.Long

MIN, MAX java.sql.Date java.sql.Date

COUNT java.sql.Date java.lang.Long

MIN, MAX java.sql.Time java.sql.Time

COUNT java.sql.Time java.lang.Long

MIN, MAX java.sql.Timestamp java.sql.Timestamp

COUNT java.sql.Timestamp java.lang.Long

Aggregate Function Argument data type Expected return type

Chapter 17: EJB-QL and Data Access Support 183

Support for GROUP BY

 <query-method>
 <method-name>findCustomerByNumber</method-name>
 <method-params />
 <ejb-ql>SELECT Distinct Object(c) from CustomerBean c WHERE c.no > 1000
ORDER BY c.LNAME</eql-ql>
 </query-method>
<query>

You can specify either ASC (ascending) or (DESC) descending in your EJB-
QL as well. If you do not specify either, the results will be ordered ascending
by default.

For example, consider the following table:

The query:

SELECT OBJECT(e) FROM EMPLOYEE e ORDER BY e.HIRE_DATE

will produce the following result:

Support for GROUP BY
The GROUP BY clause is used to group rows in the result table prior to the
SELECT operation being performed. Consider the following table:

NAME DEPARTMENT SALARY HIRE DATE

Timmy Twitfuller Mail Room 1000 1/1/01

Sam Mackey The Closet with the
Light Out

800 1/2/02

Ralph Ossum Coffee Room 900 1/4/01

NAME DEPARTMENT SALARY HIRE DATE

Timmy Twitfuller Mail Room 1000 1/1/01

Ralph Ossum Coffee Room 900 1/4/01

Sam Mackey The Closet with the
Light Out

800 1/2/02

NAME DEPARTMENT SALARY HIRE DATE

Mike Miller Mail Room 1200 11/18/99

Timmy Twitfuller Mail Room 1000 1/1/01

Buddy Coffee Room 1000 4/13/97

Sam Mackey The Closet with the
Light Out

800 1/2/02

Todd Whitmore The Closet with the
Light Out

900 4/12/01

Ralph Ossum Coffee Room 900 1/4/01

184 BES Developer ’s Guide

Sub-Queries

We can get the average salary of each department using a single query
method:

SELECT e.DEPARTMENT, AVG(e.SALARY) FROM EMPLOYEE e GROUP BY e.DEPARTMENT

The results are:

Sub-Queries
Sub-queries are permitted as deep as the database implementation being
queried allows. For example, you could use the following sub-query (in bold)
specified in ejb-jar.xml. Note that the sub-query includes ORDER BY as well,
and the results are to be returned in descending (DESC) order.

<query>
 <query-method>
 <method-name>findApStatisticsWithGreaterThanAverageValue</method-name>
 <method-params />
 </query-method>
 <ejb-ql>SELECT Object(s1) FROM ApStatistics s1 WHERE s1.averageValue >
SELECT AVG(s2.averageValue) FROM ApStatistics s2 ORDER BY s1.averageValue
DESC</ejb-ql>
</query>

See your database implementation documentation for details on the
appropriate use of sub-queries.

Dynamic Queries
There are situations where you may need to search dynamically for data,
based on variable criteria. Unfortunately EJB-QL queries do not support this
scenario. Since EJB-QL queries are specified in the deployment descriptor,
any changes to the queries require re-deployment of the bean. The Borland
Enterprise Server offers a Dynamic Query feature which allows you to
construct and execute EJB-QL queries dynamically and programmatically in
the bean code.

Dynamic queries offer these benefits:
� allow you to create and execute new queries without having to update and

deploy an EJB.
� reduce the size of the EJB's deployment descriptor file because finder

queries can be dynamically created instead of statically defined in the
deployment descriptors.

DEPARTMENT AVG(SALARY)

Coffee Room 950

Mail Room 1100

The Closet with the Light Out 850

Chapter 17: EJB-QL and Data Access Support 185

Dynamic Quer ies

Dynamic queries don't need to be added to the deployment descriptor. They
are declared in the bean class for dynamic ejbSelects, or in the local or remote
home interfaces for dynamic finders.

A finder method for a dynamic query is:

 public java.util.Collection findDynamic(java.lang.String ejbql, Class[]
types, Object[] args)
 throws javax.ejb.FinderException

The ejbSelects for dynamic queries are:

 public java.util.Collection selectDynamicLocal(java.lang.String ejbql,
Class[] types, Object[] params)
 throws javax.ejb.FinderException

 public java.util.Collection selectDynamicRemote(java.lang.String ejbql,
Class[] types, Object[] params)
 throws javax.ejb.FinderException

 public java.sql.ResultSet selectDynamicResultSet(java.lang.String ejbql,
Class[] types, Object[] params)
 throws javax.ejb.FinderException

where the following applies:
� java.lang.String ejbql: this represents the actual EJB-QL syntax.
� Class[] types: this array gives the class types of the parameters to the

select or finder method (it can be an empty array if there are no
parameters).

� Object[] params: this array gives the actual values of the parameters. This is
the same as the parameters argument of the regular select or finder
method.

The return type of a dynamic select or finder is always java.util.Collection,
with the exception of the selectDynamicResultSet. If there is a single instance
of the object or value type returned from the query, it is the first member of
the collection. Dynamic queries follow the same rules as regular queries.

Note There should not be any trace of the four methods associated with dynamic
queries in your deployment descriptor.

Overriding SQL generated from EJB-QL by the CMP engine

Important This feature is for advanced users only!

The Borland CMP engine generates SQL calls to your database based on the
EJB-QL you enter in your deployment descriptors. Depending on your
database implementation, the generated SQL may be less than optimal. You
can capture the generated SQL using tools supplied by your backing-store
implementation or another development tool. If the generated SQL is not
optimal, you can replace it with your own. However, we offer no validation on
the user SQL.

186 BES Developer ’s Guide

Dynamic Quer ies

Note A problem with your SQL may generate an exception which can potentially
crash the system.

You specify your own optimized SQL in the Borland proprietary deployment
descriptor, ejb-borland.xml. The XML grammar is identical to that found in ejb-
jar.xml, except that the <ejb-ql> element is replaced with a <user-sql> element.
This proprietary element contains a SQL-92 statement (not an EJB-QL
statement) that is used to access the database instead of the CMP engine-
generated SQL.

Important The SELECT clause for this statement must be identical to the SELECT clause
generated by the Borland CMP engine.

Subsequent clauses are user-optimized. The ordering of the fields in the
SELECT clause is proprietary to the CMP engine and therefore must be
preserved.

For example:

<entity>
 <ejb-name>EmployeeBean</ejb-name>
 ...
 <query>
 <query-method>
 <method-name>findWealthyEmployees</method-name>
 <method-params />
 </query-method>
 <user-sql>SELECT E.DEPT_NO, E.EMP_NO, E.FIRST_NAME, E.FULL_NAME,
 E.HIRE_DATE, E.JOB_CODE, E.JOB_COUNTRY,
 E.JOB_GRADE, E.LAST_NAME, E.PHONE_EXT, E.SALARY
 FROM EMPLOYEE E WHERE E.SALARY > 200000
 </user-sql>
 </query>
 ...
</entity>

Note The extensive SELECT statement reflects the type of SQL generated by the
CMP engine.

When the CMP engine encounters an EJB-QL statement in the ejb-jar.xml
deployment descriptor, it checks ejb-borland.xml to see if there is any user
SQL provided in the same bean's descriptor.

If none is present, the CMP engine generates its own SQL and executes it.

If the ejb-borland.xml descriptor does contain a query element, it uses the SQL
within the <user-sql> tags instead.

Important The <query> element in ejb-borland.xml does not replace the <query> element in
the standard ejb-jar.xml deployment descriptor. If you want to override the
CMP engine's SQL, you must provide the elements in both descriptors.

Chapter 17: EJB-QL and Data Access Support 187

Conta iner-managed data access suppor t

Container-managed data access support
For CMP, the Borland EJB Container supports all data types supported by the
JDBC specification, including types beyond those supported by JDBC.

The following table shows the basic and complex types supported by the
Borland EJB Container:

Note The Borland CMP engine now supports using the Long value type for dates,
as well as java.sql.Date for java.util.Date.

Keep in mind that the Borland Container supports classes implementing the
java.io.Serializable interface, such as Hashtable and Vector. The container
supports other data types, such as Java collections or third party collections,
because they also implement java.io.Serializable. For classes and data types
that implement the Serializable interface, the Container merely serializes their
state and stores the result into a BLOB. The Container does not do any "smart"
mapping on these classes or types; it just stores the state in binary format.
The Container's CMP engine observes the following rule: the engine serializes
as a BLOB all types that are not one of the explicitly supported types.

Depending on your database implementation, the following data types require
fetching based on column index:

Note If you use either of the two data types BINARY (MS SQL) or RAW (Oracle) as
primary keys, you must explicitly specify their size.

Basic types: boolean Boolean byte Byte char Character

double Double float Float int Integer

long Long short Short String
java.sql.Date

BigDecimal
java.util.Date

byte[] java.sql.Time
java.sql.TimeStam
p

Complex types: Any class implementing java.io.Serializable, such as
Vector and Hashtable

Other entity bean references

Database Data Types

Oracle � LONG RAW

Sybase � NTEXT

� IMAGE

MS SQL � NTEXT

� IMAGE

188 BES Developer ’s Guide

Container-managed data access support

Support for Oracle Large Objects (LOBs)

There are two types of Large Objects (LOBs), Binary Large Objects (BLOBs)
and Character Large Objects (CLOBs).

BLOBs are mapped to CMP fields with the following data types:
� byte[]
� java.io.Serializable
� java.io.InputStream

CLOBs, by virtue of being Character Large Objects, can only be mapped to
cmp-fields with the java.lang.String data type.

By default, the Borland CMP engine does not automatically map cmp-field to
LOBs. If you intend to use LOB data types, you must inform the CMP engine
explicitely in the ejb-borland.xml deployment descriptor. You do this by setting
the Column Property createColumnSql. For example:

<column-properties>
 <column-name>CLOB-column</column-name>
 <property>
 <prop-name>createColumnSql</prop-name>
 <prop-type>String></prop-type>
 <prop-value>CLOB</prop-value>
 </property>
</column-properties>

<column-properties>
 <column-name>BLOB-column</column-name>
 <property>
 <prop-name>createColumnSql</prop-name>
 <prop-type>String></prop-type>
 <prop-value>BLOB</prop-value>
 </property>
</column-properties>

Container-created tables

You can instruct the Borland EJB Container to automatically create tables for
container-managed entities based on the entity's container-managed fields by
enabling the create-tables property. Because table creation and data type
mappings vary among vendors, you must specify the JDBC database dialect
in the deployment descriptor to the Container. For all databases (except for
JDataStore) if you specify the dialect, then the Container automatically creates
tables for container-managed entities for you if the create-tables property is
set to true. The Container will not create these tables unless you specify the
dialect.

Chapter 17: EJB-QL and Data Access Support 189

Conta iner-managed data access suppor t

The following table shows the names or values for the different dialects (case
is ignored for these values):

Database Name Dialect Value

JDataStore jdatastore

Oracle oracle

Sybase sybase

MSSQLServer mssqlserver

DB2 db2

Interbase interbase

Informix informix

190 BES Developer ’s Guide

Chapter 18: Generat ing Ent i ty Bean Pr imary Keys 191

C h a p t e r

18
Chapter18Generating Entity Bean Primary

Keys
Each entity bean must have a unique primary key that is used to identify the
bean instance. The primary key can be represented by a Java class, which
must be a legal value type in RMI-IIOP. Therefore, it extends the
java.io.Serializable interface. It must also provide an implementation of the
Object.equals(Object other) and Object.hashCode() methods.

Normally, the primary key fields of entity beans must be set in the ejbCreate()
method. The fields are then used to insert a new record into the database.
This can be a difficult procedure, however, bloating the method, and many
databases now have built-in mechanisms for providing appropriate primary
key values. A more elegant means of generating primary keys is for the user
to implement a separate class that generates primary keys. This class can
also implement database-specific programming logic for generating primary
keys.

You may either generate primary keys by hand, use a custom class, or allow
the container to use the database tools to perform this for you. If you use a
custom class, implement the com.borland.ejb.pm.PrimaryKeyGenerationListener
interface, discussed in “Generating primary keys from a custom class” on
page 192. To use the database tools, you can refer to “Implementing primary
key generation by the CMP engine” on page 192 for information on the CMP
engine generating primary keys depending upon the database vendor.

Important For documentation updates, go to www.borland.com/techpubs/bes.

192 BES Developer ’s Guide

Generat ing pr imary keys f rom a user c lass

Generating primary keys from a user class
With enterprise beans, the primary key is represented by a Java class
containing the unique data. This primary key class can be any class as long as
that class is a legal value type in RMI-IIOP, meaning it extends the
java.io.Serializable interface. It must also provide an implementation of the
Object.equals(Object other) and Object.hashCode() methods, two methods
which all Java classes inherit by definition.

Generating primary keys from a custom class
To generate primary keys from a custom class, you must write a class that
implements the com.borland.ejb.pm.PrimaryKeyGenerationListener interface.

Note this is a new interface for generating primary keys. In previous versions of
Borland Enterprise Server, this class was
com.inprise.ejb.cmp.PrimaryKeyGenerator. This interface is still supported, but
Borland recommends using the newer interface when possible.

Next, you must inform the container of your intention to use your custom class
to generate primary keys for your entity beans. To do this, you set a table
property primaryKeyGenerationListener to the class name of your primary key
generator.

Implementing primary key generation by the CMP engine
Primary key generation can also be implemented by the CMP engine. Borland
provides four properties to support primary key generation using database
specific features. These properties are:
� getPrimaryKeyBeforeInsertSql

� getPrimaryKeyAfterInsertSql

� ignoreOnInsert
� useGetGeneratedKeys

All of these properties are table properties except ignoreOnInsert, which is a
column property. Setting table and column properties is discussed here.

Oracle Sequences: using getPrimaryKeyBeforeInsertSql

The property getPrimaryKeyBeforeInsertSql is typically used in conjunction with
Oracle Sequences. The value of this property is a SQL statement used to
select a primary key generated from a sequence. For example, the property
could be set to:

SELECT MySequence.NEXTVAL FROM DUAL

Chapter 18: Generat ing Ent i ty Bean Pr imary Keys 193

Implement ing pr imary key generat ion by the CMP engine

The CMP engine would execute this SQL and then extract the appropriate
value from the ResultSet. This value will then be used as the primary key
when performing the subsequent INSERT. The extraction from the ResultSet is
based on the primary key's type

SQL Server: using getPrimaryKeyAfterInsertSql and
ignoreOnInsert

Two properties need to be specified for cases involving SQL Server. The
getPrimaryKeyAfterInsertSql property specified the SQL to execute after the
INSERT has been performed. As above, the CMP engine extracts the primary
key from the ResultSet based on the primary key's type. The property
ignoreOnInsert must also be set to the name of the identity column. The CMP
engine will then know not to set that column in the INSERT.

JDataStore JDBC3: using useGetGeneratedKeys

Borland's JDataStore supports the new JDBC3 method
java.sql.Statement.getGeneratedKeys(). This method is used to obtain primary
key values from newly inserted rows. No additional coding is necessary, but
note that this method is unsupported in other databases and is recommended
for use only with Borland JDataStore. To use this method, set the boolean
property useGetGeneratedKeys to True.

Automatic primary key generation using named sequence
tables

A named sequence table is used to support auto primary key generation when
the underlying database (such as Oracle SEQUENCE) and the JDBC driver
(AUTOINCREMENT in JDBC 3.0) do not support key generation . The named
sequence table allows you to specify a table that holds a key to use for primary
key generation. The container uses this table to generate the keys.

The table must contain a single row with a single column

To use the name sequence table your table must have a single row with a
single column that is an integer (for the sequence values). You must create a
table with one column named "SEQUENCE" with any initial value. For example:

 CREATE TABLE TAB_A_SEQ (SEQUENCE int);
 INSERT into TAB_A_SEQ values (10);

In this example key generation starts from value 10.

To enable this feature, set it in <column-properties> in ejb-borland.xml:

<table-properties>
 <table-name>TABLE_A</table-name>
 <column-properties>
 <column-name>ID</column-name>

194 BES Developer ’s Guide

Implement ing pr imary key generat ion by the CMP engine

 <property>
 <prop-name>autoPkGenerator</prop-name>
 <prop-type>java.lang.String</prop-type>
 <prop-value>NAMEDSEQUENCETABLE</prop-value>
 </property>
 <property>
 <prop-name>namedSequenceTableName</prop-name>
 <prop-type>java.lang.String</prop-type>
 <prop-value>TAB_A_SEQ</prop-value>
 </property>
 <property>
 <prop-name>keyCacheSize</prop-name>
 <prop-type>java.lang.Integer</prop-type>
 <prop-value>2</prop-value>
 </property>
 </column-properties>
......
 </table-properties>

Note that "ID" is the primary key column, which is marked for auto Pk
Generation using NAMEDSEQUENCETABLE. The table used is TAB_A_SEQ.

Note Set the ejb.CacheCreate property to false while using getPrimaryKeyAfterInsert
or useGetGeneratedKeys. The container needs to know the primary key to
dispatch calls to the bean instance. Therefore, it needs to know the primary
key at the same time the Create method returns.

Key cache size
When generating the primary key, the container fetches the key from the table
in the database. You can improve performance by reducing trips to the
database by specifying a key cache size. To use this feature, in the ejb-
borland.xml file, you set the <key-cache-size> element to specify how many
primary key values the database will fetch. The container will cache the
number of keys used for primary key generation when the value of the cache
size is > 1.

The default value for key cache size, if not specified, is 1. Although key cache
size is optional, it is recommended you specify a value > 1 to utilize
performance optimization.

Note There may be gaps in the keys generated if the container is rebooted or used
in a clustered mode.

Chapter 19: Transact ion management 195

C h a p t e r

19
Chapter19Transaction management

This chapter describes how to handle transactions.

Important For documentation updates, go to www.borland.com/techpubs/bes.

Understanding transactions
Application programmers benefit from developing their applications on
platforms such as Java 2 Enterprise Edition (J2EE) that support transactions.
A transaction-based system simplifies application development because it
frees the developer from the complex issues of failure recovery and multi-user
programming. Transactions are not limited to single databases or single sites.
Distributed transactions can simultaneously update multiple databases across
multiple sites.

A programmer typically divides the total work of an application into a series of
units. Each unit of work is a separate transaction. As the application
progresses, the underlying system ensures that each unit of work, each
transaction, fully completes without interference from other processes. If not, it
rolls back the transaction and completely undoes whatever work the
transaction had performed.

Characteristics of transactions

Typically, transactions refer to operations that access a shared resource like a
database. All access to a database is performed in the context of a
transaction. All transactions share the following characteristics:

196 BES Developer ’s Guide

Understanding t ransact ions

� Atomicity
� Consistency
� Isolation
� Durability

These characteristics are denoted by the acronym ACID.

A transaction often consists of more than a single operation. Atomicity
requires that either all or none of the operations of a transaction are performed
for the transaction to be considered complete. If any of a transaction's
operations cannot be performed, then none of them can be performed.

Consistency refers to resource consistency. A transaction must transition the
database from one consistent state to another. The transaction must preserve
the database's semantic and physical integrity.

Isolation requires that each transaction appear to be the only transaction
currently manipulating the database. Other transactions can run concurrently.
However, a transaction must not see the intermediate data manipulations of
other transactions until and unless they successfully complete and commit
their work. Because of interdependencies among updates, a transaction can
get an inconsistent view of the database were it to see just a subset of another
transaction's updates. Isolation protects a transaction from this sort of data
inconsistency.

Transaction isolation is qualified by varying levels of concurrency permitted by
the database. The higher the isolation level, the more limited the concurrency
extent. The highest level of isolation occurs when all transactions can be
serialized. That is, the database contents look as if each transaction ran by
itself to completion before the next transaction started. However, some
applications can tolerate a reduced level of isolation for a higher degree of
concurrency. Typically, these applications run a greater number of concurrent
transactions even if transactions are reading data that may be partially
updated and perhaps inconsistent.

Lastly, durability means that updates made by committed transactions persist
in the database regardless of failure conditions. Durability guarantees that
committed updates remain in the database despite failures that occur after the
commit operation and that databases can be recovered after a system or
media failure.

Transaction support

BES supports flat transactions, but not nested transactions. Transactions are
implicitly propagated. This means that the user does not have to explicitly
pass the transaction context as a parameter, because the J2EE container
transparently handles this for the client.

Transaction management can be performed programmatically by calling the
standard JTS or JTA APIs. An alternative, and more recommended approach,
when writing J2EE components such as Enterprise JavaBeans (EJBs) is to

Chapter 19: Transact ion management 197

Transact ion manager serv ices

use declarative transactions where the J2EE Container transparently starts
and stops transactions.

Transaction manager services
There are two transaction managers, or engines, available in BES:
� Transaction Manager (formerly known as Partition Transaction Service)
� OTS (formerly known as 2PC Transaction Service)

A Transaction Manager exists in each BES Partition. It is a Java
implementation of the CORBA Transaction Service Specification. The
Transaction Manager supports transaction timeouts, one-phase commit
protocol and can be used in a two-phase commit protocol under special
circumstances.

Use the Transaction Manager under the following conditions:
� When using one-phase commit protocol.
� When you need faster performance. Currently, only the Transaction

Manager can be configured to be in-process. The transaction management
APIs and other transaction components are in-process JVM calls, so it is
much faster than the OTS engine.

� When using a two-phase commit protocol but do not care about transaction
recovery. For example, when checking business logic during development
of an Enterprise JavaBean there is no need for transaction recovery. If you
use the Transaction Manager for two-phase commit, you must set the
"Allow unrecoverable completion" property to true in "Properties" for the
Transaction Manager as displayed under the Partition in the BES
Management Console. Alternatively, you can set system property
EJBAllowUnrecoverableCompletion for the partition.

The OTS engine exists in a separate address space. It provides a complete
solution for distributed transactional CORBA applications. Implemented on top
of the VisiBroker ORB, the OTS engine simplifies the complexity of distributed
transactions by providing an essential set of services - including a transaction
service, recovery and logging, integration with databases, and administration
facilities - within one, integrated architecture.

Distributed transactions and two-phase commit

The Borland EJB Container supports distributed transactions. Distributed
transactions are those transactions that cross systems, platforms, and Java
Virtual Machines (JVMs).

Transactions that manipulate data across multiple resources use a two-phase
commit process. This process ensures that the transaction correctly updates
all resources involved in the transaction. If it cannot update all resources, then
it updates none of the resources.

198 BES Developer ’s Guide

Transact ion manager serv ices

Note Although support is provided by BES for two-phase commit transactions, they
are inherently expensive due to number of remote procedure calls (RPCs) and
should be used only when needed. Go to, “When to use two-phase commit
transactions” on page 198.

There are two steps to a two-phase commit. The first step is the preparation
phase. In this phase the transaction service requests that each resource
involved in the transaction readies its updates and signal to the transaction
service whether it can commit the updates. The second step is the commit
phase. The transaction service initiates the actual resource updates only when
all resources have signaled that they can complete the update process.
Should any resource signal they cannot perform updates, the transaction
service instructs all other resources to rollback all updates involved in the
transaction.

The Transaction Manager and OTS engine support both heterogeneous
distributed (two-phase commit) transactions and two-phase commit for
homogeneous resources.

By default, the Transaction Manager does not allow multiple resources to
participate in a global transaction, but it can be configured to allow multiple
resource participation through its support for unrecoverable transaction
completion. This can be enabled on the Transaction Manager by setting either
"Allow unrecoverable completion" option from the Management Console
(right-click the Transaction Manager and select "Properties"), or the Partition
system property EJBAllowUnrecoverableCompletion. When unrecoverable
transaction completion is enabled, the container makes a one-phase commit
call on each participating resource during the transaction commit process.
Care must taken when enabling unrecoverable transaction completion; as the
name suggests, no recovery is available when a failure occurs prior to
transaction completion, which may lead to inconsistent states in participating
resources.

To support heterogeneous two-phase commit transactions, the OTS engine
must integrate with XA support in the underlying resources. With availability of
XA-enabled JDBC drivers from DBMS vendors and JMS support provided by
message service providers, the EJB container and OTS engine allow multiple
resources to participate in a single transaction.

Two-phase commit for homogeneous databases requires some configuration
of the DBMS servers. While the container controls the commit to the first
database, the DBMS server controls the commits to the subsequent
databases using the DBMS's built-in transaction coordinator. For more
information, see your vendor's manual for the DBMS server.

When to use two-phase commit transactions

One of the basic principals of building high performance distributed
applications is to limit the number of remote procedure calls (RPCs). The
following explains typical situations; when and when not to use two-phase
commit transactions. Avoiding a two-phase commit transaction when it is not

Chapter 19: Transact ion management 199

Transact ion manager serv ices

needed, therefore avoiding unnecessary RPCs involving JTA XAResource
objects and the OTS engine, greatly improves your application's performance.

Using multiple JDBC connections for access to multiple database resources
from a single vendor in the same transaction:
In scenarios involving multiple databases from a single vendor, it is often
possible to avoid using two-phase commit. You can access one database and
use it to access the second database by tunneling access through the
connection to the first database. Oracle and other DBMSs provide this
capability. In this case the BES Partition can be configured with only one
JDBC connection to the "fronting" database. Access to the "backing" database
is tunneled through the first JDBC connection.

Using multiple JDBC connections to the same database resource in the same
transaction:
When multiple JDBC connections to the same database are obtained and
used by distributed participants within a single transaction, a two-phase
commit can be avoided. The JDBC connections, as expected, need to be
obtained from a XA datasource. But, rather than performing a two-phase
commit, a one-phase commit can be used to complete the transaction since
only a single resource is involved. This is achieved by using the Transaction
Manager rather than the OTS engine. An alternative is to collocate all EJBs
involved in the transaction, rather than having them deployed in distributed
Partitions. In this case, a non-XA datasource is used and no two-phase
commit is required.

Using multiple disparate resources in a single transaction:
In this case there is a need for a two-phase commit transaction. This situation
arises when, for example, you are running a single transaction against both
Oracle and Sybase, or if you have a transaction that includes access to an
Oracle database and a JMS provider, such as MQSeries. In the latter case,
the transaction is coordinated using JTA XAResource object, obtained from
Oracle via JDBC and MQSeries via JMS, and enables both resources to
participate in the two-phase commit transaction completion. It is worth noting
that two-phase commit capabilities (provided by the OTS engine), are only
needed when a single transaction involves access to multiple incompatible
resources.

Note In order to utilize the OTS engine as the default transaction service, the
Transaction Manager must be stopped first.

EJBs and 2PC transactions

With the introduction of messaging in the J2EE platform, a number of common
scenarios now exist involving access to multiple resources from EJBs in a
single transaction . As we know, when more than one resource is involved in a

200 BES Developer ’s Guide

Transact ion manager serv ices

transaction, the OTS engine is needed to reliably complete the transaction
using the two-phase commit protocol. Sample scenarios include:
� A session bean accesses two types of entity beans in a transaction where

each are persisted in a different database.
� A session bean accesses an entity bean and in the same transaction does

some messaging work, such as sending a message to a JMS queue.
� In the onMessage method of a message-driven bean, access entity beans on

message delivery.

In each of the above examples, two heterogeneous resources need to be
accessed from within a session bean or a message-driven bean as part of a
single transaction. These EJBs have the REQUIRED transaction attribute defined
and need access to the OTS engine. However, if the OTS engine is running,
then all modules deployed to that Partition are able to discover it and can
attempt to use it. The OTS engine will perform a one-phase commit when only
one resource is registered in a transaction, but suffers the extra RMI overhead
since it is an external process. Ideally, the in-process Transaction Manager
should be used for EJBs not involved in a two-phase commit transaction. To
better utilize the transaction services available in BES, a bean-level property,
ejb.transactionManagerInstanceName may be specified for EJBs that require 2PC
transaction completion. This property provides the name of the OTS engine to
be used by the EJB container doing transaction demarcation on any of the
methods for the relevant bean. Both the Transaction Manager and the OTS
engine may be available for all EJBs but only those that do not have
ejb.transactionManagerInstanceName specified will discover the Transaction
Manager.

This property can be commonly used for session or message-driven beans
since transactions are usually demarcated in a session bean facade or the
onMessage method of a message-driven bean.

To set the ejb.transactionManagerInstanceName property use the Management
Console. Navigate to your deployed EJB module, right-click on it and select
"DDEditor". In the DDEditor select the required bean from the Navigation
Pane. Select the "Properties" tab and add the
ejb.transactionManagerInstanceName property. Define the property as a String
and specify a unique name value such as "MyTwoPhaseEngine".

Next, you must modify the OTS engine factory name with the
ejb.transactionManagerInstanceName value. In the Management Console, select
the OTS engine from the "corbaSample" configuration, identified as the "OTS
engine" managed object type. Right-click and select "Properties" from the
drop-down menu. In the Properties dialog choose the Settings tab and modify
the value for "Factory Name". Click OK, and restart the service. The OTS
engine may also be started from the command line, independent of a BES
server. The factory name can be provided using property vbroker.ots.name as
follows: :

prompt> ots -Dvbroker.ots.name=<MyTwoPhaseEngine>

The EJB will now use the OTS engine named "MyTwoPhaseEngine". As
mentioned, the Partition may be hosting several J2EE modules, but only those

Chapter 19: Transact ion management 201

Transact ion manager serv ices

beans that have ejb.transactionManagerInstanceName set go to the (non-default)
OTS engine. Other beans in the Partition that require method invocation in a
transaction, but do not require 2PC, always find the Transaction Manager due
to local service affinity.

Following is a deployment configuration usage example. Displayed below is
an extract from deployment descriptor ejb-borland.xml packaged with the
deployed EJB module and viewable in the DDEditor. The
ejb.transactionManagerInstanceName property is set for Session bean
"OrderSesEJB" where OrderSesEJB takes orders from customers, creates an order
in the database and sends messages to the manufacturers for making parts.

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>OrderSesEJB</ejb-name>
 <bean-home-name>OrderSes</bean-home-name>
 <bean-local-home-name />
 <ejb-local-ref>
 <ejb-ref-name>ejb/OrderEntLocal</ejb-ref-name>
 <jndi-name>OrderEntLocal</jndi-name>
 </ejb-local-ref>
 <ejb-local-ref>
 <ejb-ref-name>ejb/ItemEntLocal</ejb-ref-name>
 </ejb-local-ref>
 <resource-ref>
 <res-ref-name>jms/QueueConnectionFactory</res-ref-name>
 <jndi-name>serial://QueueConnectionFactory</jndi-name>
 </resource-ref>
 <resource-env-ref>
 <resource-env-ref-name>jms/OrderQueue</resource-env-ref-
name>
 <jndi-name>serial://OrderQueue</jndi-name>
 </resource-env-ref>
 <property>
 <prop-name>ejb.transactionManagerInstanceName</prop-name>
 <prop-type>String</prop-type>
 <prop-value>TwoPhaseEngine</prop-value>
 </property>
 </session>

<ejb-jar>

Example runtime scenarios
The following diagrams show configurations where the standard Transaction
Manager and the OTS engine co-exist. The deployment configuration is done
in a manner in which the beans participating in 2PC transactions have their
transaction management done by the OTS engine, named "TwoPhaseEngine",
and those that don't need 2PC transactions use the default in- process
Transaction Manager.

202 BES Developer ’s Guide

Transact ion manager serv ices

The example archive used is complex.ear, in a BES Partition. It has three
beans:
� OrderSesEJB: takes orders from customers, creates an order in the database,

and sends messages to the manufacturers for making parts.
� UserSesEJB: creates new users in the company database. Only accesses a

single database, therefore only needs to access a 1PC engine (Transaction
Manager).

� OrderCompletionMDB: receives a notification from the manufacturer about the
part delivery, and also updates the database using entity beans.

To configure this example deployment scenario:

1 Using the DDEditor, add the ejb.transactionManagerInstance property to the
beans OrderSesEJB and OrderCompletionMDB. Refer to the above XML extract
for this example.

2 Next, using the Management Console, start the OTS engine with factory
name set as "TwoPhaseEngine".

3 Keep the local Transaction Manager enabled.

The following diagrams show example interactions between the client, the
BES Partition, and how the BES Partition locates the right transaction service
based on the above configuration. All of the beans are assumed to have
container-managed transactions.

Example 1PC usage
1 (A) The client calls a method of UserSesEJB. This is an implementation of the

method that creates users in the database.

2 (B) Before the call is actually invoked, as shown below, the Partition uses
its in-process Transaction Manager to begin the transaction.

3 (C) The session bean does some database work.

4 (D) When the call is over, the Partition issues commit.

5 (E) The Transaction Manager calls commit_one_phase() on the database
resource.

Chapter 19: Transact ion management 203

Declarat ive t ransact ion management in Enterpr ise JavaBeans

Example 2PC usage
1 (A) The client calls OrderSesEJB.create() method to create a new order.

2 (B) Since the bean is configured to use the OTS engine named
TwoPhaseEngine, the container locates the right transaction service
named TwoPhaseEngine, and uses it for beginning the transaction.

3 (C) The session bean does some database work, and sends a message to
a JMS queue.

4 (D) When the call is over, the Partition issues commit.

5 (E) The OTS engine coordinates the transaction completion with the
database and the JMS resources.

Example 2PC usage with MDBs
At some point in time, an asynchronous message is delivered to
OrderCompletionMDB by invoking its onMessage() method, which has a REQUIRED
transaction attribute. The container starts a transaction using ITS and then
invokes the onMessage() method. In the body of the method, the bean updates
the database to indicate order delivery. It is important to note that there are 2
resources involved. The first one is the JMS resource, which is associated
with the MDB instances that got the message, and the second is the database
that the MDB instance updated. This scenario is similar to the example
diagram above.

Note ejb.transactionManagerInstanceName is also supported for MDBs. See
Chapter 20, “Message-Driven Beans and JMS” for more information.

Declarative transaction management in Enterprise JavaBeans
Transaction management for Enterprise JavaBeans (EJBs) is handled by the
EJB Container and the EJBs. Enterprise JavaBeans make it possible for
applications to update data in multiple databases within a single transaction.

204 BES Developer ’s Guide

Declarat ive t ransact ion management in Enterpr ise JavaBeans

EJBs utilize a declarative style of transaction management that differs from the
traditional transaction management style. With declarative management, the
EJB declares its transaction attributes at deployment time. The transaction
attributes indicate whether the EJB container manages the bean's
transactions or whether the bean itself manages its own transactions, and, if
so, to what extent it does its own transaction management.

Traditionally, the application was responsible for managing all aspects of a
transaction. This entailed such operations as:
� Creating the transaction object.
� Explicitly starting the transaction.
� Registering resources involved in the transaction.
� Keeping track of the transaction context.
� Committing the transaction when all updates completed.

It requires a developer with extensive transaction processing expertise to write
an application that is responsible for managing a transaction from start to
finish. The code for such an application is more complex and difficult to write,
and it is easy for "pilot error" to occur.

With declarative transaction management, the EJB container manages most if
not all aspects of the transaction for you. The EJB container handles starting
and ending the transaction, plus maintains its context throughout the life of the
transaction object. This greatly simplifies an application developer's
responsibilities and tasks, especially for transactions in distributed
environments.

Understanding bean-managed and container-managed
transactions

When an EJB programmatically performs its own transaction demarcation as
part of its business methods, that bean is considered to be using bean-
managed transaction. On the other hand, when the bean defers all transaction
demarcation to its EJB container, and the container performs the transaction
demarcation based on the Application Assembler's deployment instructions,
then the bean is referred to as using container-managed transaction.

EJB session beans, both stateful and stateless varieties, can use either
container- or bean-managed transactions. However, a bean cannot use both
types of transaction management at the same time. EJB entity beans can only
use container-managed transaction. It is the bean provider who decides the
type of transaction which an EJB can use.

An EJB can manage its own transaction if it wishes to start a transaction as
part of one operation and then finish the transaction as part of another
operation. However, such a design might be problematic if one operation calls
the transaction starting method, but no operation calls the transaction ending
method.

Chapter 19: Transact ion management 205

Declarat ive t ransact ion management in Enterpr ise JavaBeans

Whenever possible, enterprise beans should use container-managed
transactions as opposed to bean-managed transactions. Container-managed
transactions require less programming work and are less prone to
programming error. In addition, a container-managed transaction bean is
easier to customize and compose with other beans.

Local and Global transactions

A local transaction is a transaction that is managed by the resource manager
such as that associated with a database. A global transaction, on the other
hand, is a transaction managed by the Transaction Manager or the OTS
engine which are global transaction managers.

An EJB that uses bean-managed transaction demarcation uses the
javax.transaction.UserTransaction interface to explicitly demarcate global
transaction boundaries. When transaction demarcation is container managed,
the container interposes each client call to control the transaction
demarcation. It then controls this demarcation declaratively, according to the
transaction attribute set by the Application Assembler in the deployment
descriptor. The transaction attribute also determines whether the transaction
is local or global.

The EJB container follows certain rules to determine when it is to do a local
versus a global transaction for container-managed transactions. In general, a
container calls the method within a local transaction after verifying that no
global transaction already exists. It also verifies that it is not expected to start a
new global transaction and that the transaction attributes are set for container-
managed transactions. The container automatically wraps a method
invocation within a local transaction if one of the following is true:
� If the transaction attribute is set to NotSupported and the container detects

that database resources were accessed.
� If the transaction attribute is set to Supports and the container detects that

the method was not invoked from within a global transaction.
� If the transaction attribute is set to Never and the container detects that

database resources were accessed.

The EJB container supports the following characteristics for local transactions:
� Local transactions support the javax.ejb.EJBContext methods

setRollbackOnly() and getRollbackOnly().
� Local transactions support time-outs for database connections and

transactions.
� Local transactions are lightweight from a performance standpoint.

The EJB container supports the following characteristics for global
transactions:
� Local transactions support time-outs for database connections and

transactions.
� Local transactions are lightweight from a performance standpoint.

206 BES Developer ’s Guide

Declarat ive t ransact ion management in Enterpr ise JavaBeans

Transaction attributes

EJBs that use bean-managed transaction have transaction attributes
associated with each method of the bean. The attribute value tells the
container how it must manage the transactions that involve this bean. There
are six different transaction attributes that can be associated with each
method of a bean. This association is done at deployment time by the
Application Assembler or Deployer.

These attributes are:
� Required: This attribute guarantees that the work performed by the

associated method is within a global transaction context. If the caller
already has a transaction context, then the container uses the same
context. If not, the container begins a new transaction automatically. This
attribute permits easy composition of multiple beans and co-ordination of
the work of all the beans using the same global transaction.

� RequiresNew: This attribute is used when the method does not want to be
associated with an existing transaction. It ensures that the container begins
a new transaction.

� Supports: This attribute permits the method to avoid using a global
transaction. This must only be used when a bean's method only accesses
one transaction resource, or no transaction resources, and does not invoke
another enterprise bean. It is used solely for optimization, because it avoids
the cost associated with global transactions. When this attribute is set and
there is already a global transaction, the EJB Container invokes the method
and have it join the existing global transaction. However, if this attribute is
set, but there is no existing global transaction, the Container starts a local
transaction for the method, and that local transaction completes at the end
of the method.

� NotSupported: This attribute also permits the bean to avoid using a global
transaction. When this attribute is set, the method must not be in a global
transaction. Instead, the EJB Container suspends any existing global
transaction and starts a local transaction for the method, and the local
transaction completes at the conclusion of the method.

� Mandatory: It is recommended that this attribute not be used. Its behavior is
similar to Requires, but the caller must already have an associated
transaction. If not, the container throws a
javax.transaction.TransactionRequiredException. This attribute makes the
bean less flexible for composition because it makes assumptions about the
caller's transaction.

� Never: It is recommended that this attribute not be used. However, if used,
the EJB Container starts a local transaction for the method. The local
transaction completes at the conclusion of the method.

Under normal circumstances only two attributes, Required and RequiresNew,
must be used. The attributes Supports and NotSupported are strictly for
optimization. The use of Never and Mandatory are not recommended because
they affect the composibility of the bean. In addition, if a bean is concerned

Chapter 19: Transact ion management 207

Programmatic t ransact ion management us ing JTA APIs

about transaction synchronization and implements the
javax.ejb.SessionSynchronization interface, then the Assembler/Deployer can
specify only the attributes Required, RequiresNew, or Mandatory. These attributes
ensure that the container invokes the bean only within a global transaction,
because transaction synchronization can only occur within a global
transaction.

Programmatic transaction management using JTA APIs
All transactions use the Java Transaction API (JTA). When transactions are
container managed, the platform handles the demarcation of transaction
boundaries and the container uses the JTA API; you do not need to use this
API in your bean code.

A bean that manages its own transactions (bean-managed transaction),
however, must use the JTA javax.transaction.UserTransaction interface. This
interface allows a client or component to demarcate transaction boundaries.
Enterprise JavaBeans that use bean-managed transactions use the method
EJBContext.getUserTransaction().

In addition, all transactional clients use JNDI to look up the UserTransaction
interface. This simply involves constructing a JNDI InitialContext using the
JNDI naming service, as shown in the following line of code:

javax.naming.Context context = new javax.naming.InitialContext();

Once the bean has obtained the InitialContext object, it can then use the
JNDI lookup() operation to obtain the UserTransaction interface, as shown in the
following code sample.

javax.transaction.UserTransaction utx = (javax.transaction.UserTransaction)
 context.lookup("java:comp/UserTransaction");

Note that an EJB can obtain a reference to the UserTransaction interface from
the EJBContext object. This is because an enterprise bean by default inherits a
reference to the EJBContext object. Thus, the bean can simply use the
EJBContext.getUserTransaction() method rather than having to obtain an
InitialContext object and then using the JNDI lookup() method. However, a
transactional client that is not an enterprise bean must use the JNDI lookup
approach.

When the bean or client has the reference to the UserTransaction interface, it
can then initiate its own transactions and manage these transactions. That is,
you can use the UserTransaction interface methods to begin and commit (or
rollback) transactions. You use the begin() method to start the transaction,
then the commit() method to commit the changes to the database. Or, you use
the rollback() method to abort all changes made within the transaction and
restore the database to the state it was in prior to the start of the transaction.
Between the begin() and commit() methods, you include code to carry out the
transaction's business.

208 BES Developer ’s Guide

JDBC API Modi f icat ions

JDBC API Modifications
The standard Java Database Connectivity (JDBC) API is used by BES to
access databases that support JDBC through vendor provided drivers.
Requests for access to a database is centralized through the BES JDBC
Connection Pool. This section describes modifications the BES JDBC pool
makes to JDBC behavior for transactions.

The JDBC pool is a pseudo JDBC driver that allows a transactional application
to obtain a JDBC connection to a database. The JDBC pool associates JDBC
connections with the Transaction Manager's transactions, and delegates
connection requests to JDBC drivers that factory the JDBC connections. Once
a connection is obtained using the JDBC pool, the transaction is coordinated
automatically by the transaction service.

The JDBC pool and its associated resources provide complete transactional
access to the DBMS. The JDBC pool registers resources transparently with
the transaction coordinator. Because of limitations of the 1.x version of the
JDBC API, the JDBC pool can only provide one-phase commit. Version 2.0 of
the JDBC API supports full two-phase commit.

Modifications to the behavior of the JDBC API

To enable JDBC access for transactional applications written in Java, you use
the JDBC API. The JDBC API is fully documented at the following web site:

www.javasoft.com/products

However, the behavior of some JDBC methods is overridden by the partition's
transaction service when they are invoked within the context of a transaction
managed by the partition. The following methods are affected:
� Java.sql.Connection.commit()

� Java.sql.Connection.rollback()

� Java.sql.Connection.close()

� Java.sql.setAutoCommit(boolean)

The rest of this section explains the changes to the semantics of these
methods for partition-managed transactions.

Note If a thread is not associated with a transaction, all of these methods will use
the standard JDBC transaction semantics.

Overridden JDBC methods

Java.sql.Connection.commit()

As defined in the JDBC API, this method commits all work that was performed
on a JDBC connection since the previous commit() or rollback(), and releases
all database locks.

Chapter 19: Transact ion management 209

Handl ing of EJB except ions

If a global transaction is associated with the current thread of execution do not
use this method. If the global transaction is not a container-managed
transaction, that is the application manages its own transactions, and a
commit is required use the JTA API to perform the commit rather than invoking
commit() directly on the JDBC connection.

Java.sql.Connection.rollback()

As defined in the JDBC API, this method rolls back all work that was
performed on a JDBC connection since the previous commit() or rollback(),
and releases all database locks.

If a global transaction is associated with the current thread of execution do not
use this method. If the global transaction is not a container-managed
transaction, that is the application manages its own transactions, and a
rollback is required use the JTA API to perform the rollback rather than
invoking rollback() directly on the JDBC connection.

Java.sql.Connection.close()

As defined in the JDBC API, this method closes the database connection and
all JDBC resources associated with the connection.

If the thread is associated with a transaction this call simply notifies the JDBC
pool that work on the connection is complete. The JDBC pool releases the
connection back to the connection pool once the transaction has completed.
JDBC connections opened by the JDBC pool cannot be closed explicitly by an
application.

Java.sql.Connection.setAutoCommit(boolean)

As defined in the JDBC API, this method is used to set the auto commit mode
of a transaction. The setAutoCommit() method allows Java applications to
either:
� Execute and commit all SQL statements as individual transactions (when

set to true). This is the default mode, or
� Explicitly invoke commit() or rollback() on the connection (when set to

false).

If the thread is associated with a transaction, the JDBC pool turns off the auto-
commit mode for all connections factoried in the scope of a partition's
transaction service transaction. This is because the transaction service must
control transaction completion. If an application is involved with a transaction,
and it attempts to set the auto commit mode to true, the
java.sql.SQLException() will be raised.

Handling of EJB exceptions
Enterprise JavaBeans can throw application and/or system level exceptions if
they encounter errors while handling transactions. Application-level
exceptions pertain to errors in the business logic and are intended to be
handled by the calling application. System-level exceptions, such as runtime

210 BES Developer ’s Guide

Handl ing of EJB except ions

errors, transcend the application itself and can be handled by the application,
the bean, or the bean container.

The EJB declares application-level exceptions and system-level exceptions in
the throws clauses of its Home and Remote interfaces. You must check for
checked exceptions in your program try/catch block when calling bean
methods.

System-level exceptions

An EJB throws a system-level exception, which is a java.ejb.EJBException (but
may also be a java.rmi.RemoteException), to indicate an unexpected system-
level failure. For example, it throws this exception if it cannot open a database
connection. The java.ejb.EJBException is a runtime exception and does not
have to be listed in the throws clause of the bean's business methods.

System-level exceptions usually require the transaction to be rolled back.
Often, the container managing the bean does the rollback. Other times,
especially with bean-managed transactions, the client must rollback the
transaction.

Application-level exceptions

An EJB throws an application-level exception to indicate application-specific
error conditions, that is, business logic errors and not system problems. These
application-level exceptions are exceptions other than java.ejb.EJBException.
Application-level exceptions are checked exceptions, which means you must
check for them when you call a method that potentially can throw this
exception.

The EJB's business methods use application exceptions to report abnormal
application conditions, such as unacceptable input values or amounts beyond
acceptable limits. For example, a bean method that debits an account balance
can throw an application exception to report that the account balance is not
sufficient to permit a particular debit operation. A client can often recover from
these application-level errors without having to rollback the entire transaction.

The application or calling program gets back the same exception that was
thrown and this allows the calling program to know the precise nature of the
problem. When an application-level exception occurs, the EJB instance does
not automatically rollback the client's transaction. The client now has the
knowledge and the opportunity to evaluate the error message, take the
necessary steps to correct the situation, and recover the transaction.
Otherwise, the client can abort the transaction.

Handling application exceptions

Because application-level exceptions report business logic errors, the client is
expected to handle these exceptions. While these exceptions can require

Chapter 19: Transact ion management 211

Handl ing of EJB except ions

transaction rollback, they do not automatically mark the transaction for
rollback. You often have the option to retry the transaction, though there are
times when you must abort and rollback the transaction.

The bean Provider is responsible for ensuring that the state of the bean is
such that, if the client continues with the transaction, there is no loss of data
integrity. If the Provider cannot ensure this degree of integrity, then the bean
marks the transaction for rollback.

Transaction rollback
When your client program gets an application exception, you must first check
if the current transaction has been marked for "rollback only". For example, a
client can receive a javax.transaction.TransactionRolledbackException. This
exception indicates that the helper enterprise bean failed and the transaction
has been aborted or marked "rollback only". In general, the client does not
know the transaction context within which the called enterprise bean operated.
The called bean may have operated in its own transaction context separate
from the calling program's transaction context, or it may have operated in the
calling program's context.

If the EJB operated in the same transaction context as the calling program,
then the bean itself (or its container) may have already marked the transaction
for rollback. When the EJB container has marked a transaction for rollback,
the client should stop all work on the transaction. Normally, a client using
declarative transactions will get an appropriate exception, such as
javax.transaction.TransactionRolledbackException. Note that declarative
transactions are those transactions where the container manages the
transaction details.

A client that is itself an EJB calls the javax.ejb.EJBContext.getRollbackOnly
method to determine if its own transaction has been marked for rollback or not.

For bean-managed transactions--those transactions managed explicitly by the
client--the client should rollback the transaction by calling the rollback method
from the java.transaction.UserTransaction interface.

Options for continuing a transaction
When a transaction is not marked for rollback, then the client has three
options:
� Rollback the transaction.
� Pass the responsibility by throwing a checked exception or re-throwing the

original exception.
� Retry and continue the transaction. This can entail retrying portions of the

transaction.

When a client receives a checked exception for a transaction not marked for
rollback, its safest course is to rollback the transaction. The client does this by
either marking the transaction as "rollback only" or, if the client has actually
started the transaction, calling the rollback method to actually rollback the
transaction.

212 BES Developer ’s Guide

Handl ing of EJB except ions

The client can also throw its own checked exception or re-throw the original
exception. By throwing an exception, the client lets other programs further up
the transaction chain decide whether or not to abort the transaction. However,
in general it is preferable for the code or program closest to the occurrence of
the problem to make the decision about saving the transaction.

Lastly, the client can continue with the transaction. The client can evaluate the
exception message and decide if invoking the method again with different
parameters is likely to succeed. However, you need to keep in mind that
retrying a transaction is potentially dangerous. You have no knowledge of nor
guarantee that the enterprise bean properly cleaned up its state.

Clients that are calling stateless session beans, on the other hand, can retry
the transaction with more confidence if they can determine the problem from
the thrown exception. Because the called bean is stateless, the client does not
have the problem of not knowing the state in which the bean left the
transaction.

Chapter 20: Message-Dr iven Beans and JMS 213

C h a p t e r

20
Chapter20Message-Driven Beans and JMS

Important For documentation updates, go to www.borland.com/techpubs/bes.

JMS and EJB
According to the EJB 2.0 specification, there are no limitations on a bean
acting as a JMS message producer or synchronous consumer. It can use the
regular JMS APIs to send a message to a queue or publish to a topic. As long
as you perform synchronous style consumption of messages (that is, not
based on javax.jms.MessageListener), then there are no problems on the
consumption side either. The complexity lies in wanting the sending/receiving
of the message to share the transaction context of some other piece of work.
We already know how to solve this problem using JMS and JTA in
conjunction. The EJBs demand no special treatment.

Since EJB method invocations are synchronous, some calls will have to wait
until the bean has completed its processing. This may include calling other
beans, databases, and so forth. This RMI behavior can be undesirable in
many situations. For example, you may just want to call the method and have
it return before doing any heavy processing, allowing the caller to proceed with
other tasks in the meantime. Threading in the client is an obvious way to
achieve this, but it suffers from two problems:
� the client's programming model is not a true asynchronous style
� if the client is an EJB, threading is prohibited in its method implementations

The most desirable scenario is for an appclient, servlet, EJB, or other
component to have the capability to fire a message using JMS APIs and then

214 BES Developer ’s Guide

Client V iew of an MDB

have an EJB be driven asynchronously by that message. In turn, that EJB can
send a message to another EJB or perform direct data access or other
business logic. The caller does not wait beyond the time the message is
successfully queued. On the other side, the EJB can process the message at
its convenience. This EJB's processing typically involves a unit of work made
up of three operations:

1 dequeueing the message,

2 activating an instance and performing whatever work the business logic
demands, and

3 optionally queuing a reply message back

Enterprise systems require that it be possible to have transactional and other
container-managed guarantees for this unit of work.

EJB 2.0 Message-Driven Bean (MDB)

The EJB 2.0 specification formalizes the integration between JMS and
asynchronous invocation of enterprise beans by pushing these responsibilities
to the EJB Container. This eases the burden on the developer, who now
simply provides a class that is a JMS listener and also an EJB. This is done by
implementing javax.jms.MessageListener and javax.ejb.MessageDrivenBean in the
class. This and an XML descriptor containing all the deployment settings is all
that the application programmer needs to provide.

To the client, this EJB is nonexistent. The client simply publishes messages to
the queue or topic. The EJB container associates the MDB with the published
queue/topic and handles all lifecycle, pooling, concurrency, reentrance,
security, transaction, message handling, and exception handling issues.

Client View of an MDB
Clients do not bind to an MDB like they do for session beans and entity beans.
The client only needs to send a JMS message to the queue/topic to which the
MDB is configured to listen. Typically clients also use the <resource-ref> and
<resource-env-ref> elements of their deployment descriptor and then point to
the same JNDI names as the MDB's <connection-factory-name> and <message-
driven-destination-name> descriptor elements. See Chapter 23, “Using JMS” for
information on how to configure your deployment descriptors.

This being the case, there is no EJB metadata or handle of which the client
needs to be aware. This is because there is no RMI client view of a Message
Driven Bean.

Chapter 20: Message-Dr iven Beans and JMS 215

Naming Suppor t and Conf igurat ion

Naming Support and Configuration
Since MDBs have no interfaces, MDBs do not have JNDI names in the normal
sense like EJBHome objects do. Instead, they are associated with two objects
that must preexist in JNDI before the MDB is deployed. These are:
� a connection factory to use for connecting to the JMS services provider and
� a queue/topic on that provider to listen to for incoming messages

The JNDI names for these objects are specified in the MDB's ejb-borland.xml
deployment descriptor. The <connection-factory-name> captures the resource
connection factory used to connect to the JMS service provider. The
<message-driven-destination-name> element captures the actual topic/queue
on which the MDB is to listen. Once these elements are specified, the MDB
has all the information it needs to connect to the JMS service provider, receive
messages, and send replies.

Connecting to JMS Connection Factories from MDBs

MDBs provide a special case for connecting to JMS connection factories. In
ejb-jar.xml, attaching a JMS resource to an MDB requires the <message-
driven-destination> entry in the MDB's declaration. For example:

<message-driven>
 <ejb-name>MyMDBTopic</ejb-name>

 ...

 <message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>
 <subscription-durability>Durable</subscription-durability>
 </message-driven-destination>

 ...

</message-driven>

Consult the J2EE 1.3 Specification for the proper uses of this element. Again,
the Borland-specific XML file binds the logical name with the JNDI name. It
uses two elements to accomplish this: <connection-factory-name> and <message-
driven-destination>.

First, let's examine the <connection-factory-name> element from the ejb-
borland.xml DTD:

<!ELEMENT connection-factory-name (#PCDATA)>

It's hardly a complicated element. Its value is the JNDI name of the JMS topic
or queue connection factory. That is, it is identical to the <jndi-name> element
found within the <resource-ref> declaration we just discussed. So, the ejb-
borland.xml declaration for an MDB looks like this:

216 BES Developer ’s Guide

Naming Suppor t and Conf igurat ion

<message-driven>
 <ejb-name>MyMDBTopic</ejb-name>
 ...

 <connection-factory-name>serial://resources/tcf</connection-factory-name>

Now, we need to specify the JNDI name of the individual queue or topic. This
is done with the <message-driven-destination> element. Let's have a look at its
DTD entry.

<!ELEMENT message-driven-destination-name (#PCDATA)>

This is yet another simple element. It's value is essentially identical to the
value of the <jndi-name> element found within the <resource-env-ref>
declaration discussed above. Now our XML looks like the following:

<message-driven>

 <ejb-name>MyMDBTopic</ejb-name>

 ...

 <message-driven-destination>serial://resources/tcf</message-driven-
destination>

 <connection-factory-name>serial://resources/tcf</connection-factory-name>

 ...

</message-driven>

Once deployed, you can access datasources from the MDB MyMDBTopic.

The connection factory objects are much like JDBC datasources and the
names of topics and queues are similar to specifying a database table name.
The connection factory objects themselves are typed, for example
TopicConnectionFactory and QueueConnectionFactory, depending upon what you
are listening for. Furthermore, each of subtype of XA flavor is are needed
when global transactions are in effect. In the typical development
environment, there is only one JMS service provider, so only a pair of
connection factories are required: one for topics and one for queues. Go to
Chapter 23, “Using JMS”, Configuring JMS Connection Factories section for
more information on configuring these.

Note You must use an XA connection factory when the MDB is deployed with the
REQUIRED transaction attribute. The whole idea of this deployment is to enable
the consumption of the message that drives the MDB to share the same
transaction as any other work that is done from within the MDB.onMessage()
method. To achieve this the container performs XA coordination with the JMS
service provider and any other resources enlisted in the transaction.

Chapter 20: Message-Dr iven Beans and JMS 217

Cluster ing of MDBs

Clustering of MDBs
The clustering of MDBs differs from the clustering of other enterprise beans.
With MDBs, producers put messages into a destination. The messages will
reside in the destination until a consumer takes the messages off the
destination (or, if the messages are non-durable, when the server hosting the
destination crashes). This is a pull model since the message will just reside on
the destination until a consumer asks for it. The containers contend to get the
next available message on the destination. MDBs provide an ideal load-
balancing paradigm, one that is smoother than other enterprise bean
implementations for distributing a load . The server that is the least burdened
can ask for and obtain the message. The tradeoff for this optimal load-
balancing is that messaging has extra container overhead by virtue of the
destination's position between the producer and the consumer.

There is not, however, the same concept of failover with a messaging service
as exists in VisiBroker. If the consumer disappears, the queue fills up with
messages. As soon as the consumer is brought back online, the messages
resume being consumed. Of course, the JMS server itself should be fault-
tolerant. The client should never notice any "failure" with the exception of
response delays if such messages are expected. This kind of fault tolerance
demands only a way of detecting failed consumers and activating them after
failure. If you have the Borland Deployment Operations System (BDOC)
installed and running, it will automatically maintain the desired state of its
clustered services under active management.

That said, it is possible to deploy MDBs in more than one Partition with the
Messaging Server pushing messages to only one, switching to the other in
case of failure. Most JMS products allow queues to behave in load-balancing
or fault-tolerant modes. That is, MDB replicas can register to the same queue
and the messages are distributed to them using a load-balancing algorithm.
Alternately, messages may all go to one consumer until it fails, at which point
delivery shifts to another. The connection established to the JMS service
provider from the MDB can also provide a load-balancing and/or fault-tolerant
node. JMS service providers may provide fault-tolerance features. For specific
information on clustering and fafaultolerance features, refer to Chapter 24,
“JMS provider pluggability”..

Keep in mind that only one MDB instance in a container that subscribes to a
topic will consume any given message. This means that, for all parallel
instances of an MDB to concurrently process messages, only one of the
instances will actually receive any particular message. This frees up the other
instances to process other messages that have been sent to the topic. Note
that each container that binds to a particular topic will consume a message
sent to that topic. The JMS subsystem will treat each message-driven bean in
separate containers as a separate subscriber to that message! This means
that if the same MDB is deployed to many containers in a cluster, then each
deployment of the bean will consume a message from the topic to which it
subscribes. If this is not the behavior you desire, and you require exactly one

218 BES Developer ’s Guide

Error Recovery

consumption of a message, then you should consider deploying a queue
rather than a topic.

Error Recovery
The following section deals with JMS server connection failures and setting
connection rebind attempt properties. It also covers the redelivery of
messages to the JMS service when an MDB fails to consume a message. The
section on redelivery covers setting the redeliver attempt property as well as
two properties for delivering messages to a dead queue.

Rebinding

A connection failure usually occurs after you deploy your bean, causing a
need for rebind attempt. You also receive an error if you are trying to deploy
your bean and a connection to the JMS server was never established.
Whether a failure occurs post deployment or no connection was found during
deployment, the container will transparently attempt to rebind the JMS service
provider connection when you set the rebind attempt properties. This ensures
even greater fault-tolerance from an MDB instance.

The two bean-level properties that control the number of rebind attempts
made and the time interval between attempts are:
� ejb.mdb.rebindAttemptCount: this is the number of times the EJB Container

tries to re-establish a failed JMS connection for this MDB. The default value
is 5 (five).

To make the container attempt to rebind infinitely you need to explicitly
specify ejb.mdb.rebindAttemptCount=0.

� ejb.mdb.rebindAttemptInterval: the time in seconds between successive
retry attempts. The default value is 60.

Redelivered messages

Should the MDB fail to consume a message for any reason, the message will
be re-delivered by the JMS service. The message will only be re-delivered five
times. After five attempts, the message will be delivered to a dead queue (if
one is configured). There is one bean-level property that controls the re-deliver
attempt count:
� ejb.mdb.maxRedeliverAttemptCount: the max number of times a message will

be re-delivered by the JMS service provider if an MDB is unable to
consume it. The default value is 5.

There are two bean-level properties for delivering a message to a dead queue:
� ejb.mdb.unDeliverableQueueConnectionFactory: looks up JNDI name for the

connection factory to create connection to the JMS service.

Chapter 20: Message-Dr iven Beans and JMS 219

Error Recovery

� ejb.mdb.unDeliverableQueue: looks up the JNDI name of the queue.

The XML example for unDeliverableQueueConnectionFactory and
unDeliverableQueue is shown here:

 <ejb-jar>
 <enterprise-beans>
 <message-driven>
 <ejb-name>MyMDB</ejb-name>
 <message-driven-destination-name>serial://jms/q</message-
driven-destination-name>
 <connection-factory-name>serial://jms/xaqcf</connection-
factory-name>
 <pool>
 <max-size>20</max-size>
 <init-size>0</init-size>
 </pool>
 <resource-ref>
 <res-ref-name>jms/QueueConnectionFactory</res-ref-name>
 <jndi-name>serial://jms/xaqcf</jndi-name>
 </resource-ref>
 <property>
 <prop-name>ejb.mdb.maxRedeliverAttemptCount</prop-name>
 <prop-type>String</prop-type>
 <prop-value>3</prop-value>
 </property>
 <property>
 <prop-name>ejb.mdb.unDeliverableQueueConnectionFactory</
prop-name>
 <prop-type>String</prop-type>
 <prop-value>serial://jms/qcf</prop-value>
 </property>
 <property>
 <prop-name>ejb.mdb.unDeliverableQueue</prop-name>
 <prop-type>String</prop-type>
 <prop-value>serial://jms/q2</prop-value>
 </property>
 <property>
 <prop-name>ejb-designer-id</prop-name>
 <prop-type>String</prop-type>
 <prop-value>MyMDB</prop-value>
 </property>
 </message-driven>
 </enterprise-beans>
 <assembly-descriptor />
</ejb-jar>

You can set these properties with the DDEditor. From the Console, navigate
the tree on the left until you find the module containing your MDBs. Right-click
the module and select DDEditor. When the DDEditor appears, select the bean
node in the Navigation Pane to open the editor's panels for that bean. Select
the "Properties" tab from the Content pane, and Add properties.

220 BES Developer ’s Guide

MDBs and transact ions

MDBs and transactions
See Chapter 23, “Using JMS” for information on using JMS within
transactions. This section deals exclusively with using MDBs in transactions.

The most common scenario of using MDBs in transactions is the desire to
have two-phase commit (2PC) completion of transactions started for the
onMessage() method. Such an MDB will have the REQUIRED transaction attribute.
However, if you have a Partition's 2PC transaction service running, then all
modules deployed to that Partition can discover it and attempt to use it. The
2PC engine will perform one-phase commit when only one resource is
registered, but it will suffer the RMI overhead of the 2PC engine when the
Partition's standard transaction manager would perform far better. To avoid
this possible waste of resources, you can add the following bean-level
property to the MDBs that require 2PC. Use the Console to navigate to the
module and Right-click it. Select DDEditor and select the required bean from
the Navigation Pane once the DDEditor appears. Click the Properties tab and
add this property. Define this property as a string:

ejb.transactionManagerInstanceName

For more information on 2PC and the transaction manager, go to Chapter 19,
“Transaction management”.

Note ejb.transactionManagerInstance is also supported for Entity and Session beans.

Chapter 21: Connect ing to Resources wi th BES: us ing the Def in i t ions Archive (DAR) 221

C h a p t e r

21
Chapter21Connecting to Resources with

BES: using the Definitions
Archive (DAR)

J2EE specifies a uniform mechanism to establish connections to relational
databases using JDBC datasources, message brokers using JMS resource
objects, and general Enterprise Information Systems (EIS) using Connectors
resource adapters. JNDI bound objects called resource connection factories
are used to implement this mechanism. For example, a JDBC datasource is
an object that your applications use to establish connections to a database. In
the Borland Enterprise Server, creating, editing, and deploying all types of
resource entries is done using the Management Console and DDEditor. You
capture the properties that define the resource objects in an XML descriptor
and then use normal deployment procedures to bind the objects into JNDI.
The Borland Partition's Naming Service takes care of creating the Java
objects representing the data that was provided in the descriptor and binding it
to the proper JNDI name during deployment. Once bound, you may reference
the datasource from your enterprise beans and servlets using the resource-
reference elements in their deployment descriptors. This is a portable way to
specify a particular database instance, message broker instance, or legacy
instance.

Borland provides mechanisms for deploying both. Go toChapter 22, “Using
JDBC” and Chapter 23, “Using JMS” for more specific information. Setting up
and deploying these requires the following steps:

222 BES Developer ’s Guide

JNDI Def in i t ions Module

1 If any external drivers are needed, which is usually the case, they must be
deployed to the target Partition as a library archive. See User's Guide,
Using Partitions chapter, for information on deploying to Partitions. Note
that this step is not necessary if you are using the native all-Java database,
JDataStore as your backend, or the JMS services broker.

2 Using the Console choose the predeployed JNDI Definitions Module in the
Deployed Modules folder named default-resources.dar and right-click to
launch the DDEditor. The predeployed module already has a datasource
defined for JDataStore and sample JMS connection factories and
destinations for the JMS services broker.

3 Add a new definition or edit an existing one in the module to suit your
environment, then save the module. The changes will take effect on the
server. Information on defining JDBC datasources and JMS connection
factories is provided below.

Important For documentation updates, go to www.borland.com/techpubs/bes.

JNDI Definitions Module
J2EE resource connection factory objects are bound to JNDI when they are
deployed as a part of a JNDI Definitions Module. This module is similar to
other J2EE standard Java archive types, and ends in the extension .dar. This
module is also referred to as a DAR, therefore. This module adds to the
standard J2EE module types like JAR, WAR, and RAR. It can be packaged as
a part of an EAR, or deployed stand-alone. Since datasources are contained
in their own module(s), they appear in the Server tree of the Borland
Enterprise Server's console, meaning you can easily enable and disable them
by right-clicking their representations in the tree.

Note A DAR is not a part of the J2EE specification. It is a Borland-specific
implementation designed to simplify the deployment and management of
connection factories. You do not package connection factory classes in this
archive type. Those classes must be deployed as a library to individual
Partitions.

Since the Partition itself constructs the connection factory class, the only
contents of the DAR that you must provide is an XML descriptor file called
jndi-definitions.xml. Like other descriptors, this is placed within the META-INF
directory of the DAR. The contents of the DAR hence look like the following:

META-INF/jndi-definitions.xml

You deploy the DAR containing the descriptor file just as you would any other
J2EE module using either the console or command-line utilities, or as part of
an EAR. Note that DAR deployment semantics are exactly like other J2EE
modules. You can deploy any number of distinctly named DARs in the same
Partition or to a cluster. Should two deployed DARs have objects with identical
JNDI names, the last deployed module overwrites its object on the same
node.

Chapter 21: Connect ing to Resources wi th BES: us ing the Def in i t ions Archive (DAR) 223

You can create a new DAR by simply providing a descriptor file in the directory
structure above, JARing it into a DAR, and deploying it to a Partition using the
server's tools. Or, you can run the DDEditor and select File|New|JNDI
Definitions Module and allow the DDEditor to walk you through the creation
procedure from scratch. Or, of course, you can edit the existing one.

Migrating to DARs from previous versions of Borland
Enterprise Server

Previous product versions, including IAS 4.1 and BAS 4.5, did not have a DAR
module to contain the jndi-definitions.xml descriptor. If you have a
customized jndi-definitions.xml file that needs to be transferred to Borland
Enterprise Server, follow these migration steps:

1 If you want the entire contents of the default resources overridden, make a
temporary directory called META-INF and place your existing jndi-
definitions.xml file within it.

2 Open a command window and use the following jar command:

prompt>jar uvMf default-resources.dar META-INF/jndi-definitions.xml

3 Now deploy this module following the usual procedures.

If you have performed only a few customizations on your old jndi-
definitions.xml file then it may be easier to simply move the appropriate XML
stanzas from the old file into the one contained within the pre-deployed DAR.

Creating and Deploying a new JNDI Definitions Module
The DDEditor walks you through creating a new JNDI Definitions Module from
scratch. Open the DDEditor and select "File|New..." The Object Gallery
appears.

224 BES Developer ’s Guide

Disabl ing and Enabl ing a JNDI Def ini t ions Module

Select the JNDI Definitions tab and select JNDI Definitions Archive to create
the new DAR. Click OK. You may now add JDBC datasources or add JMS
resources, or you can do this later. When you are finished save the module by
choosing "File|Save..." .

After saving the archive, use the J2EE Deployment Wizard to deploy the
module. The Wizard reads the datasource properties from the DAR,
instantiates the datasource objects, and binds all of them into the JNDI
service. To do this, open the Console and select "Wizards|Deployment
Wizard." Follow the on-screen instructions. Detailed information on using this
Wizard is found in the User's Guide.

Disabling and Enabling a JNDI Definitions Module
If you need to undeploy a set of datasources but still retain their definitions for
future redeployment, right-click the module in the Management Console and
choose "Disable." In addition, if you want to delete a set of deployed
datasources permanently from your application, choose "Delete."

Packaging JNDI Definitions Modules in an application EAR
Sometimes it is useful to package all archives that make up a complete
application into a single deployable unit. The common scenario is that you
have some EJBs in an EJB Archive, some servlets and JSPs in a Web Archive
and they both depend on some datasources defined in a JNDI Definitions
Archive. Using the Assembly Tools in the Console it is easy to package the
whole set of individual archives into a single EAR Module.

For example, if you have a set of EJBs that need access to a set of
datasources then first create an EAR containing the EJB Jar archive and "Add
-> JndiDefinitions to Application". Typically you would need to open up the
EJB Jar in a DDEditor session to retarget the Resource References to point to
the appropriate datasources defined in the JNDI Definitions.

Note Because DARs are not a part of the J2EE specification, you must include at
least one other valid J2EE module along with your DAR within the EAR. An
EAR containing only a DAR file is not a valid J2EE archive.

JNDI service provider for hosting resource factories
Plain Java objects like JDBC datasources and other J2EE resource
connection factory objects need to be looked up from JNDI. Any JNDI provider
that can store Java serializable and referenceable objects is supported, such
as an LDAP directory external to the enterprise server. The Borland Enterprise
Server's Naming Service provides a means to store the datasource objects
into a Serial Context instead of the default CosNaming namespace supporting
only CORBA references. The Serial Context URL begins with serial:// and is

Chapter 21: Connect ing to Resources wi th BES: us ing the Def in i t ions Archive (DAR) 225

the default naming space for datasource objects. However, any plain Java
object that implements both java.io.Serializable and
javax.naming.Referenceable can be stored under this special JNDI URL context.

Configuring persistent storage locations for Serial Context

By default the Partition's Naming Service persistently stores JNDI objects in a
particular default location on disk (<install_dir>/var/domains/base/
configurations/<configuration_name>/mos/<Partition_name>/adm/
vbroker.properties/ns_serial_pstore). Typically you do not need to alter any
properties pertaining to the JNDI Serial Context back-end. You can however
relocate the storage to any disk area you like by customizing this property:

vbroker.naming.serial.delegateURL

This is done by editing the Partition's vbroker.properties file, located in
<install_dir>/var/domains/base/configurations/<configuration_name>/mos/
<Partition_name>/adm/vbroker.properties.

226 BES Developer ’s Guide

Chapter 22: Using JDBC 227

C h a p t e r

22
Chapter22Using JDBC

Datasources are bound into a JNDI service after the JNDI Definitions Module
is deployed. Datasource objects are stored into the Serial Context provider in
the naming service. The portable J2EE mandated way to lookup a datasource
is using a Resource Reference in the individual component's ejb-jar.xml
descriptor file. Refer to the J2EE 1.3 Specification for information on how to
use this element. This Resource Reference is itself a binding to the actual
JNDI name in the Naming Service that is performed as a deployment time
editing step.

In order to fully link the application component to its environment, however,
the logical name for the resource must be resolved to a JNDI name. The
Borland proprietary deployment descriptor, ejb-borland.xml, complements ejb-
jar.xml and provides this mechanism in its own Resource Reference
elements. The contents of this element varies depending upon the application
component type and the resource to which it's trying to connect.

J2EE applications must lookup deployed datasources from the JNDI
environment naming context, that is java:comp/env/... In order to access a
resource from the JNDI environment naming context, you must first deploy a
J2EE application component to an appropriate container with a declared
reference to the required datasource. The procedure for doing so for JDBC
datasources is described here. First, however, we'll explore how to configure
the JDBC datasources to which your application components will connect.

Important For documentation updates, go to www.borland.com/techpubs/bes.

228 BES Developer ’s Guide

Conf iguring JDBC Datasources

Configuring JDBC Datasources
Using the Console, navigate to the "Deployed Modules" list in the Partition
whose datasources you need to configure. By default, every Partition has a
predeployed JNDI Definitions Module (DAR) called default-resources.dar.
Right-click on the module and choose "Deployment Descriptor Editor" from the
context menu. The Deployment Descriptor Editor (DDEditor) appears.

In the Navigation Pane of the DDEditor is a list of datasources preconfigured
in the product. If needed they can be individually edited to suit the user's
requirements.

To create a new JDBC datasource, Right-click the jndi-definitions.xml node
at the top of the tree and select "New JDBC Datasource..." from the Context
Menu.

A dialog box prompts for a JNDI name for the newly-created datasource. Once
given, a representation of this datasource appears in the tree in the Navigation
Pane. Click its representation to open its configuration panel.

The DDEditor has knowledge of some common JDBC drivers and can autofill
the class names and essential properties for the appropriate JDBC
datasource. If the JDBC datasource type you want appears in the Datasource
Type list then choose it, otherwise select "Other(JDBC2)".

Chapter 22: Using JDBC 229

Conf igur ing JDBC Datasources

The Main tab in the content pane captures the essential properties needed to
define the chosen database. If the database is known to the DDEditor, it will
automatically complete these properties.

230 BES Developer ’s Guide

Conf iguring JDBC Datasources

The Driver Properties and Pool Properties tabs capture some of the
information from the Main tab, but also allow you to set any less common
properties that do not appear in the Main tab.

Too add pool properties, click the Add button and select the property you want
to add from the drop-down list under "Name." Pool Properties are described

Chapter 22: Using JDBC 231

Conf igur ing JDBC Datasources

below in “Defining the Connection Pool Properties for a JDBC Datasource” on
page 232. The same procedure is used for adding Driver Properties.

Consult your database documentation for any properties you need to define.

Once you're finished, save the module and dismiss the final modal window.
The JNDI Definitions Module is automatically re-deployed to the Partition.

Deploying Driver Libraries

If any external drivers are needed, which is usually the case, they must be
deployed to the target Partition as a library archive. See the User's Guide for
information on deploying libraries to Partitions. Note that this step is not
necessary if you are using the native all-Java database, JDataStore. When
trying to connect to another database like Oracle or Sybase the respective
JDBC driver must first be deployed to the target Partition. The steps are:

1 From the Console, select Tasks->Deployment->Deploy J2EE modules to a
Partition.

2 "Add" the library file and check the option to restart the Partition.

3 Proceed to deploy in the chosen Partition(s.)

4 Close the wizard; the driver is listed under the "Deployed Modules" folder of
the Partition once it restarts.

232 BES Developer ’s Guide

Def in ing the Connect ion Pool Proper t ies for a JDBC Datasource

Defining the Connection Pool Properties for a JDBC Datasource
At runtime each JDBC datasource corresponds to an instance of a connection
pool. Connection pools provide for the reuse of connections and optimization
of database connectivity. Some datasources may require different treatment
as connection pools than others. A number of configuration options exist for
these connection pools. Control of pool sizes, statement execution behavior,
and transaction parameters are specified as properties in the <visitransact-
datasource> element in the DAR descriptor file. You specify properties using
the <property> element, which includes the <prop-name>, <prop-type>, and <prop-

Chapter 22: Using JDBC 233

Def in ing the Connect ion Pool Propert ies for a JDBC Datasource

value> elements shown above. The complete list of properties, allowed values,
defaults, and descriptions appear in the following table:

Name
Allowed
Values Description

Default
Value

connect
ionType

Enumera
ted:
� Direct

� XA

Indicates type
transaction
association of all
connections
retrieved from the
connection pool,
whether "Direct"
or "XA"

Not Applicable.
Property
specification is
mandatory

optimizeXA Boolean By default,
XAResource calls
are limited to
optimize JDBC 2
connection pool
performance.
Setting optimizeXA
to false disables this
optimization. Under
certain conditions
the optimization
must be disabled.
For instance when
conflicts arise with
resource manager
optimizations during
two-phase commit
protocol.

True maxPoolS
ize

Integer Specifies the
maximum number
of database
connections that
can be obtained
from this
datasource
connection pool.

0 (zero),
implying
unbounded size

waitTimeout Integer The number of
seconds to wait for a
free connection
when maxPoolSize
connections are
already opened.
When using the
maxPoolSize
property and the
pool is at its max
and can't serve any
more connections,
the threads looking
for JDBC
connections end up
waiting for the
connection(s) to
become available
for a long time if the
wait time is
unbounded (set to 0
seconds). You can
set the waitTimeout
period to suit your
needs.

30 busyTime
out

Integer The number of
seconds to wait
before a busy
connection is
released

600 (ten
minutes)

234 BES Developer ’s Guide

Def in ing the Connect ion Pool Proper t ies for a JDBC Datasource

idleTimeout Integer A pooled connection
remaining in an idle
state for a period of
time longer than this
timeout value should
be closed. All idle
connections are
checked for
idleTimeout
expiration every 60
seconds. The value
of the idleTimeout is
given in seconds.

600 (ten
minutes
)

queryTim
eout

Integer Specifies in
seconds the time
limit for executing
database queries
by this
datasource.

0 (zero),
implying
indefinite period

dialect Enumerat
ed:

� oracle

� sybase

� interba
se

� jdatast
ore

Specifies the
database vendor as
a hint for automatic
table creation
performed during
Container Managed
Persistence

This
property
is
optional
. There
is no
default
value.

isolatio
nLevel

Enumerat
ed:

� TRANSAC
TION_
NONE

� TRANSAC
TION_
READ_
COMMI
TTED

� TRANSAC
TION_
READ_
UNCOM
MITTE
D

� TRANSAC
TION_
REPRE
ATABL
E_REA
D

� TRANSAC
TION_
SERIA
LIZEA
BLE

Indicates
database isolation
level associated
with all
connections
opened by this
datasource's
connection pool.
See the J2EE 1.3
specification for
details on these
isolation levels.

Defaults to
whatever level
is provided by
the JDBC driver
vendor.

Name
Allowed
Values Description

Default
Value

connect
ionType

Enumera
ted:
� Direct

� XA

Indicates type
transaction
association of all
connections
retrieved from the
connection pool,
whether "Direct"
or "XA"

Not Applicable.
Property
specification is
mandatory

Chapter 22: Using JDBC 235

Def in ing the Connect ion Pool Propert ies for a JDBC Datasource

reuseStateme
nts

Boolean Optimization
directive requesting
prepared SQL
statements to be
cached for reuse.
Applies to all
connections
obtained from the
connection pool.

True initSQL String Specifies a list of
";" separated SQL
statements to be
executed each
time a connection
is obtained for a
fresh transaction.
The SQL is
performed before
any application
work is performed
on the connection.

This property is
optional. There
is no default
value.

refreshFrequ
ency

Integer Using dbPingSQL, this
property specifies a
timeout, in seconds,
for each connection
in an idle state.
Once the timeout
expires, the
connection is
examined to
determine if it is still
a valid connection.
All idle connections
are checked for
refreshFrequency at
sixty second
intervals.

300 (five
minutes
)

dbPingSQ
L

String Specifies a SQL
statement used to
validate open
connections
present in the
connection pool
and to refresh
connections
during a
refreshFrequency
timeout.

Not defined.
When no SQL
is specified, the
container uses
java.sql.Connect
ionisClosed()
method to
validate the
connection.

Name
Allowed
Values Description

Default
Value

connect
ionType

Enumera
ted:
� Direct

� XA

Indicates type
transaction
association of all
connections
retrieved from the
connection pool,
whether "Direct"
or "XA"

Not Applicable.
Property
specification is
mandatory

236 BES Developer ’s Guide

Def in ing the Connect ion Pool Proper t ies for a JDBC Datasource

resSharingSc
ope

Enumerat
ed:

� Shareab
le

� Unshare
able

Indicates whether
connection
statements and
result sets are
cached for reuse --
Shareable -- thereby
optimizing
throughput of
connections. If set to
Unshareable,
connections are
closed once the
application closes
the connection.

Shareabl
e

maxPrepa
redState
mentCach
eSize

Integer Each connection
within a BES
JDBC pool
caches
java.sql.Prepared
Statement objects
for reuse.

Each
PreparedStatement
cache is
organized by SQL
literal strings
representing
unique SQL
statement
requests.

This property
limits the number
of
PreparedStatements
cached per
pooled JDBC
connection. It
specifies the
maximum size of
the cache. If a
cache reaches the
limit, any
subsequent
javax.sql.Connecti
on.prepareStatemen
t() calls result in
non-cached
instances of
PreparedStatement
objects being
created and
returned to the
caller. The
lifecycle of the
cache is the same
as the JDBC
connection
lifecycle. For
example, if an idle
connection times
out, both the
connection and its
PreparedStatement
cache are
discarded.
Unresolved
parameterized
SQL statements
are cached, for
example, the
statement SELECT
NAME FROM CUSTOMER
WHERE AGE=20 is
cached as SELECT
NAME FROM CUSTOMER
WHERE :age='?'

40

Name
Allowed
Values Description

Default
Value

connect
ionType

Enumera
ted:
� Direct

� XA

Indicates type
transaction
association of all
connections
retrieved from the
connection pool,
whether "Direct"
or "XA"

Not Applicable.
Property
specification is
mandatory

Chapter 22: Using JDBC 237

Def in ing the Connect ion Pool Propert ies for a JDBC Datasource

maxPreparedS
tatementsPer
Query

Integer Under certain
conditions such as
high concurrency or
when CMP 2.0
entity beans are
processed, more
than one
PreparedStatement
can be processed
concurrently for the
same SQL query on
the same pooled
connection. For
example, a SQL
query SELECT name
FROM table1 WHERE
id=? can return
distinct result sets
when different
values are used for
?. Although the
PreparedStatement
cache has a single
entry for each SQL
query, two or more
PreparedStatements
can exist in the
cache for the query.

This property
specifies the
maximum number of
cached
PreparedStatements
for a single query. If
the limit is exceeded
for a particular
query, subsequent
javax.sql.Connection
.prepareStatement()
calls result in non-
cached instances of
PreparedStatement
objects created and
returned to the
caller. Note that like
maxPreparedStatement
CacheSize, this
property is only
effective when the
reuseStatements
property of the
datasource is set to
true (default).

20

Name
Allowed
Values Description

Default
Value

connect
ionType

Enumera
ted:
� Direct

� XA

Indicates type
transaction
association of all
connections
retrieved from the
connection pool,
whether "Direct"
or "XA"

Not Applicable.
Property
specification is
mandatory

238 BES Developer ’s Guide

Get t ing debug output

Getting debug output
A number of system properties can be set to log activity at datasource,
connection pool, connection and statement levels during application
processing. It is not necessary to configure these properties during normal
application runtime execution but should a situation arise where details of
JDBC flow of control is needed these options are useful. Runtime output
generated with these properties set can be provided to Borland Technical
Support to help resolve issues involving JDBC datasource and connections.

Descriptions of Borland Enterprise Server's pooled connection
states

When the EJB container's statistic gathering option is enabled, the Partition
event log contains useful statistics about the JDBC connections pool. The log
lists the number of connections in the various lifecycle states of a pooled
JDBC2 connection. Here follows a description of each state.
� Free: a cached/pooled connection that is available for use by an application
� TxBusy: a cached connection that is in use in a transaction
� NoTxBusy: a cached connection that is in use by an application with no

transaction context
� Committed: a connection that was associated with a transaction received

a commit() call from the transaction service
� RolledBack: a connection that was associated with a transaction received

a rollback() call from the transaction service

System Property
Name Type Description Default

DataSourceDebug Boolean Report activity at
datasource level
for all datasources

False

ConnectionPoolDebug Boolean Report activity at
connection pool
level for all
datasources

False

ConnetionPoolStateD
ebug

Boolean Reports transitions
of connections in
connection pool

False

JDBCProxyDebug Boolean Report activity at
connection level for
all connections

False

PreparedStatementCa
cheDebug

Boolean Report activity at
prepared
statement level for
all statements

False

Chapter 22: Using JDBC 239

Support for older JDBC 1.x dr ivers

� Prepared: a connection that was associated with a transaction received a
prepare() call from the transaction service

� Forgot: a connection that was associated with a transaction received a
forget() call from the transaction service

� TxBusyXaStart: a pooled connection that is associated with a transaction
branch.

� TxBusyXaEnd: a pooled connection that has finished its association with a
transaction branch

� BusyTimedOut: a cached connection that was removed from the pool after
it stayed with the transaction longer than the busyTimeout pool property

� IdleTimedOut: a connection that was removed from the pool due to being
idle for the longer than the pool's idleTimeout property

� JdbcHalfCompleted: a transitionary state where the connection is
participating in a background housekeeping activity related to pool
management (being refreshed, for example) and therefore unavailable until
the activity completes

� Closed: the underlying JDBC connection was closed
� Discarded: A cached connection got discarded (due to timeout errors, for

example)
� JdbcFinalized: an unreferenced connection was garbage collected

Support for older JDBC 1.x drivers
JDBC 1x drivers do not provide a datasource object. Under the J2EE
specification, however, database connections are always fetched using the
javax.sql.DataSource interface. To allow users to still use JDBC 1x drivers,
Borland Enterprise Server provides an implementation of a JDBC 1x
datasource to allow writing portable J2EE code. This implementation is a
facade provided on top of the DriverManager connection mechanism of the
JDBC 1x specification.

If you want to define a datasource on top of such a driver then in the DD Editor
choose the Datasource Type field as "Other(JDBC1x)". Then in the Main
panel you can input the Driver Manager classname and connection URL for
your particular database and driver.

The class name
com.inprise.visitransact.jdbc1w2.InpriseConnectionPoolDataSource is not the
DriverManager class of the JDBC driver; it is a wrapper class. The vendor's
class should be specified in the Driver Class Name text box of the editor
panel.

240 BES Developer ’s Guide

Advanced Topics for Def ining JDBC Datasources

Advanced Topics for Defining JDBC Datasources
Whether you choose to use the server's graphical tools or not, defining a
datasource means providing some information to the container in XML format.
Let's look at what it takes to define a JDBC datasource and bind it to JNDI.
Let's start by examining the DTD of the jndi-definitions.xml file. The elements
in bold are the main elements specific to JDBC datasources.

<!ELEMENT jndi-definitions (visitransact-datasource*, driver-datasource*,
jndi-object*)>
<!ELEMENT visitransact-datasource (jndi-name, driver-datasource-jndiname,
property*)>
<!ELEMENT driver-datasource (jndi-name, datasource-class-name,
log-writer?, property*)>
<!ELEMENT jndi-object (jndi-name, class-name, property*)>
<!ELEMENT property (prop-name, prop-type, prop-value)>
 <!ELEMENT prop-name (#PCDATA)>
 <!ELEMENT prop-type (#PCDATA)>
 <!ELEMENT prop-value (#PCDATA)>
 <!ELEMENT jndi-name (#PCDATA)>
 <!ELEMENT driver-datasource-jndiname (#PCDATA)>
 <!ELEMENT datasource-class-name (#PCDATA)>
 <!ELEMENT log-writer (#PCDATA)>
 <!ELEMENT class-name (#PCDATA)>

Defining a JDBC datasource involves two XML elements. The first is the
<visitransact-datasource> element. This is where you define the datasource
your application code will look up. You include the following information:
� jndi-name: this is the name of the datasource as it will be referenced by

JNDI. It is also the name found in the resource references of your
enterprise beans.

� driver-datasource-jndiname: this is the JNDI name of the driver class
supplied by the database or JMS vendor that you deployed as a library to
your Partitions. It is also the name that will be referenced by the <driver-
datasource> element discussed next.

� properties: these are the properties for the datasource's role in its
connection pool. We'll discuss these properties in a little more detail in the
“Defining the Connection Pool Properties for a JDBC Datasource” on
page 232.

So, let's look at an example of this portion of the datasource definition in the
XML. In the following example, we'll look at an example using Oracle:

<jndi-definitions>
 <visitransact-datasource>
 <jndi-name>serial://datasources/Oracle</jndi-name>

 <driver-datasource-jndiname>serial://datasources/OracleDriver</driver-
datasource-jndiname>

 <property>

Chapter 22: Using JDBC 241

Advanced Topics for Def in ing JDBC Datasources

 <prop-name>connectionType</prop-name>
 <prop-type>Enumerated</prop-type>
 <prop-value>Direct</prop-value>
 </property>
 ...

 //other properties as needed

 ...

 </visitransact-datasource>

 ...

</jndi-definitions>

We're not done. Now we must perform the other half of the datasource
definition by providing information on the driver. We do this in the <driver-
datasource> element, which includes the following information:
� jndi-name: This is the JNDI name of the driver class, and its value must be

identical to the <driver-datasource-jndiname> value from the <visitransact-
datasource> element.

� datasource-class-name: Here is where you provide the name of the
connection factory class supplied from the resource vendor. It must be the
same class you deployed to the Partition as a library.

� log-writer: This is a boolean element that activates verbose modes for
some vendor connection factory classes. Consult your resource's
documentation for the use of this property.

� properties: These are properties specific to the JDBC resource, such as
usernames, passwords, and so forth. These properties are passed to the
driver class for processing. Consult your JDBC resource documentation for
property information. Specifying the properties in XML is shown below.

Armed with this information, let's complete our datasource definition for the
Oracle datasource we started above. In order to be thorough, let's first
reproduce the XML we started above:

<jndi-definitions>
 <visitransact-datasource>
 <jndi-name>serial://datasources/Oracle</jndi-name>
 <driver-datasource-jndiname>serial://datasources/OracleDriver</driver-
datasource-jndiname>

 <log-writer>False</log-writer>
 <property>
 <prop-name>connectionType</prop-name>
 <prop-type>Enumerated</prop-type>
 <prop-value>Direct</prop-value>
 </property>
 </visitranact-datasource>

242 BES Developer ’s Guide

Connect ing to JDBC Resources f rom Appl icat ion Components

Note the driver datasource JNDI name in bold. Now we'll add the following:

 <driver-datasource>
 <jndi-name>serial://datasources/OracleDriver</jndi-name>
 <datasource-class-name>oracle.jdbc.pool.OracleConnectionPoolDataSource</
datasource-class-name>
 <property>
 <prop-name>user</prop-name>
 <prop-type>String</prop-type>
 <prop-value>MisterKittles</prop-value>
 </property>
 <property>
 <prop-name>password</prop-name>
 <prop-type>String</prop-type>
 <prop-value>Mittens</prop-value>
 </property>

 ...

 // other properties as needed
 ...

 </driver-datasource>
</jndi-definitions>

Now the JDBC datasource is fully defined. Once you've packaged the XML file
as a DAR, you can deploy it to a Partition. Doing so registers the datasource
with the Naming Service and makes it available for lookup.

Connecting to JDBC Resources from Application Components
In ejb-borland.xml, the Resource Reference element is used to resolve logical
names to JNDI names for JDBC datasources. You use the element within your
individual component definitions. For example, a Resource Reference for an
entity bean must be found within the <entity> tags. Let's look at the ejb-
borland.xml representation of the Resource Reference element:

<!ELEMENT resource-ref (res-ref-name, jndi-name, cmp-resource?)>

In this element you specify the following:
� res-ref-name: this is the logical name for the resource, the same logical

name you use in the Resource Reference element of the standard ejb-
jar.xml descriptor file. This is the name your application components use to
look up the datasource.

� jndi-name: this is the JNDI name of the datasource that will be bound to its
logical name. It must match the value of the corresponding <jndi-name>
element of the <visitransact-datasource> element deployed with the DAR.

� cmp-resource: this is an optional boolean element that is germane to
entity beans only. If set to True, the container's CMP engine will monitor this
datasource.

Chapter 22: Using JDBC 243

Connect ing to JDBC Resources f rom Appl icat ion Components

Let's look at an example entity bean that uses the Oracle datasource we
defined above:

<entity>
 <ejb-name>entity_bean</ejb-name>

 ...

 <resource-ref>
 <res-ref-name>jdbc/MyDataSource</res-ref-name>
 <jndi-name>serial://datasources/Oracle</jndi-name>
 <cmp-resource>True</cmp-resource>
 </resource-ref>

 ...

</entity>

As you can see, we used the identical JNDI name from the <visitransact-
datasource> element from the datasource definition. Now let's see how we
obtain a datasource object reference. To do so, the application performs a
lookup of the <res-ref-name> value of the deployed components and the object
references are retrieved from the remote JNDI Serial Context service provider.
For example:

javax.sql.DataSource ds1;

try {

 javax.naming.Context ctx = (javax.naming.Context) new
javax.naming.InitialContext();

 ds1 = (DataSource)ctx.lookup("java:comp/env/jdbc/MyDataSource");

 }

catch (javax.naming.NamingException exp) {

 exp.printStackTrace();

 }

A database java.sql.Connection can now be obtained from ds1.

244 BES Developer ’s Guide

Chapter 23: Using JMS 245

C h a p t e r

23
Chapter23Using JMS

JMS connection factories are bound into a JNDI service after the JNDI
Definitions Module is deployed. Connection factory objects are stored into the
Serial Context provider in the naming service. The portable J2EE mandated
way to look up a datasource is using a Resource Reference in the individual
component's ejb-jar.xml descriptor file. Refer to the J2EE 1.3 Specification for
information on how to use this element. This Resource Reference is itself a
binding to the actual JNDI name in the Naming Service that is performed as a
deployment time editing step.

In order to fully link the application component to its environment, however,
the logical name for the resource must be resolved to a JNDI name. The
Borland proprietary deployment descriptor, ejb-borland.xml, complements ejb-
jar.xml and provides this mechanism in its own Resource Reference
elements. The contents of this element varies depending upon the application
component type and the resource to which it's trying to connect.

J2EE applications must look up deployed connection factories from the JNDI
environment naming context, that is java:comp/env/... To access a resource
from the JNDI environment naming context, you must first deploy a J2EE
application component to an appropriate container with a declared reference
to the required datasource. The procedure for JMS resources is described
here.

Important For documentation updates, go to www.borland.com/techpubs/bes.

246 BES Developer ’s Guide

Conf iguring JMS Connect ion Factor ies and Dest inat ions

Configuring JMS Connection Factories and Destinations
Using the Management Console, navigate to the "Deployed Modules" list in
the Partition whose JMS connection factories you need to configure. By
default, every Partition has a predeployed JNDI Definitions Module (DAR)
called default-resources.dar. Right-click on the module and choose "Edit
deployment descriptor" from the context menu. The Deployment Descriptor
Editor (DDEditor) opens.

In the Navigation Pane of the DDEditor is a list of JMS connection factories,
and queues/topics preconfigured in the product. For each connection factory,
you can choose Tibco, Sonic or another ("Other") JMS provider. The DDEditor
has knowledge of Tibco and Sonic and auto fills the class names for each.
You can also choose the object resource type from the JMS Object type drop-
down list.

If you selected "Other" from the JMS Provider list, look up the JMS vendor's
documentation to ascertain the correct name of its connection factory, topic, or
queue implementation class. In addition, the Main panel will not suggest any
properties to fill in and you will need to use the Properties tab to set any
appropriate properties.

Use the Properties tab to add any additional properties not provided on the
Main tab.

To create a new JMS object, right-click either the jndi-definitions.xml or the
default-resources.dar nodes and select "New JMS Object" from the Context
Menu.

Chapter 23: Using JMS 247

JMS and Transact ions

A dialog box prompts for a JNDI name for JMS object that is to be created.
Once given, a representation of this JMS object appears in the tree in the
Navigation Pane. Click its representation to open its configuration panel.

The DDEditor has knowledge of Tibco and Sonic, and can auto fill the class
names for the appropriate JMS object.

Note The Main panel will not suggest any JMS objects other than Tibco or Sonic.
You need to use the Properties tab to set any appropriate properties.

Use the Properties tab to set any needed properties.

When you're finished, choose "File|Save..." and the module will be saved back
to the Partition and redeployed.

Queue creation

For specific information on queue creation, refer to Chapter 24, “JMS provider
pluggability”.

Enabling Sonic

To enable Sonic:

1 Create a Sonic Managed Object. For information on creating Managed
Objects, refer to the BDOC Developer’s Guide, Managed Objects section.

2 Modify sonic.config in <install_dir>\bin\sonic.config to include the Sonic
home directory.

The JMS home is the Sonic home directory, the root directory of the Sonic
install, JMS.home = <sonic home>. The default is blank.

JMS and Transactions
The way to use JMS APIs in a transaction is detailed in the EJB 2.0
specification section 17.3.5.

17.3.5 Use of JMS APIs in transactions
The Bean Provider must not make use of the JMS request/reply paradigm
(sending of a JMS message, followed by the synchronous receipt of a reply
to that message) within a single transaction.
Because a JMS message is not delivered to its final destination until the
transaction commits,
the receipt of the reply within the same transaction will never take place.
Because the container
manages the transactional enlistment of JMS sessions on behalf of a bean,
the parameters of the
createQueueSession(boolean transacted,int acknowledgeMode) and
createTopicSession(boolean transacted,
int acknowledgeMode) methods are ignored. It is recommended that the Bean
Provider specify that a

248 BES Developer ’s Guide

JMS and Transact ions

session is transacted, but provide 0 for the value of the acknowledgment
mode. The Bean Provider should
not use the JMS acknowledge() method either within a transaction or within
an unspecified transaction
context. Message acknowledgment in an unspecified transaction context is
handled by the container.
Section 17.6.5 describes some of the techniques that the container can use
for the implementation of a
method invocation with an unspecified transaction context.

The user's code should never use any XA APIs in JMS. The program should
look exactly as if the code is written like a normal JMS program and it is the
Container's responsibility to handle any XA handshakes. The only thing you
need to ensure is that you configured the <resource-ref> that points to the
JMS Connection factory JNDI object to use the XA variant. If it is non-XA, the
program still runs, but there are not any atomicity guarantees, in other words,
it is a local transaction.

Also note that for the Container to automatically handle the transaction
handshakes it is necessary to have the code run in a "container", either
appclient, EJB or web. A simple java client won't show the correct
characteristics, one has to write it as a J2EE application client instead. Also
make sure that all connection factories are looked up via a <resource-ref>.
This allows the Container to trap the JMS API calls and insert appropriate
hooks.

Note We handle the following case:

// transaction context exists
conn.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
...
sender.send(tm)

to mean the same as if the transaction context weren't there. We consider this
to mean "give me what I asked for since the first parameter is explicitly false".
This is not explicitly mentioned anywhere in the spec but this is in line with test
cases in the J2EE Compatibility Test Suite (CTS 1.3.1). It seems useful to
have this capability in a transaction you may want to send a log message
irrespective of the enclosing transaction's commit/rollback.

Multi resource access is also supported. Here we look at providing the
capability to do a unit of work which is composed of sending/receiving JMS
messages along with some other resource access. That is, it is desirable to be
able to write some code (an EJB for example) which does some work against
a resource (Oracle, SAP, whatever) and also puts a message into a queue
and the server provides transactional guarantees for that combination of work.
That is, either the work against Oracle is done AND the message is queued, or
something fails, and the work done against Oracle is rolled back AND the
message is not queued.

In code, we support having a method like this:

 // business method in a session bean, Container marks the transaction
 void doSomeWork()
 {

Chapter 23: Using JMS 249

Enabl ing the JMS serv ices secur i ty

 // execute JDBC work
 java.sql.Connection dbConn = datasource.getConnection();
 // execute SQL

 // call some other EJBs in the same transaction
 // grab a reference to an EJB Remote interface
 ejbRemote.doWork();

 // send a JMS message to a queue
 jmsSender.send(msg);

 }

All the operations execute as a single unit of recoverable work (transaction)
and leverages resource connection pooling (JDBC pool, JMS pool, and so
forth).

Enabling the JMS services security
Refer to Chapter 24, “JMS provider pluggability” for vendor-specific
information on JMS services such as security.

Advanced Concepts for Defining JMS Connection Factories
The predeployed module default-resources.dar contains some default
Connection Factories, Topic and Queue, defined for the bundled JMS service.
You can edit these existing definitions to suit your environment or create a
new one. Again, like JDBC datasources, JMS connection factories are classes
that wrap the connection factory classes provided by JMS vendors. If you want
to use a JMS vendor not bundled or certified to work with BES, you need to
deploy that vendor's connection factory classes to your Partitions before you
can use them.

Like JDBC Datasources, JMS Connection Factories are defined in the jndi-
definitions.xml descriptor. The following DTD example shows the relevant
element, in bold:

<!ELEMENT jndi-definitions (visitransact-datasource*, driver-datasource*,
jndi-object*)>
<!ELEMENT visitransact-datasource (jndi-name, driver-datasource-jndiname,
property*)>
<!ELEMENT driver-datasource (jndi-name, datasource-class-name, log-writer?,
property*)>
<!ELEMENT jndi-object (jndi-name, class-name, property*)>
<!ELEMENT property (prop-name, prop-type, prop-value)>
 <!ELEMENT prop-name (#PCDATA)>
 <!ELEMENT prop-type (#PCDATA)>
 <!ELEMENT prop-value (#PCDATA)>
 <!ELEMENT jndi-name (#PCDATA)>

250 BES Developer ’s Guide

Connect ing to JMS Connect ion Factories f rom Appl icat ion Components

 <!ELEMENT driver-datasource-jndiname (#PCDATA)>
 <!ELEMENT datasource-class-name (#PCDATA)>
 <!ELEMENT log-writer (#PCDATA)>
 <!ELEMENT class-name (#PCDATA)>

You only need to define the <jndi-object> element to register the JMS
connection factory with JNDI. In this element, you specify the following:
� jndi-name: this is the name that will be looked up from JNDI to establish

connections with the messaging service. Like JDBC datasources, JMS
resources can and should use the serial:// namespace whenever
possible.

� class-name: this is the name of the connection factory class supplied by
the JMS service provider and deployed as libraries in your Partition.

� properties: these are properties specific to the JMS provider that need to
be passed to it.

At deployment time, the server creates the physical JMS destinations
specified in the jndi-definitions list.

Refer to Chapter 24, “JMS provider pluggability” for vendor-specific
information on JMS queues.

Connecting to JMS Connection Factories from Application
Components

Connections to JMS Connection Factories are achieved in much the same
way as those for JDBC. You declare your object references in the Resource
Reference elements of both the standard and Borland-specific deployment
descriptors. However, there are a few differences. First, you also must specify
a Resource Environment Reference that points to a specific queue or topic
contained within the Resource Reference datasource. Again, logical names
are bound to actual JNDI names using the Borland-specific descriptor at
deployment time.

Connecting to JMS Connection Factories from components
other than MDBs

Use of Resource References and Resource Environment References in the
ejb-jar.xml descriptor is described in the J2EE 1.3 Specification. In simple
terms, the Resource Reference (<resource-ref> element) refers to a
connection factory for the component to use to connect to the JMS service
provider. The Resource Environment Reference (<resource-env-ref> element)
points to the specific queue or topic to talk to. Let's look at an XML example for
a session bean from ejb-jar.xml:

<session>
 <ejb-name>session_bean</ejb-name>

Chapter 23: Using JMS 251

Connect ing to JMS Connect ion Factor ies f rom Appl icat ion Components

 ...

 <resource-ref>
 <res-ref-name>jms/MyJMSQueueConnectionFactory</res-ref-name>
 <res-type>javax.jms.QueueConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>
 <resource-env-ref>
 <res-env-ref-name>jms/MyJMSQueue</res-env-ref-name>
 <res-env-ref-type>javax.jms.Queue</res-env-ref-type>
 </resource-env-ref>

 ...
</session>

Although this portable descriptor provides some logical names for the
resources, they still need to bound to the actual JNDI name of the deployed
datasource object. This is accomplished with the ejb-borland.xml descriptor,
which binds the logical names with their JNDI locations. Like we did with JDBC
datasources, we will use the <resource-ref> element of the ejb-borland.xml
descriptor to do this:

<session>
 <ejb-name>session_bean</ejb-name>
 ...

 <resource-ref>
 <res-ref-name>jms/MyJMSQueueConnectionFactory</res-ref-name>
 <jndi-name>serial://resources/qfc</jndi-name>
 </resource-ref>

Note that the <res-ref-name> elements from both descriptor files are identical.
Now, we need to bind the logical name for the queue (or topic, whatever the
case may be) to its JNDI name. We accomplish this with the <resource-env-ref>
element of the Borland-specific descriptor. It's DTD element looks like the
following:

<!ELEMENT resource-env-ref (resource-env-ref-name, jndi-name)>

Like the Resource Reference element, we specify two things:
� resource-env-ref-name: this is the logical name of the topic or queue, and

its value must be identical to the value of the <res-env-ref-name> in ejb-
jar.xml.

� jndi-name: this is the JNDI name of the topic or queue that resolves the
logical name.

So, in order to complete the connection entry, we add the Resource
Environment Reference to the descriptor, yielding:

<session>
 ...

252 BES Developer ’s Guide

Connect ing to JMS Connect ion Factories f rom Appl icat ion Components

 <resource-ref>
 <res-ref-name>jms/MyJMSQueueConnectionFactory</res-ref-name>
 <jndi-name>serial://resources/qfc</jndi-name>
 </resource-ref>
 <resource-env-ref>
 <resource-env-ref-name>jms/MyJMSQueue</resource-env-ref-name>
 <jndi-name>serial://resources/q</jndi-name>
 </resource-env-ref>

 ...

</session>

Keep in mind that Resource References and Resource Environment
References can be used for all types of objects that require connections to
resources. Application clients can also use these references. You also need to
provide a Borland-specific XML file, application-client-borland.xml, however.
For example:

<application-client>

 ...

 <resource-ref>
 <res-ref-name>jms/MyJMSQueueConnectionFactory</res-ref-name>
 <jndi-name>serial://resources/qfc</jndi-name>
 </resource-ref>
 <resource-env-ref>
 <resource-env-ref-name>jms/MyJMSQueue</resource-env-ref-name>
 <jndi-name>serial://resources/q</jndi-name>
 </resource-env-ref>
 ...

</application-client>

Now, code from within the application-client archive can access these
datasources as well. Bear in mind, however, that only EJB containers can host
the DAR file itself. the Borland Client Container does not have this
functionality.

Chapter 24: JMS prov ider p luggabi l i ty 253

C h a p t e r b

24
Chapter24JMS provider pluggability

Important For documentation updates, go to www.borland.com/techpubs/bes.

BES is designed to support any arbitrary JMS provider as long as some
requirements are met. There are three levels of JMS pluggability: runtime
pluggability, configuration of JMS admin objects (connection factories and
queues/topics), and service management. You will achieve the best results if
all three are met, but just having the runtime level pluggability, as well as
vendor-specific ways to achieve the other levels, may be sufficient in many
situations.

JMS provider clustering and security are also discussed in this section.

Note Tibco JMS is bundled with BES 6. Sonic 5 is certified, but not bundled with
BES. Sonic must be acquired and installed separately, and the sonic.config
file must be updated to let BES know where Sonic is installed. The location of
this file is <install_dir>\bin\sonic.config. The JMS home is the Sonic home
directory, the root directory of the Sonic install, for example, jms.home = <sonic
home>.

Runtime pluggability
Runtime pluggability is determined by compliance to the J2EE specification. A
CTS compliant JMS product that additionally implements the JMS
specification optional APIs can seamlessly plug into the BES runtime. All
features like transactions and MDB support are retained.

JMS products must possess the capability to perform transactional messaging
to support MDBs and J2EE container intercepted messaging. That is, a JMS

254 BES Developer ’s Guide

Runt ime p luggabi l i t y

queue or topic must be a transactional resource. BES requires that JMS
products implement the JTA XAResource interface and support JMS XA APIs.

In addition, the JMS product should support the javax.jms.ConnectionConsumer
interface. The latter is vital since a central idea of MDBs is the concurrent
consumption of messages. The ConnectionConsumer interface achieves this.
The mechanism also works in conjunction with some optimal methods of the
javax.jms.Session objects, namely Session.run() and
Session.setMessageListener().

Configuring JMS admin objects (connection factories,
queues and topics)

If the JMS providers' admin objects, like connection factories and destinations
follow the JavaBeans specification (as encouraged in the JMS specification),
the BES DDEditor tool can define, edit and deploy these objects into the BES
JNDI tree without needing a JMS product-specific mechanism.

For specific information on using other JMS service providers with BES and
requirements for admin objects (queues, topics, and connection factories), go
to “Configuring admin objects for other JMS providers” on page 256.

Service management

The BES service control infrastructure can manage the JMS service process
(either a JVM or native process, whatever form it takes in the JMS provider) as
a first class managed object. Operations like starting, stopping and server
configuration is provided for supported (Tibco and Sonic) providers out of the
box. Extending this to any JMS product is documented in “Service
management for supported and other JMS providers” on page 258.

The BES Management Console allows for template-based additions of any
number of JMS servers, of any vendor type, to the same BES configuration in
a management domain.

The above list implicitly defines levels of pluggability. You will achieve the best
scenario if all three are met, but just the runtime pluggability as well as vendor-
specific ways to achieve the other levels may be sufficient in many situations.

Runtime pluggability
To achieve the level of "runtime pluggability", you need to comply with the
J2EE specifications. A CTS compliant JMS product that additionally
implements the JMS specification optional APIs can easily plug into the BES
runtime. To support transactional messaging for MDBs and J2EE container
intercepted messaging (connection and session pooling), meaning the queue
or topic must be a transactional resource, BES requires that the JMS XA APIs
support JTA integration. In addition, the JMS product should support the

255 BES Developer ’s Guide

Conf iguring admin objects

ConnectionConsumer interface since a central idea of MDBs is the concurrent
consumption of messages. The ConnectionConsumer achieves this, and
works in conjunction with some optimal methods of the javax.jms.Session
objects.

Tibco and Sonic

Tibco and Sonic have already achieved the runtime level of pluggability.
Additionally, BES 6.0 passed CTS 1.3.1 on both JMS providers.

Other JMS providers

For other JMS providers to achieve a runtime level of pluggability, compliance
with the J2EE specifications is necessary. BES requires that the JMS XA APIs
support JTA integration. In addition, the JMS product should support the
ConnectionConsumer interface. Refer to Sun's chapter on the JMS API for
specific information on complying with the specification.

Configuring admin objects
The next level of pluggability, involves configuring admin ojects, like queues,
topics and connection factories. The BES DDEditor tool can define, edit and
deploy these objects into the BES JNDI tree without needing a JMS product-
specific mechanism.

Tibco and Sonic

Both Tibco and Sonic achieve this level of pluggability. Their admin object
properties are defined in BES and can be configured graphically, using the
DDEditor.

To set the following admin object properties using the DDEditor:

1 Launch the DDEditor from within the Management Console or standalone
from the Start menu.

2 Select New and JNDI Definitions Archive to create a new JMS object.

3 Right-click and select New JMS Object.

4 Give the JMS object a name in the New JMS Object window and click OK.
Your JMS object will appear under your archive.

5 Click on your JMS object, and select the Main tab.

6 Configure your object by selecting various fields from the drop-down menus
and entering information in the properties' fields.

256 BES Developer ’s Guide

Conf iguring admin objects

7 To add additional properties for the JMS object, select the Properties tab
and click "Add" to add properties (name, type, value).

Tibco Admin Console
BES includes the Tibco Admin Console for additional configuration. To launch
the Tibco Admin Console, select it from the Tools menu in the BES
Management Console.

Configuring admin objects for other JMS providers

BES provides configurations in the DDEditor for Tibco, Sonic and other JMS
providers. However, there are required properties and classes for using other
JMS providers with BES. These must be configured in the jms.properties file
located in C:\Documents and Settings\username\.bmc60.

The following are the required properties that must be configured in the
jms.properties file:

Tibco.QueueConnectionFactory.props=serverUrl,clientID,userName,userPassword
Tibco.XAQueueConnectionFactory.props=serverUrl,clientID,userName,userPasswo
rd
Tibco.TopicConnectionFactory.props=serverUrl,clientID,userName,userPassword
Tibco.XATopicConnectionFactory.props=serverUrl,clientID,userName,userPasswo
rd
Tibco.Queue.props=address
Tibco.Topic.props=address
Sonic.QueueConnectionFactory.props=connectionURLs,defaultUser,defaultPasswo
rd,connectID,clientID,sequential,loadBalancing
Sonic.TopicConnectionFactory.props=connectionURLs,defaultUser,defaultPasswo
rd,connectID,clientID,sequential,loadBalancing
Sonic.XAQueueConnectionFactory.props=connectionURLs,defaultUser,defaultPass

257 BES Developer ’s Guide

Conf iguring admin objects

word,connectID,clientID,sequential,loadBalancing
Sonic.XATopicConnectionFactory.props=connectionURLs,defaultUser,defaultPass
word,connectID,clientID,sequential,loadBalancing
Sonic.Queue.props=queueName
Sonic.Topic.props=topicName
Other.QueueConnectionFactory.props=
Other.TopicConnectionFactory.props=
Other.XAQueueConnectionFactory.props=
Other.XATopicConnectionFactory.props=
Other.Queue.props=
Other.Topic.props=
Tibco.QueueConnectionFactory.class=com.tibco.tibjms.TibjmsQueueConnectionFa
ctory
Tibco.TopicConnectionFactory.class=com.tibco.tibjms.TibjmsTopicConnectionFa
ctory
Tibco.XAQueueConnectionFactory.class=com.tibco.tibjms.TibjmsXAQueueConnecti
onFactory
Tibco.XATopicConnectionFactory.class=com.tibco.tibjms.TibjmsXATopicConnecti
onFactory
Tibco.Queue.class=com.tibco.tibjms.TibjmsQueue
Tibco.Topic.class=com.tibco.tibjms.TibjmsTopic
Sonic.QueueConnectionFactory.class=progress.message.jclient.QueueConnection
Factory
Sonic.TopicConnectionFactory.class=progress.message.jclient.TopicConnection
Factory
Sonic.XAQueueConnectionFactory.class=progress.message.jclient.xa.XAQueueCon
nectionFactory
Sonic.XATopicConnectionFactory.class=progress.message.jclient.xa.XATopicCon
nectionFactory
Sonic.Queue.class=progress.message.jclient.Queue
Sonic.Topic.class=progress.message.jclient.Topic
Other.QueueConnectionFactory.class=
Other.TopicConnectionFactory.class=
Other.XAQueueConnectionFactory.class=
Other.XATopicConnectionFactory.class=
Other.Queue.class=
Other.Topic.class=
PropertyName=type, default
type=QueueConnectionFactory|TopicConnectionFactory|
XAQueueConnectionFactory|XATopicConnectionFactory|Queue|Topic
connectionURLs=String,localhost:2506
defaultUser=String
defaultPassword=String
connectID=String
clientID=String
sequential=Boolean,false
loadBalancing=Boolean,false
queueName=String
topicName=String
serverUrl=String,localhost:7222
userName=String

258 BES Developer ’s Guide

Conf iguring admin objects

userPassword=String
address=String

Service management for supported and other JMS
providers

Service management is handled by the BES service control infrastructure.
JMS service processes like starting, stopping and server configuration are
provided in the managed object configuration for supported (Tibco and Sonic)
JMS providers out of the box. This level of pluggability for other JMS providers
can be achieved with some configuration.

Other JMS providers

The following steps are required for introducing a JMS server other than Tibco
or Sonic into BES:

1 If the main entry into the JMS server is through a Java class, and you are
required to shut down the server using a management API, proceed to step
2 (to create a runner). Otherwise, go to step 3 (to create a launcher).

2 A runner works in conjunction with BES, a launcher to provide a graceful
shutdown. Refer to the Sonic5Runner class as an example implementation
of a runner. A runner is required to implement the two methods below:
� public static main(String[] argv): starting the server
� public static cleanup(boolean b): shutting down the server

3 A launcher is consisted of an executable and a config file. The executable
files are all identical. In Windows, you can make a copy of partition.exe and
give it a new name.

4 Make a config file with the same name as the executable created in step 3.

5 Populate the config file with the required runtime properties for the JMS
server. The runtime properties are usually in a .bat file. Refer to
launcher.html in \JSoft\IAS\src\share\native for more details. You can also
refer to sonicmq.config (in <install_dir>\bin) for an example of runtime
properties.

6 Create a config file similar to tibco.config or sonic.config, which are located
in <install_dir>\bin\. Include all the client and admin JARs for the JMS
server.

7 Modify the jms.config file, located in <install_dir>\bin, setting the JMS
provider as the new one being added.

8 Create a Managed Object and include it in the configuration.xml file. If the
new JMS server is a native server, use Tibco MO as an example. The Tibco
MO is located in <install_dir>\var\templates\managed_objects\jms. If the new
JMS server is an all Java server, use the Sonic MO as an example, which is
located in the same file as Tibco MO.

259 BES Developer ’s Guide

Conf iguring admin objects

9 If the JMS server is an all Java server, repeat steps 3 through 5 to create a
launcher for the Admin Console.

Required libraries for other JMS providers
When trying to connect to another JMS provider the required libraries must
first be deployed to the target Partition. The steps are:

1 Start your BES server and Management Console.

2 From the Console, open the Wizards menu and select the Deployment
Wizard. The wizard allows you to deploy modules to a Partition.

3 "Add" the library file and check the option to restart the Partition on deploy.

4 Proceed to deploy to the chosen Partition(s). Close the wizard.

You should see your driver listed under the "Deployed Modules" folder of the
Partition(s). The DDEditor panels do not provide as much custom help for
other JMS vendor products as it does for JMS vendors certified to work with
BES. Refer to the other JMS vendor's documentation to ascertain the correct
name of the ConnectionFactory, Topic or Queue implementation class in order
to create JNDI objects.

Note All required libraries are already configured so nothing extra is needed if you
are going to use JMS services bundled with BES.

Added value for Tibco

Tibco provides this added value:
� Transparent installation
� No post installation configuration
� Clustering of Tibco servers can be done visually using the BES

Management Console
� Tibco Admin Console is available from BES Management Console Tools

menu.

Enabling Sonic

To enable Sonic:

1 Create a Sonic Managed Object. For information on creating Managed
Objects, refer to the BDOC Developer’s Guide, Managed Object section.

2 Modify sonic.config in <install_dir>\bin\sonic.config to include the Sonic
home directory.

The JMS home is the Sonic home directory, the root directory of the Sonic
install, JMS.home = <sonic home>. The default is blank.

260 BES Developer ’s Guide

Creat ing a c lustered JMS serv ice

Sonic
Using the DDEditor, you can configure a name (JMS service URL, sequential,
loadBalancig) a type, and a value in the XML <jndi-object>, as shown in the
example below:

<jndi-object>
 <jndi-name>serial://jms/message</jndi-name>
 <class-name>progress.message.jclient.QueueConnectionFactory</class-
name>
 <property>
 <prop-name>connectionURLS</prop-name>
 <prop-type>String</prop-type>
 <prop-value>localhost:2506</prop-value>
 </property>
 <property>
 <prop-name>sequential</prop-name>
 <prop-type>Boolean</prop-type>
 <prop-value>false</prop-value>
 </property>
 <property>
 <prop-name>loadBalancing</prop-name>
 <prop-type>Boolean</prop-type>
 <prop-value>true</prop-value>
 </property>
 </jndi-object>

Creating a clustered JMS service

Tibco

The Tibco JMS server works in pairs to provide fault tolerance. When working
in pairs, one acts as the primary server and the other acts as a secondary
server, with only the primary server accepting client connections and handling
JMS messages. For the secondary server to take over active connections and
properly handle persistent messages, both the servers must have access to a
shared state. The primary and backup servers must both have access to a
shared state. This shared state can be shared storage devices or other
mechanisms such as replication.

The shared state must be accessible to both of the servers (primary and
secondary). Some common ways to implement shared storage are Network
Attached Storage (NAS) or Storage Area Network (SAN) devices. Replication
schemes can also be used for replicating the shared state.

For more information on Tibco shared state and storage, refer to Tibco's
documentation, located in <install_dir>/jms/tibco/doc/html.

The clustering of Tibco servers can be done visually using the BES
Management Console. To cluster Tibco servers:

1 Create a shared directory that both of the Tibco servers have full access to.

261 BES Developer ’s Guide

Creat ing a c lustered JMS serv ice

2 Right-click the your Configuration and select Add Managed Object from
Template/jms/Clustered Tibco.

3 Select a group to add clustered Tibco to from the drop-down menu.

4 Make the following changes to the template properties for the second Tibco
server:
� 2nd Management Agent=hub.name where hub.name is the name of your

Management Hub.
� Name - this is the name of the second Tibco server.
� Tibco Slave URL - this is the port for the second Tibco server. The

default is 7222. If the primary and secondary servers are on different
machines the port numbers need to be different, they are the same if on
the same machine.

� Data Directory - This is the path to the shared datastorage for both
primary and secondary servers.

Integrating clustered Tibco servers into BES

The fault tolerant Tibco JMS server pair is represented in BES as a
redundancy group Managed Object. Although there are two Tibco servers
running, BES shows the pair of servers as a single Managed Object. The
definition for the Redundancy Group Managed Object is shown below:

<managed-objects>
 <managed-object name="${tmp.name}" agent="${hub.name}"display-
name="${tmp.display}" initial-manage="${tmp.managed}"

262 BES Developer ’s Guide

Creat ing a c lustered JMS serv ice

initial-monitor="true" type="redundancy-group">

 <redundancy-group member="2" desired-range-max="2">
 <member mo-ref="${tmp.agent1}/${tmp.master.name}"/>
 <member mo-ref="${tmp.agent2}/${tmp.slave.name}"/>
</redundancy-group>
</managed-object>
</managed-objects>
</configuration>

Note The Tibco servers in the example above are running on different hosts.

Configuring clients for fault tolerant Tibco connections
To connect to a backup server in the event of failure of a primary server, a
client application must specify multiple server URLs in the jndi-object XML for
the connection factories as below:

<jndi-object>
 <jndi-name>serial://jms/XAQueueConnectionFactory</jndi-name>
 <class-name>com.tibco.tibjms.TibjmsXAQueueConnectionFactory</class-name>
 <property>
 <prop-name>serverUrl</prop-name>
 <prop-type>String</prop-type>
 <prop-value>localhost:7222,hnguyen:7222</prop-value>
 </property>
</jndi-object>
<jndi-object>
 <jndi-name>serial://jms/QueueConnectionFactory</jndi-name>
 <class-name>com.tibco.tibjms.TibjmsQueueConnectionFactory</class-name>
 <property>
 <prop-name>serverUrl</prop-name>
 <prop-type>String</prop-type>
 <prop-value>localhost:7222,hnguyen:7222</prop-value>
 </property>
</jndi-object>
<jndi-object>
 <jndi-name>serial://jms/XATopicConnectionFactory</jndi-name>
 <class-name>com.tibco.tibjms.TibjmsXATopicConnectionFactory</class-name>
 <property>
 <prop-name>serverUrl</prop-name>
 <prop-type>String</prop-type>
 <prop-value>localhost:7222,hnguyen:7222</prop-value>
 </property>
</jndi-object>
 <jndi-name>serial://jms/TopicConnectionFactory</jndi-name>
 <class-name>com.tibco.tibjms.TibjmsTopicConnectionFactory</class-name>
 <property>
 <prop-name>serverUrl</prop-name>
 <prop-type>String</prop-type>
 <prop-value>localhost:7222,hnguyen:7222</prop-value>
 </property>
</jndi-object>

263 BES Developer ’s Guide

Enabl ing secur i ty for JMS

Sonic

Use the Sonic Wizard to create a Managed Sonic Messaging Service. For
details on the specifics of your Sonic Messaging Service, refer to the Sonic
documentation.

For clustering Sonic, you have two choices:
� If you have already used the Sonic Wizard to create a managed Sonic

service, check the box and choose the appropriate instance from the drop
down list.

� You can create a new managed Sonic service by clicking the Launch Sonic
Wizard button. When you've finished, click Refresh and select your new
Sonic service from the drop-down list.

Enabling security for JMS
Note For information on SSL, please refer to your JMS service provider's

documentation. Tibco documentation is located in <install_dir>\jms\tibco\
doc\html.

Tibco

To enable security for Tibco, you can either modify the tibjmsd.conf file located
in: /<install_dir>/var/domains/base/configurations/<configuration_name>/
mos/tibco/tibjmsd.conf, or you can set it using the Tibco Admin tool.

Enabling security for Tibco:
1 Open the Tibco Admin tool.

2 Type connect.

3 Enter Login name and Password.

4 Type set server authorization=enabled. You can also do this by modifying
tibjmsd.conf, authorization=enabled.

5 Create a user, type create user <name> [<description>]
[password=<password>].

6 Add a member, type add member <group-name> <user-name> [,<user-
name2>,...].

Disabling security for Tibco:
1 Set the server authorization to disabled: set server authorization=disabled.

264 BES Developer ’s Guide

Enabl ing secur i ty for JMS

Sonic

To enable and disable security for Sonic, you must ensure db.ini file is
updated before initialization of the database. There are two levels at which
security must be applied, the backend database and the Sonic Broker. Use
the Management Console to configure Sonic Broker and you can use a dbtool
command to take care of the database. Most importantly, the database and
Sonic broker must be in sync.

Enabling security for Sonic:
1 At the Sonic installation location, edit the db.ini file at the root of the

installation and set the ENABLE_SECURITY property to true and save the
modified file.

2 From the Management Console, connect to Sonic's domain.

3 On the Configure tab, right-click on the Sonic server that is being security
enabled and choose Properties.

4 Select Enable Security.

5 Select an Authorization Domain.

6 Select an Authorization Policy.

7 Click OK to accept the changes.

8 On the Manage tab, navigate to the Sonic server in the container where it is
deployed.

9 Right-click the container that hosts the Sonic server that is being security
enabled and choose Operations > Shutdown.

10 From a command-line, issue dbtool/ r b from the Sonic <install_dir>/bin.

11 From the Sonic Explorer console Configure tab, expand Security then
expand Default Authentication and select Users.

12 Right-click Users and add a new user.

13 On the Group Memberships tab, add the new user to all groups.

To restart the container, stop and start Sonic from the BES Management
Console.

Disabling security for Sonic:
1 Reconnect in the Sonic Explorer console. Use username "Administrator" and

password "Administrator".

2 On the Configure tab, right-click the Sonic server that is being security
enabled and select Properties.

3 Uncheck Security and choose OK to accept the changes.

4 At the Sonic installation location, edit the db.ini file at the root of the
installation and set the parameter ENABLE_SECURITY to false and save the
modified file.

265 BES Developer ’s Guide

Enabl ing secur i ty for JMS

5 On the Manage tab of the Sonic Explorer console, navigate to the Sonic
server in the container where it is deployed.

6 Right-click on the container that hosts the Sonic server that is being
security enabled and choose Operations > Shutdown.

7 From the command line issue dbtool/ r b from <Sonic_install>/bin
directory.

266 BES Developer ’s Guide

Chapter 25: Implement ing Part i t ion Interceptors 267

C h a p t e r

25
Chapter25Implementing Partition

Interceptors
Implementing Partition Interceptors requires the following steps:

1 Defining your interceptor using the module-borland.xml descriptor file.

2 Creating the interceptor class.

3 JARing the class and the descriptor file.

4 Deploy the JAR to the Partition of interest.

Important For documentation updates, go to www.borland.com/techpubs/bes.

Defining the Interceptor
You define the interceptor by creating a module-borland.xml file. This file uses
the following DTD:

<!ELEMENT module (Partition-interceptor?)>
<!ELEMENT Partition-interceptor (class-name, argument?, priority?)>
<!ELEMENT class-name (#PCDATA)>
<!ELEMENT argument (key, value)>
<!ELEMENT key (#PCDATA)>
<!ELEMENT value (#PCDATA)>
<!ELEMENT priority (#PCDATA)>

The <class-name> element must contain the full-path class name of the
implementation contained within the JAR.

Chapter 25: Implement ing Part i t ion Interceptors 268

Creat ing the In terceptor Class

The <priority> element is an optional field that controls the order in which a
set of interceptors for a particular Partition are fired. This value must be
between 0 and 9. Priority 0 ranks before priority 9. Interceptors are fired in
order during load time and in reverse order during shutdown. If two or more
interceptors share the same priority, there is no way to determine or enforce
which of that set will be fired relative to the other.

The <argument> is an optional element which contains a pair of elements, <key>
and <value>. These are passed into your class implementation as a
java.util.HashMap. Your code must extract the appropriate values from this
type. The limit on arguments is imposed by the JVM implementation.

For example, the following XML defines an interceptor called InterceptorImpl

:

<module>
<Partition-interceptor>
 <class-name>com.borland.enterprise.examples.InterceptorImpl</class-
name>
 <argument>
 <key>key1</key>
 <value>value1</value>
 </argument>
 <argument>
 <key>key2</key>
 <value>value2</value>
 </argument>
 <argument>
 <key>key3</key>
 <value>value3</value>
 </argument>
 <priority>1</priority>
</Partition-interceptor>
</module>

Creating the Interceptor Class
Your class must implement:

com.borland.enterprise.server.Partition.service.PartitionInterceptor

The following methods are available:

public void initialize(java.util.HashMap args);

This method is called before any Partition services like the Tomcat container
are created and initialized. This method is not subject to the <priority>
parameter, since it is invoked as each interceptor is loaded.

public void startupPreLoad();

This method is called after Partition services are started and before the
Partition services load modules.

Chapter 25: Implement ing Part i t ion Interceptors 269

Creat ing the In terceptor Class

public void startupPostLoad();

This method is invoked after all Partition services have loaded their respective
modules.

public void shutdownPreUnload();

This method is called before the Partition services unload their respective
modules. The <priority> parameter now reverses its meaning; priority 9
interceptors are called first, then priority 8, and so forth.

public void shutdownPostUnload();

This method is called after the services have unloaded their modules.

public void PartitionTerminating();

This method is called after the services have been shut down, just before the
Partition shuts down.

The following code sample shows the class InterceptorImpl defined in the
module-borland.xml descriptor above:

package com.borland.enterprise.examples;

// This interface is contained in xmlrt.jar
import
com.borland.enterprise.server.Partition.service.PartitionInterceptor;

public class InterceptorImpl implements PartitionInterceptor {
 static final String _className = "InterceptorImpl";

 public void initialize(java.util.HashMap args) {
 // Writing to System.out and System.err will
 // cause the output to be logged.
 // There is no requirement to log.
 System.out.println(_className + ": initialize");
 System.out.println("key1 has value " + args.get("key1").toString());
 System.out.println("key2 has value " + args.get("key2").toString());
 System.out.println("key3 has value " + args.get("key2").toString());
 }
 public void startupPreLoad() {
 // Writing to System.out and System.err will
 // cause the output to be logged.
 // There is no requirement to log.
 System.out.println(_className + ": startupPreLoad");
 }
 public void startupPostLoad() {
 // Writing to System.out and System.err will
 // cause the output to be logged.
 // There is no requirement to log.
 System.out.println(_className + ": startupPostLoad");
 }
 public void shutdownPreUnload() {
 // Writing to System.out and System.err will
 // cause the output to be logged.

270 BES Developer ’s Guide

Creat ing the JAR f i le

 // There is no requirement to log.
 System.out.println(_className + ": shutdownPreUnload");
 }
 public void shutdownPostUnload() {
 // Writing to System.out and System.err will
 // cause the output to be logged.
 // There is no requirement to log.
 System.out.println(_className + ": shutdownPostUnload");
 }
 public void PartitionTerminating() {
 // Writing to System.out and System.err will
 // cause the output to be logged.
 // There is no requirement to log.
 System.out.println(_className + ": PartitionTerminating");
 }
}

Creating the JAR file
Use Java's JAR utility to create a JAR file of the class and its descriptor file.

Deploying the Interceptor
Use the Deployment Wizard to deploy the interceptor to the Partition. Do not
check either the "Verify deployment descriptors" or the "Generate stubs"
checkboxes.

Important You must restart the Partition after deploying your interceptor.

You can also simply copy your JAR file into one of these two directories,
making sure you restart the Partition manually afterward:
� <install_dir>/var/servers/<server_name>/Partitions/<Partition_name>/lib

� <install_dir>/var/servers/<server_name>/Partitions/<Partition_name>/lib/
system

Chapter 26: V is iConnect overv iew 271

C h a p t e r

26
Chapter26VisiConnect overview

Important For documentation updates, go to www.borland.com/techpubs/bes.

J2EE™ Connector Architecture
In the information technology environment, enterprise applications generally
access functions and data associated with Enterprise Information Systems
(EIS). This traditionally has been performed using non-standard, vendor-
specific architectures. When multiple vendors are involved, the number of
architectures involved exponentiate the complexity of the enterprise
application environment. With the introduction of the Java 2 Enterprise Edition
(J2EE) 1.3 Platform and the J2EE Connector Architecture (Connectors) 1.0
standards, this task has been greatly simplified.

VisiConnect, the Borland implementation of the Connectors 1.0 standard,
provides a simplified environment for integrating various EISs with the Borland
Enterprise Server. The Connectors provides a solution for integrating J2EE-
platform application servers and EISs, leveraging the strengths of the J2EE
platform - connection, transaction and security infrastructure - to address the
challenges of EIS integration. With the Connectors, EIS vendors need not
customize integration to their platforms for each application server. Through
VisiConnect's strict conformance to the Connectors, the Borland Enterprise
Server itself requires no customization in order to support integration with a
new EIS.

Connectors enables EIS vendors to provide standard Resource Adapters for
their EISs. These Resource Adapters are deployed to the Borland Enterprise
Server, each providing the integration implementation between the EIS and

272 BES Developer ’s Guide

Components

the Borland Enterprise Server. With VisiConnect, the Borland Enterprise
Server ensures access to heterogeneous EISs. In turn, the EIS vendors need
provide only one standard Connectors-compliant resource adapter. By default,
this resource adapter has the capability to deploy to the Borland Enterprise
Server.

Components
The Connectors environment consists of two major components - the
implementation of the Connectors in the application server, and the EIS-
specific Resource Adapter.

In the J2EE 1.3 Architecture, the Connectors is an extension of the J2EE
Container, otherwise known as the application server. In compliance with the
J2EE 1.3 Platform and Connectors 1.0 specifications, VisiConnect is an
extension of the Borland Enterprise Server, and not a service in and of itself.
The following diagram illustrates VisiConnect within the Borland Enterprise
Server Architecture:

Figure 26.1 VisiConnect within the Borland Enterprise Server

(VisiConnect is represented above by the module titled "Connectors.")

Chapter 26: V is iConnect overv iew 273

System Contracts

A Resource Adapter is a system-level driver specific to an EIS, which provides
access to that EIS. To put it simply, a Resource Adapter is analogous to a
JDBC driver. The interface between a Resource Adapter and the EIS is
specific to the EIS. It can be either a Java interface or a native interface.

The Connectors consists of three main components:
� System Contracts that provide the integration between the Resource

Adapter and the application server (Borland Enterprise Server).
� Common Client Interface that provides a standard client API for Java

applications, frameworks, and development tools to interact with the
Resource Adapter.

� Packaging and Deployment that provides the capacity for various
Resource Adapters to plug into J2EE applications in a modular manner.

The following diagram illustrates the Connectors architecture:

A Resource Adapter and its collateral serve as the Connector. VisiConnect
supports Resource Adapters developed by EIS vendors and third-party
application developers written to the Connectors 1.0 standard. Resource
Adapters contain the components - Java, and if necessary, native code -
required to interact with the specific EIS.

System Contracts
The Connectors specification defines a set of system level contracts between
the application server and an EIS-specific Resource Adapter. This
collaboration keeps all system-level mechanism transparent from the
application components. Thus, the application component provider focuses on
the development of business and presentation logic, and need not delve into

274 BES Developer ’s Guide

System Contracts

the system-level issues related to EIS integration. This promotes the
development of application components with greater ease and maintainability.

VisiConnect, in compliance with the Connectors specification, has
implemented the standard set of defined contracts for:
� Connection Management, that allows an application server to pool

connections to underlying EISs, providing application components with
connection services to EISs. This leads to a highly scalable application
environment that supports a large number of clients requiring access to
heterogeneous EISs.

� Transaction Management, the contract between the application server
transaction manager and an EIS supporting transactional access to EIS
resource managers, that enables the application server to manage
transactions across multiple resource managers.

� Security Management, that enables secure access to underlying EISs.
This provides support for a secure application environment, which reduces
security threats to the EIS and protects valuable information resources
managed by the EIS.

Connection Management

Connections to an EIS are expensive resources to create and destroy. To
support scalable applications, the application server needs to be able to pool
connections to the underlying EISs. To simplify application component
development, this connection pooling mechanism needs to be transparent to
the components accessing the underlying EISs.

The Connectors specification supports connection pooling and management,
optimizing application component performance and scalability. The connection
management contract, defined between the application server and the
Resource Adapter, provides:
� A consistent application development model for connection acquisition for

both managed (n-tier) and non-managed (two-tier) applications.
� A framework for the Resource Adapter to provide a standard connection

factory and connection interface based on the Common Client Interface
(CCI), opaque to the implementation for the underlying EIS.

� A generic mechanism for providing different quality of services (QoS)
advanced connection pooling, transaction management, security
management, error tracing and logging - for a configured set of Resource
Adapters.

� Support for the application server to implement its connection pooling
facility.

VisiConnect uses connection management to:
� Create new connections to an EIS
� Configure connection factories in the Java Naming and Directory Interface

(JNDI) namespace.

Chapter 26: V is iConnect overv iew 275

System Contracts

� Find the right connection to an EIS from an existing set of pooled
connections, and reuse that connection.

� Hook in Borland Enterprise Server's transaction and security management.

The Borland Enterprise Server establishes, configures, caches and reuses
connections to the EIS automatically through VisiConnect.

The application component performs a lookup of a Resource Adapter
connection factory in the JNDI namespace, using the connection factory to get
a connection to the underlying EIS. The connection factory delegates the
connection creation request to the VisiConnect connection manager instance.
On receiving this request, the connection manager performs a lookup in the
connection pool. If there is no connection in the pool that can satisfy the
connection request, VisiConnect uses the ManagedConnectionFactory
implemented by the Resource Adapter to create a new physical connection to
the underlying EIS. If VisiConnect finds a matching connection in the pool, it
then uses the matching ManagedConnection instance to satisfy the connection
request. If a new ManagedConnection instance is created, the server adds the
new ManagedConnection instance to the connection pool.

VisiConnect registers a ConnectionEventListener with the ManagedConnection
instance. This listener enables VisiConnect to receive event notifications
related to the state of the ManagedConnection instance. VisiConnect uses
these notifications to manage connection pooling, transactions, connection
cleanup and handle error conditions.

VisiConnect uses the ManagedConnection instance to provide a Connection
instance that acts as an application-level handle to the underlying physical
connection, to the application component. The component in turn uses this
handle - and not the underlying physical connection directly - to access EIS
resources.

Transaction Management

Transactional access to multiple EISs is an important and often critical
requirement for enterprise applications. The Connectors supports transaction
access to multiple, heterogeneous EISs - where a number of interactions must
be committed together, or not at all, in order to maintain data consistency and
integrity.

VisiConnect utilizes the Borland Enterprise Server's transaction manager and
supports Resource Adapters conforming to the following transaction support
levels.
� No Transaction support: if a Resource Adapter supports neither Local

Transactions nor XA Transactions, it is non-transactional. If an application
component uses a non-transactional Resource Adapter, the application
component must not involve any connections to the respective EIS in a
transaction. If the application component is required to involve EIS
connections in a transaction, the application component must use a
Resource Adapter which support Local or XA Transactions.

276 BES Developer ’s Guide

System Contracts

� Local Transaction support: the application server manages resources
directly, which are local to the Resource Adapter. Unlike XA Transactions,
local transactions can neither participate in the two-phase commit (2PC)
protocol, nor participate as a distributed transaction (whereas the
transaction context is simply propagated); instead, local transactions solely
target one-phase commit (1PC) optimization. A Resource Adapter defines
the type of transaction support in its Sun standard deployment descriptor.
When an application component requests an EIS connection as part of a
transaction, Borland Enterprise Server starts a local transaction based on
the current transaction context. When the application closes the
connection, Borland Enterprise Server commits the local transaction, and
cleans up the EIS connection once the transaction is completed.

� XA Transaction support: a transaction is managed by a transaction
manager external to the Resource Adapter and the EIS. A Resource
Adapter defines the type of transaction support in its Sun-standard
deployment descriptor. When an application component demarcates an
EIS connection request as part of a transaction, the Borland Enterprise
Server is responsible for enlisting the XA resource with the transaction
manager. When the application component closes that connection, the
application server unlists the XA resource from the transaction manager,
and cleans up the EIS connection once the transaction is completed.

In compliance with the Connectors 1.0 specification, VisiConnect provides
full support for all three specified transaction levels.

One-Phase Commit Optimization
In many cases, a transaction is limited in scope to a single EIS, and the EIS
resource manager performs its own transaction management - this is the
Local Transaction. An XA Transaction can span multiple resource managers,
thus requiring transaction coordination to be performed by an external
transaction manager, typically one packaged with an application server. This
external transaction manager can either use the 2PC protocol, or propagate
the transaction context as a distributed transaction, to manage a transaction
that spans multiple EISs. If only one resource manager is participating in an
XA Transaction, it uses the 1PC protocol. In an environment where a singleton
resource manager is handling its own transaction management, 1PC
optimization can be performed, as this involves a less expensive resource
than a 1PC XA Transaction.

Security Management

In compliance with the Connectors 1.0 specification, VisiConnect supports
both container-managed and component-managed sign-on. At runtime,
VisiConnect determines the selected sign-on mechanism based on
information specified in deployment descriptor of the invoking component. If
VisiConnect is unable to determine the sign-on mechanism requested by the
component (most often due to an improper JNDI lookup of the Resource
Adapter connection factory), VisiConnect will attempt container-managed

Chapter 26: V is iConnect overv iew 277

System Contracts

sign-on. If the component has specified explicit security information, this will
be presented in the call to obtain the connection, even in the case of
container-managed sign-on.

Component-Managed Sign-on
When employing component-managed sign-on, the component provides all
the required security information - most commonly a username and a
password - when requesting to obtain a connection to an EIS. The application
server provides no additional security processing other than to pass the
security information along on the request for the connection. The Resource
Adapter uses the component-provided security information to perform EIS
sign-on in an implementation-specific manner.

Container-Managed Sign-on
When employing container-managed sign-on, the component does not
present any security information, and the container must determine the
necessary sign-on information, providing this information to the Resource
Adapter in the request to obtain a connection. The container must determine
an appropriate resource principal and provide this resource principal
information to the Resource Adapter in the form of a Java Authentication and
Authorization Service (JAAS) Subject object.

EIS-Managed Sign-on
When employing EIS-managed sign-on, the Resource Adapter internally
obtains all of its EIS connections with a pre-configured, hard-coded set of
security information. In this scenario the Resource Adapter does not depend
upon the security information passed to it in the invoking component's
requests for new connections.

Authentication Mechanisms
Borland Enterprise Server user must be authenticated whenever they request
access to a protected Borland Enterprise Server resource. For this reason,
each user is required to provide a credential (a username/password pair or a
digital certificate) to Borland Enterprise Server. The following types of
authentication mechanisms are supported by Borland Enterprise Server:
� Password authentication a user ID and password are requested from the

user and sent to Borland Enterprise Server in clear text. Borland Enterprise
Server checks the information and if it is trustworthy, grants access to the
protected resource.

� The SSL (or HTTPS) protocol can be used to provide an additional level of
security to password authentication. Because the SSL protocol encrypts
the data transferred between the client and Borland Enterprise Server, the
user ID and password of the user do not flow in the clear. Therefore,
Borland Enterprise Server can authenticate the user without compromising
the confidentiality of the user's ID and password.

278 BES Developer ’s Guide

System Contracts

� Certificate authentication: when an SSL or HTTPS client request is initiated,
Borland Enterprise Server responds by presenting its digital certificate to
the client. The client then verifies the digital certificate and an SSL
connection is established. The CertAuthenticator class then extracts data
from the client's digital certificate to determine which Borland Enterprise
Server User owns the certificate and then retrieves the authenticated User
from the Borland Enterprise Server security realm.

� You can also use mutual authentication. In this case, Borland Enterprise
Server not only authenticates itself, it also requires authentication from the
requesting client. Clients are required to submit digital certificates issued by
a trusted certificate authority. Mutual authentication is useful when you
must restrict access to trusted clients only. For example, you might restrict
access by accepting only clients with digital certificates provided by you.

For more information, see "Getting Started with Security" in the Developer's
Guide.

Security Map
In Section 7.5 of the Connectors 1.0 specification, a number of possible
options are identified for defining a Resource Principal on the behalf of whom
sign-on is being performed. VisiConnect implements the Principal Mapping
option identified in the specification.

Under this option, a resource principal is determined by mapping from the
identity of the initiating caller principal for the invoking component. The
resulting resource principal does not inherit the identity of security attributes of
the principal that is it mapped from. Instead, the resource principal derives its
identity and security attributes based on the defined mapping. Thus, to enable
and use container-managed sign-on, VisiConnect provides the Security Map
to specify the initiating principal association with a resourceprincipal.
Expanding upon this model, VisiConnect provides a mechanism to map
initiating caller roles to resource roles.

If container-managed sign-on is requested by the component and no Security
Map is configured for the deployed Resource Adapter, an attempt is made to
obtain the connection using a null JAAS Subject object. This is supported
based upon the Resource Adapter implementation.

While the defined connection management system contracts define how
security information is exchanged between the Borland Enterprise Server and
the Resource Adapter, the determination to use container-managed sign-on or
component-managed sign-on is based on deployment information defined for
the component requesting a connection.

The Security Map is specified with the security-map element in the ra-
borland.xml deployment descriptor. This element defines the initiating role
association with a resource role. Each security-map element provides a
mechanism to define appropriate resource role values for the Resource
Adapter and EIS sign-on processing. The security-map elements provide the
means to specify a defined set of initiating roles and the corresponding

Chapter 26: V is iConnect overv iew 279

Common Cl ient In ter face (CCI)

resource role to be used when allocating managed connections and
connection handles.

A default resource role can be defined for the connection factory in the
security-map element. To do this, specify a user-role value of "*" and a
corresponding resource-role value. The defined resource-role is then utilized
whenever the current identity if not matched elsewhere in the Security Map.

This is an optional element. However, it must be specified in some form when
container-managed sign-on is supported by the Resource Adapter and any
component uses it. Additionally, the deployment-time population of the
connection pool is attempted using the defined default resource role, given
that one is specified.

Security Policy Processing
The Connectors 1.0 specification defines default security policies for any
Resource Adapters running in an application server. It also defines a way for a
Resource Adapter to provide its own specific security policies overriding the
default.

In compliance with this specification, Borland Enterprise Server dynamically
modifies the runtime environment for Resource Adapters. If the Resource
Adapter has not defined specific security policies, Borland Enterprise Server
overrides the runtime environment for the Resource Adapter with the default
security policies specified in the Connectors 1.0 specification. If the Resource
Adapter has defined specific security policies, Borland Enterprise Server first
overrides the runtime environment for the Resource Adapter first with a
combination of the default security policies for Resource Adapters and the
specific policies defined for the Resource Adapter. Resource Adapters define
specific security policies using the security-permission-spec element in the
ra.xml deployment descriptor file.

For more information on security policy processing requirements, see Section
11.2, "Security Permissions", in the Connectors 1.0 specification (http://
java.sun/j2ee/download.html#connectorspec).

Common Client Interface (CCI)
The Common Client Interface (CCI) defines a standard client API for
application components. The CCI enables application components, Enterprise
Application Integration (EAI) frameworks, and development tools to drive
interactions across heterogeneous EISs using a common client API.

The CCI is targeted for use by EAI and enterprise tool vendors. The
Connectors 1.0 specification recommends that the CCI be the basis for richer
functionality provided by the tool vendors, rather than being an application-
level programming interface used by most application developers. Application
components themselves may also write to the API. As the CCI is a low-level
interface, this use is generally reserved for the migration of legacy modules to
the J2EE 1.3 Platform. Through the CCI, legacy EIS clients can integrate

280 BES Developer ’s Guide

Common Cl ient In ter face (CCI)

directly with the Borland Enterprise Server; this provides for a smoother, less
costly migration path to J2EE 1.3.

The CCI defines a remote function call interface that focuses on executing
functions on an EIS and retrieving the results. The CCI is independent of a
specific EIS; in other words, it is not bound to the data types, invocation hooks,
and signatures of a particular EIS. The CCI is capable of being driven by EIS-
specific metadata from a repository.

The CCI enables the Borland Enterprise Server to create and manage
connections to an EIS, execute an interaction, and manage data records as
input, output, or return values. The CCI is designed to leverage the Java
Beans architecture and Java Collection framework.

The Connectors 1.0 specification recommends that a Resource Adapter
support CCI as its client API, while it requires the Resource Adapter to
implement the system contracts. A developer may choose to write the
Resource Adapter to provide a client API different from the CCI, such as:
� the Java Database Connectivity (JDBC) API (an example of a general EIS-

type interface), or
� for example, the client API based on the IBM CICS Java Gateway (an

example of a EIS-specific interface)

The CCI (which form the application contract) consists of the following:
� ConnectionFactory A ConnectionFactory implementation creates a

connection and interaction object as a means of interacting with an EIS. Its
getConnection method gets a connection to an EIS instance.

� Connection A Connection implementation represents an application level
handle to an EIS instance. The actual connection is represented by a
ManagedConnection. An application gets a Connection object by using the
getConnection method of a ConnectionFactory object.

� Interaction An Interaction implementation is what drives a particular
interaction. It is created using the ConnectionFactory. The following three
arguments are needed to carry out an interaction via the Interaction
implementation: InteractionSpec, which identifies the characteristics of the
concrete interaction, and Input and Output, which both carry the exchanged
data.

� InteractionSpec An InteractionSpec implementation defines all interaction-
relevant properties of a connector (for example, the name of the program to
call, the interaction mode, and so forth). The InteractionSpec is passed as
an argument to an Interaction implementation when a particular interaction
has to be carried out.

� Input and output The input and output are records.

A record is a logical collection of application data elements that combines the
actual record bytes together with its type. Examples are COBOL and C data
structures. Record implementation in CCI uses streams. In the
javax.resource.cci.Streamable interface, reading and writing from streams is
handled by read and write methods. In the javax.resource.cci.Record
interface, getRecordName() and getRecordShortDescription(), and

Chapter 26: V is iConnect overv iew 281

Packaging and Deployment

setRecordName() and setRecordShortDescription() get and set the record
data.

You must create records for all of the data structures that are externalized by
the EIS functions you want to reuse. You then use the records as input and
output objects that pass data via a Resource Adapter to and from an EIS. You
will want to consider the following options when creating a record:
� Having direct access to nested, or hierarchical, records A direct, or

'flattened', set of accessor methods may be more convenient, or seem
more natural, to some users. For example, programmers accustomed to
COBOL may expect to be able to refer directly to the field of a sub-record if
the field name is unique within the record. This is similar to the way COBOL
field names are scoped. There is no need to qualify field names if the field
name is unique.

� Custom and Dynamic Records You can generally create two types of
records: custom and dynamic. The main difference between these is the
way fields are accessed. For dynamic records, the fields are found by
taking the field name, looking up the offset and the marshalling of the
information, and then accessing it. For custom records, the offset and the
marshalling of the information is in the code, resulting in faster access.
Generating custom records results in more efficient code, but there are
restrictions on their use.

� Records with or without notification If a record is created with
notification, then the properties of the record are bound. Note: If bound
properties are not required, then it is more efficient to create a record
without notification.

Packaging and Deployment
The Connectors provides packaging and deployment interfaces so that
various Resource Adapters can be deployed to J2EE 1.3 Platform compliant
application servers, such as the Borland Enterprise Server.

282 BES Developer ’s Guide

Packaging and Deployment

Figure 26.2 Packaging and Deployment in the Borland Enterprise Server and VisiConnect

A Resource Adapter packages a set of Java interfaces and classes, which
implement the Connectors-specified system contracts and EIS-specific
functionality to be provided by the Resource Adapter. The Resource Adapter
can also require the use of native libraries specific to the underlying EIS, and
other collateral, for example:
� Documentation
� Help files
� A code generator for EJBs
� A tool that directly provides configuration utilities so you can configure the

EIS directly
� A tool that provides additional deployment facilities for remote Resource

Adapter components
� For example, with IBM CICS, a set of JCL scripts that you may need to run

on the mainframe

The Java interfaces and classes are packaged together, with required
collateral and deployment descriptors, to create a Resource Adapter module.
The deployment descriptors define the deployment contract between a
Resource Adapter and the application server

A Resource Adapter can be deployed as a shared, standalone module, or
packaged as part of a J2EE application. During deployment, the Resource
Adapter module is installed on the Borland Enterprise Server and configured
for the target operational environment. The configuration of a Resource
Adapter is based on the properties defined in the deployment descriptors.

Chapter 26: V is iConnect overv iew 283

Vis iConnect Features

VisiConnect Features
Among the value-added features provided by VisiConnect as enhancements
to the Connectors standard are the following:
� VisiConnect Container
� Local and Remote Connectors Support
� Additional Classloading Support
� Secure Password Credential Storage
� Connection Leak Detection
� Security Policy Processing of ra.xml Specifications

VisiConnect Container

The VisiConnect Container is designed to support development and
deployment of J2EE applications which bundle Resource Adapters, or
standalone Resource Adapter components. The Borland Enterprise Server
provides integrated VisiConnect Container services. These services enable
the creation and management of integrated VisiConnect Containers or
VisiConnect Containers across multiple partitions. The Container is used to
deploy, run, manage and monitor Resource Adapters. Tools include a
Deployment Descriptor Editor (DDE) and a set of task wizards for packaging
and deploying Resource Adapters and their related descriptor files.

This provides a highly modular environment for running VisiConnect. The
Borland Enterprise Server provides a default VisiConnect Container for
deployment. Additional Containers can be created as needed.. The
VisiConnect Container can be run as a standalone process. For details,
please refer to "Using VisiConnect".

Local and Remote Connectors Support
VisiConnect supports both the Local and Remote types of Connectors.

Local Connectors implement any interface, except java.rmi.Remote, in their
connection factory. These are deployed to the serial jndi context handler of
Borland Enterprise Server and are accessible from VisiConnect running within
a Borland Enterprise Server or standalone, via VisiNaming, Borland's modular
naming service. The deployment of Local Connectors is optimized for access
by components running locally to VisiConnect.

Remote Connectors implement java.rmi.Remote in their connection factory,
along with any other required interfaces. They are deployed to the CosNaming
jndi context handler of Borland Enterprise Server, and are accessible from
VisiConnect running within a Borland Enterprise Server or standalone, via
VisiNaming. The deployment of Remote Connectors is optimized for access
by component running remotely to VisiConnect.

284 BES Developer ’s Guide

Vis iConnect Features

Local Connectors are used with most J2EE Applications, while Remote
Connectors are mainly used in the following cases:
� Migrating a non-J2EE application to J2EE, where it is required to interface

the legacy application to Connectors as a migration step
� Running a non-J2EE application outside the aegis of an Application Server,

where it is required to interface the application with Connectors
� Running CORBA clients/servers which are required to interface with

Connectors
� Partitioning an application environment by host, where, for example, it is

required to run the Connectors layer on a host remote to the Application
layer.

� Other scenarios where it is required to access Connectors outside of J2EE,
or remotely.

Note This list is by no means conclusive.

Most Resource Adapters available on the market are written as Local
Connectors. However, the requirements for converting a Local Connector to a
Remote Connector are minimal
� Packaging two classes in the Resource Adapter Archive (.rar) for the Local

Connector, one which extends the Resource Adapter's connection factory
interface to extend java.rmi.Remote, and one which extends the Resource
Adapter's connection factory implementation to implement
java.rmi.Remote.

� Modifying the Resource Adapter's deployment descriptors to reflect the
new connection factory interface and connection factory implementation
class.

VisiConnect bundles pre-built Remote extensions to
javax.resource.cci.ConnectionFactory and javax.sql.DataSource for your
convenience. To use these for converting a candidate Local Connector to a
Remote Connector, use
com.borland.enterprise.visiconnect.cci.ConnectionFactory or
com.borland.enterprise.visiconnect.DataSource as your connection factory
interface, extend the connection factory implementation to implement these
interfaces, and use either of these implementations as your connection factory
implementation class.

Additional Classloading Support
VisiConnect supports the loading of properties or classes that are specified in
ClassPath entry of the Resource Adapter's Manifest.mf file. The following is a
description of how you configure properties and classes that are in and used
by a Resource Adapter.

The Resource Adapter (RAR) archive file and the application component
using it (for example, an EJB jar) are contained in an Enterprise Application
(EAR) archive. The RAR requires resources such as Java properties that are
stored in a JAR file, and that JAR file is contained within the EAR file (not in
the RAR itself).

Chapter 26: V is iConnect overv iew 285

Resource Adapters

You specify a reference to the RAR Java classes by adding a ClassPath=
entry in the RAR Manifest.mf file. You can also store the EJB Java classes in
the same JAR file that is contained within the EAR. This scenario provides a
"support" JAR file that contains Java classes for the components in the EAR
that require them.

Secure Password Credential Storage
VisiConnect provides a standard method for Resource Adapter deployers to
plug in their specified authorization/authentication mechanism through secure
password credential storage.

This storage mechanism is used to map user roles (Borland Enterprise Server
roles, which may be associated with Borland Enterprise Server username and
password combinations or credentials) to resource roles (EIS roles, which
may be associated with EIS user name and password combinations or
credentials).

Connection Leak Detection
VisiConnect provides two mechanisms for preventing connection leaks:
� Leveraging a garbage collector
� Providing an idle timer for tracking the usage of connection objects

Security Policy Processing of ra.xml Specifications
VisiConnect provides a set of security permissions for execution of a
Resource Adapter in a managed runtime environment. Borland Enterprise
Server also grants a Resource Adapter explicit permissions to access system
resources.

Resource Adapters
Source code for six Resource Adapters are provided with VisiConnect as
examples. These Resource Adapters are wrappers for JDBC 2.0 calls. The
Local, Remote and Secured JDBC Connectors expose these calls directly via
the JDBC 2.0 API. The Local, Remote and Secured CCI Connectors, exposes
these calls indirectly via CCI. Deployment descriptors supporting the three
transaction levels are provided for each Resource Adapter.

Simplified application examples for the three JDBC Resource Adapters are
provided with VisiConnect. An EJB is used to model the data in the EIS, and a
J2EE client and a Servlet are used to query the Resource Adapter and display
the output. The example uses any RDBMS which is supported by a JDBC 2.0
compliant driver. By default, the examples are configured to use JDataStore
as the EIS, but it is a straightforward task to configure them to use any JDBC
2.0 RDBMS. The components are packaged as a J2EE Application. For more
information, refer to the VisiConnect example README provided with the
Borland Enterprise Server.

286 BES Developer ’s Guide

Chapter 27: Using Vis iConnect 287

C h a p t e r

27
Chapter 27Using VisiConnect

The Java 2 Enterprise Edition (J2EE) Connector Architecture enables EIS
vendors and third-party application developers to develop Resource Adapters
that can be deployed to any application server supporting the J2EE 1.3
Platform Specification. The Resource Adapter provides platform-specific
integration between the J2EE component and the EIS. When a Resource
Adapter is deployed to the Borland Enterprise Server, it enables the
development of robust J2EE applications which can access a wide variety of
heterogeneous EISs. Resource Adapters encapsulate the Java components,
and if necessary, the native components required to interact with the EIS.

Important Before using VisiConnect, Borland recommends that you read the Connectors
1.0 specification.

Important For documentation updates, go to www.borland.com/techpubs/bes.

VisiConnect Container
The VisiConnect Container hosts Resource Adapters. Multiple Resource
Adapters can be deployed in the same container. The container is responsible
for making the connection factories of its deployed Resource Adapters
available to the client through JNDI. Thus, the client can look up the
connection factory for a specific Resource Adapter using JNDI.

VisiConnect can have multiple partitions. Partitions are defined and configured
as needed to deploy objects on the network. Custom partitions can be added
for VisiConnect Containers for various data sources (such as IBM CICS) and
support them separately from Resource Adapter development.

288 BES Developer ’s Guide

Vis iConnect Container

Container Overview

The VisiConnect Container is a complete implementation of the Connectors
1.0 specification, including all optional functionality.

Every Resource Adapter object in the deployed Connector is simultaneously
both a Resource Adapter object and a CORBA object.

The VisiConnect Container can be deployed as a standalone, 100% pure Java
service or as a fully-distributed deployment. This flexibility enables adjustment
of the application's scalability and availability based on user requirements.

Unlike other Connectors implementations, the VisiConnect Container server
has no restrictions on partitioning. Any number of Resource Adapters can go
into any number of containers running on any number of machines. Plus,
support for distributed transactions protocol allows Resource Adapters to be
partitioned arbitrarily. Partitioning enables you to configure the application
during deployment to optimize its overall performance.

Container built on top of VisiBroker and RMI-IIOP

The VisiConnect Container is built on top of Borland VisiBroker.
Communication between clients and Resource Adapters, among Resource
Adapters, and between Resource Adapters and other CORBA-based
applications is all done using IIOP by way of VisiBroker. VisiBroker is fully
compliant with the CORBA 2.3 specification which specifies that RMI-over-
IIOP must be implemented in terms of objects-by-value. RMI-over-IIOP must
be implemented in terms of objects-by-value for true interoperability. As such,
VisiConnect is interoperable with any other server supporting RMI-over-IIOP.

Security credentials are propagated by VisiBroker. This ensures that a client's
credentials are propagated from the client to the server.

Transactional context is propagated by VisiBroker. This ensures that when a
CORBA client begins a transaction and then accesses the VisiConnect
Container's server, transactional context is propagated in the call to the server
and the server uses this transaction context when making calls to various
resources in its environment.

Two-phased commit transactions are managed by Borland VisiTransact
Transaction Manager. Two-phase commit is supported if the Resource
Adapter supports it. If the Resource Adapter in use does not support it, then
two-phase commit cannot be done.

Container is a CORBA Server

Borland's java2iiop compiler, as well as the VisiConnect Container runtime, is
CORBA compliant. The VisiConnect Container understands RMI method calls
used for Resource Adapters but it uses IDL definitions internally to store the
interface definitions. Although the java2iiop compiler takes the Java interfaces
and generates stubs and skeletons from them, you can also generate IDL

Chapter 27: Using Vis iConnect 289

Connect ion Management

from your Java interfaces for use in other languages. To a CORBA client, the
VisiConnect Container is a CORBA server. The VisiConnect Container tools
are CORBA tools that are equally capable of handling Resource Adapters.

The Borland VisiConnect Container is based on JNDI over CosNaming and
JTS/OTS. Together, these provide complete support for CORBA.

Container as a partition service and standalone process

The VisiConnect container can run as a Partition service or as a standalone
process.

For information on the VisiConnect container as a Partition service go to
Chapter 3, “Using Partition services” in the "Management Console User's
Guide".

Running a Standalone Container
If desired, additional versions of the VisiConnect container can be created and
executed as a standalone process.

To run a standalone VisiConnect Container, execute the following command
from a UNIX or Windows command line environment:

vbj com.borland.enterprise.visiconnect.ConnectorService visiconnect <RAR0
RAR1 RAR2 ...> -jns -jts

This will start up the standalone Connector Container named "visiconnect",
loading the specified RAR(s), and starting the VisiNaming (-jns) and
VisiTransact (-jts) sub-services.

Connection Management
The ra.xml deployment descriptor file contains a config-property element to
declare a single configuration setting for a ManagedConnectionFactory
instance. The resource adapter provider typically sets these configuration
properties. However, if a configuration property is not set, the resource
adapter deployer is responsible for providing a value for the property.

Configuring Connection Properties

VisiConnect allows you to set configuration properties through the use of the
property element in the ra-borland.xml deployment descriptor file. To configure
a set of configuration properties for a resource adapter, you specify a
property-name and property-value pair for each configuration property to
declare.

You can also use the property element to override the values specified in the
ra.xml deployment descriptor file. At start-up, VisiConnect compares the
values of property in ra-borland.xml against the values of config-property in

290 BES Developer ’s Guide

Connect ion Management

the ra.xml file. If the configuration property names match, VisiConnect uses
the property-value for the corresponding configuration property name.

Minimizing the Runtime Performance Cost Associated with
Creating Managed Connections

Creating Managed Connections can be expensive depending on the
complexity of the Enterprise Information System (EIS) that the Managed
Connection is representing. As a result, you may decide to populate the
connection pool with an initial number of Managed Connections upon start-up
of Borland Enterprise Server and therefore avoid creating them at run time.
You can configure this setting using the initial-capacity element located in the
ra-borland.xml descriptor file. The default value for this element is 1 Managed
Connection.

As stated in the Connectors 1.0 specification, when an application component
requests a connection to an EIS through the Resource Adapter, VisiConnect
first tries to match the type of connection being requested with any existing
and available Managed Connection in the connection pool. However, if a
match is not found, a new Managed Connection may be created to satisfy the
connection request.

VisiConnect provides a setting to allow a number of additional Managed
Connections to be created automatically when a match is not found. This
feature provides you with the flexibility to control connection pool growth over
time and the performance hit on the server each time this growth occurs. You
can configure this setting using the capacity delta element in the ra-
borland.xml descriptor file. The default value is 1 Managed Connection.

Since no initiating security principal or request context information is known at
VisiConnect start-up, the initial Managed Connections, configured with initial-
capacity, are created with a default security context containing a default
subject and a client request information of null. When additional Managed
Connections configured with capacity-increment are created, the first
Managed Connection is created with the known initiating principal and client
request information of the connection request. The remaining Managed
Connections up to the capacity-delta limit are created using the same default
security context used when creating the initial Managed Connections.

Controlling Connection Pool Growth

As more Managed Connections are created over time, the amount of system
resources such as memory and disk space that each Managed Connection
consumes increases. Depending on the Enterprise Information System (EIS),
this amount may affect the performance of the overall system. To control the
effects of Managed Connections on system resources, Borland Enterprise
Server allows you to configure a setting for the allowed maximum number of
allocated Managed Connections.

Chapter 27: Using Vis iConnect 291

Connect ion Management

You configure this setting using the maximum-capacity element in the ra-
borland.xml descriptor file. If a new Managed Connection (or more than one
Managed Connection in the case of capacity-delta being greater than one)
needs to be created during a connection request, Borland Enterprise Server
ensures that no more than the maximum number of allowed Managed
Connections are created. If the maximum number is reached, Borland
Enterprise Server attempts to recycle a Managed Connection from the
connection pool. However, if there are no connections to recycle, a warning is
logged indicating that the attempt to recycle failed and that the connection
request can only be granted for the amount of connections up to the allowed
maximum amount. The default value for maximum-capacity is 10 Managed
Connections.

Controlling System Resource Usage

Although setting the maximum number of Managed Connections prevents the
server from becoming overloaded by more allocated Managed Connections
than it can handle, it does not control the efficient amount of system resources
needed at any given time. Borland Enterprise Server provides a service that
monitors the activity of Managed Connections in the connection pool during
the deployment of a resource adapter. If the usage decreases and remains at
this level over a period of time, the size of the connection pool is reduced to an
efficient amount necessary to adequately satisfy ongoing connection requests.

This system resource usage service is turned on by default. However, to turn
off this service, you can set the cleanup-enabled element in the ra-borland.xml
descriptor file to false. Use the cleanup-delta element in the ra-borland.xml
descriptor file to set the frequency with which Borland Enterprise Server
calculates the need for connection pool size reduction, and if reduction is
needed, selectively removes unused Managed Connections from the pool.
The default value of this element is 15 minutes.

Detecting Connection Leaks

Connection leaks result from faulty application components, such as an
Enterprise JavaBean (EJB), not doing their job to close a connection after
using them. As stated in the Connectors 1.0 specification, once the application
component has completed its use of the EIS connection, it sends a close
connection request. At this point, VisiConnect is responsible for any necessary
cleanup and making the connection available for a future connection request.
However, if the application component fails to close the connection, the
connection pool can be exhausted of its available connections, and future
connection requests can therefore fail.

VisiConnect provides two mechanisms for preventing this scenario:
� Leveraging a garbage collector
� Providing an idle timer for tracking the usage of connection objects

292 BES Developer ’s Guide

Secur i ty Management with the Secur i ty Map

Garbage Collection
VisiConnect automatically detects connection leaks by leveraging its Java
Virtual Machine (JVM) garbage collector mechanism. When an application
component terminates and the connections it uses become de-referenced, the
garbage collector calls the connection object's finalize() method.

When the garbage collector calls the finalize() method, if VisiConnect
determines the application component has not closed the connection, the
server automatically closes the connection by calling the resource adapter's
ManagedConnection.cleanup() method; VisiConnect behaves as it would had
it received a CONNECTION_CLOSED event upon proper closure of the
application component connection.

Idle Timer
Because the garbage collector does not behave in a predictable manner and
may in fact never be called, VisiConnect provides a second connection leak
detection method, the idle timer. The idle timer allows VisiConnect to track the
last time each connection was used. You can configure the idle timer for each
connection to an EIS using the Borland Enterprise Server Deployment
Descriptor Editor. For more information, refer to "Using the Deployment
Descriptor Editor" in the User's Guide.

When an application component obtains a connection for usage but is not
actively using it, the idle timer starts ticking. As a precaution against closing a
connection that is actually active, when a connection has reached its
configured maximum limit, VisiConnect does not automatically close the
connection. Instead, VisiConnect waits to close the connection that has
exceeded its idle time until it is absolutely necessary to do so.

If the connection pool for a resource adapter has exceeded its maximum
number of allocated connections and there are no allocated connections in the
free pool, a connection request fails. At times, connections exist that have
been leaked and not been put back on the free pool, even though they are
inactive. In this scenario, VisiConnect closes connections that have exceeded
their maximum idle time at the time of a connection request so that the request
succeeds.

Security Management with the Security Map
The Security Map enables the definition of user roles that can be

1 Used directly with the EIS for container-managed sign-on (use-caller-
identity).

2 Mapped to an appropriate resource role for container-managed sign-on
(run-as).

In the first case, when the user role identified at run time is found in the
mapping, the user role itself is used to provide security information for
interacting with an EIS. In the second case, when the user role identified at run

Chapter 27: Using Vis iConnect 293

Secur i ty Management with the Secur i ty Map

time is found in the mapping, the associated resource role is used to provide
security information for interacting with an EIS.

The use-caller-identity option is used when user identities in the user role
identified at run time are available to the EIS as well. For example, a user
identity, "borland"/"borland", belonging to role "Borland", is available to the
Borland Enterprise Server, and the available EIS, a JDataStore database, has
an identity of "borland"/"borland" available to it. When a Resource Adapter
serving JDataStore is deployed with a Security Map specifying:

<security-map>
 <user-role>Borland</user-role>
 <use-caller-identity></use-caller-identity>
</security-map>

applications on this server instance which use this JDataStore database can
use use-caller-identity to access it. Note: Due to a limitation currently in
VisiSecure, you must define the caller identity in the resource vault as well as
the user vault.

The run-as option is used when it makes sense to map user identities in the
user role identified at run time to identities in the EIS. For example, a user
identity, "demo"/"demo", belonging to role "Demo", is available to the Borland
Enterprise Server, and the available EIS, an Oracle database, has an identity
of "scott"/"tiger", which is ideal for a demo user. When a Resource Adapter
serving Oracle is deployed with a Security Map specifying:

<security-map>
 <user-role>Demo</user-role>
 <run-as>
 <role-name>oracle_demo</role-name>
 <role-description>Oracle demo role</role-description>
 </run-as>
</security-map>

and the role "oracle_demo" is defined in the resource vault (see below),
applications on this server instance which use this Oracle database can use
run-as to access it.

When run-as is used, the vault must be provided for VisiConnect to use to
extract the security information for the resource role. A resource role name
and a set of credentials are written to this vault. When VisiConnect loads a
Resource Adapter with a defined Security Map using run-as, it will read in the
credentials for the defined role name(s) from the vault.

Authorization Domain

The <authorization-domain> element in the ra-borland.xml descriptor file
specifies the authorization domain associated with a specified user role. If
<security-map> is set, you should set <authorization-domain> with its associated
domain. If <authorization-domain> is not set, VisiConnect assumes the use of
the default authorization domain. See "Getting Started with Security" in the
Developer's Guide for more information on using authorization domains.

294 BES Developer ’s Guide

Secur i ty Management with the Secur i ty Map

Default Roles

In addition, the <security-map> element enables the definition of a default user
role that can be associated with the appropriate resource role. This default
role would be preferred to if the user role identified at run-time is not found in
the mapping. The default user role is defined in the <security-map> element
with an <user-role> element given a value of "*". For example:

<user-role>*</user-role>

A corresponding <role-name> entry must be included in the <security-map>
element. The following example illustrates the association between a Borland
Enterprise Server user role and a resource role.

<security-map>
 <user-role>*</user-role>
 <run-as>
 <role-name>SHME_OPR</role-name>
 </run-as>
</security-map>

The default user role is also used at deployment time if the connection pool
parameters indicate that the Borland Enterprise Server should initialize
connections. The absence of a default user role entry or the absence of a
<security-map> element may prevent the server from creating connections
using container-managed security.

Generating a Resource Vault

To use run-as security mapping as described above, a resource role(s) must
be defined in a vault which is provided to the Borland Enterprise Server. This
is known as the resource vault.

VisiConnect provides a tool, ResourceVaultGen, to create a resource vault
and to instantiate role objects in this vault. A role name and its associated
security credentials are written to the resource vault by ResourceVaultGen. At
this time only credentials of type Password Credential can be written to the
resource vault. The usage of ResourceVaultGen is as follows:

java -Dborland.enterprise.licenseDir=<install_dir/var/domains/base/
configurations/<configuration_name>/mos/<partition_name>/adm> -
Dserver.instance.root=<install_dir/var/domains/base/configurations/
<configuration_name>/mos/<partition_name>/adm/properties/
management_vbroker.properties>
com.borland.enterprise.visiconnect.tools.ResourceVaultGen -rolename
<role_name> -username <user_name> -password <password> -vaultfile <full
path to vault file> -vpwd <vault_password>

Chapter 27: Using Vis iConnect 295

Secur i ty Management with the Secur i ty Map

where:

When using ResourceVaultGen, ensure that the following jars are in your
CLASSPATH:
� lm.jar
� visiconnect.jar
� vbsec.jar
� jsse.jar
� jnet.jar
� jcert.jar
� jaas.jar
� jce1_2_1.jar
� sunjce_provider.jar
� local_policy.jar
� US_export_policy.jar

Note If you fail to include these jars in your CLASSPATH when you attempt to
generate a vault, you may end up with a vault file which is invalid. If you
attempt to reuse the invalid vault file, you will encounter an EOFException. To
resolve, delete the invalid vault file and regenerate with ResourceVaultGen,
ensuring that you have the proper jars in your CLASSPATH.

-rolename Resource role name to store in the
resource vault.

-usermame Resource username to associate with the
resource role.

-password Resource password to associate with the
resource role.

-vaultfile (optional) Path to the vault file you write the
resource role(s)to. If not specified,
ResourceVaultGen will attempt to write
to the default resource vault file
<install_dir/var/domains/base/
configurations/<configuration_name>/
mos/<partition_name>/adm/properties/
management_vbroker.properties>. If the
vault file is does not already exist, a
new vault file will be written to the
specified location.

-vpwd (optional) Password to assign to the vault for
access authorization. If not specified,
the vault will be created without a
password.

296 BES Developer ’s Guide

Secur i ty Management with the Secur i ty Map

VisiConnect will use the vault if Security Map information is specified in at
deployment time for a Resource Adapter. If the resource vault is password
protected, VisiConnect will need to have the following property passed to it:

-Dvisiconnect.resource.security.vaultpwd=<vault_password>

If the resource vault is in a user specified location (-vaultfile ...), VisiConnect
will need to have the following property passed to it:

-Dvisiconnect.resource.security.login=<path of specified vault file>

The following examples illustrate the use of ResourceVaultGen:

Example 1:

java -Dborland.enterprise.licenseDir=/opt/BES/var<install_dir/var/domains/
base/configurations/<configuration_name>/mos/<partition_name>/adm/
properties/management_vbroker.properties>
 -Dserver.instance.root=/opt/BES/var/servers/servername -
Dpartition.name=standard
 com.borland.enterprise.visiconnect.tools.ResourceVaultGen -rolename
administrator
 -username red -password balloon -vaultfile
 /opt/BES/var/servers/servername/adm/properties/partitions/standard/
resourcevault -vpwd
 lock

This usage generates a resource vault named "resourcevault" to /opt/BES/var/
servers/servername/adm/properties/partitions/standard, with a role
"administrator" associated with a Password Credential with username "red"
and password "balloon". The vault file itself is password protected, using the
password "lock". For VisiConnect to use this vault, the following properties
must be set for it:

-Dvisiconnect.resource.security.vaultpwd=lock
-Dvisiconnect.resource.security.login=resourcevault

Example 2:

java -Dborland.enterprise.licenseDir=/opt/BES/var/domains/base/
configurations/<configuration_name>/mos/<partition_name>/adm/properties/
management_vbroker.properties>

-Dserver.instance.root=/opt/BES/var/domains/base/configurations/
<configuration_name>/mos/<partition_name>/adm/properties/
management_vbroker.properties>
-Dpartition.name=petstore
com.borland.enterprise.visiconnect.tools.ResourceVaultGen
-rolename manager accounts -username mickey daffy
-password mouse duck -vpwd goofy

This usage generates a default resource vault (named "resource_vault") to /
opt/BES/var/servers/servername/adm/properties/partitions/petstore, with a
role "manager" associated with a Password Credential with username
"mickey" and password "mouse", and another role "accounts" associated with
a Password Credential with username "daffy" and password "duck". The vault

Chapter 27: Using Vis iConnect 297

Resource Adapter Overv iew

file itself is password protected, using the password "goofy". For VisiConnect
to use this vault, the following properties must be set for it:

-Dvisiconnect.resource.security.vaultpwd=goofy

Example 3:

java -Dborland.enterprise.licenseDir=/opt/BES/var/servers/servername/adm
-Dserver.instance.root=/opt/BES/var/servers/servername
-Dpartition.name=standard
com.borland.enterprise.visiconnect.tools.ResourceVaultGen
-rolename OClone ENolco -username darkstar geraldo -password meteor rivera

This usage generates a default resource vault (named "resource_vault") to /
opt/BES/var/domains/base/configurations/<configuration_name>/mos/
<partition_name>/adm/properties/management_vbroker.properties>, with a
role "developer" associated with a Password Credential with username
"darkstar" and password "meteor", and a role "host" associated with a
Password Credential with username "geraldo" and password "rivera". The
vault file itself is not password protected. VisiConnect requires no additional
parameters to use this vault.

Note ResourceVaultGen cannot be used to write vault information to an existing file
containing invalid characters. For example, a file generated by 'touch', or a
StarOffice or Word document. ResourceVaultGen can only write vault
information to a new file that it itself generates, or a valid existing vault file.

Resource Adapter Overview
According to the Connectors 1.0 specification, you must be able to deploy a
Resource Archive (RAR) as part of an Enterprise Archive (EAR). With BES
AppServer Edition and VisiConnect you can also deploy a standalone RAR.
Once the RAR is deployed, you must:
� write code to obtain a connection
� create an Interaction object
� create an Interaction Spec
� create record and/or result set instances
� and run the execute command so the record objects become populated.

In addition to some introductory conceptual information, this chapter provides
steps to help you understand the code you must write.

The J2EE Connector Architecture enables Enterprise Information System
(EIS) vendors and third-party application developers to develop Resource
Adapters that can be deployed to any J2EE 1.3 compliant application server.
The Resource Adapter is the main component of the J2EE Connector
Architecture (Connectors), providing platform-specific integration between
J2EE application components and the EIS. When a Resource Adapter is
deployed to the Borland Enterprise Server, it enables the development of
robust J2EE applications which can access a wide variety of heterogeneous

298 BES Developer ’s Guide

Resource Adapter Overv iew

EISs. Resource Adapters encapsulate the Java components and, if
necessary, the native components required to interact with the EIS.

Development Overview

See “Developing the Resource Adapter” on page 303, for more information.

Developing a Resource Adapter from scratch requires implementing the
necessary interfaces and deployment descriptors, packaging these into a
Resource Adapter Archive (RAR), and finally deploying the RAR to the
Borland Enterprise Server. The following summarizes the main steps for
developing a Resource Adapter:

1 Write Java code for the various interfaces and classes required by the
Resource Adapter within the scope of the Connectors 1.0 specification.

2 Specify these classes in the ra.xml standard deployment descriptor file.

3 Compile the Java code for the interfaces and implementation into class
files.

4 Package the Java classes into a Java Archive (JAR) file.

5 Create the Resource Adapter-specific deployment descriptors:
� ra.xml: describes the Resource Adapter-related attributes and

deployment properties using the Sun standard DTD.
� ra-borland.xml: add additional Borland Enterprise Server-specific

deployment information. This file contains the parameters for connection
factories, connection pools, and security mappings.

6 Create the Resource Adapter Archive (RAR) file (that is, package the
Resource Adapter)

7 Deploy the Resource Adapter Archive to the Borland Enterprise Server, or
include it in an Enterprise Application Archive (EAR) file to be deployed as
part of a J2EE application.

Editing existing Resource Adapters
If you have existing Resource Adapters you would like to deploy to the Borland
Enterprise Server, it may only be necessary to edit the Borland-specific
deployment descriptor described above and repackage the adapter. Doing so
involves the following steps, with illustrative example:

1 Create an empty staging directory for the RAR:

mkdir c:/temp/staging

2 Copy the Resource Adapter to be deployed into the staging directory:

cp shmeAdapter.rar c:/temp/staging

3 Extract the contents of the Resource Adapter Archive:

jar xvf shmeAdapter.rar

The staging directory should now contain the following:

Chapter 27: Using Vis iConnect 299

Resource Adapter Overv iew

� a JAR containing Java classes that implement the Resource Adapter
� a META-INF directory containing the files Manifest.mf and ra.xml

1 Create the ra-borland.xml file using the Borland Deployment Descriptor
Editor (DDEditor) and save it into the staging area's META-INF directory. See
Using the Deployment Descriptor Editor in the Borland Enterprise Server
User's Guide for information on using the DDEditor.

2 Create the new Resource Adapter Archive

jar cvf shmeAdapter.rar -C c:/temp/staging

3 You may now deploy the Resource Adapter to the Borland Enterprise
Server.

Resource Adapter Packaging

The Resource Adapter is a J2EE component contained in a RAR. Resource
Adapters use a common directory format. The following is an example of a
Resource Adapter's directory structure:

Resource Adapter Directory Structure:

.META-INF/ra.xml

.META-INF/ra-borland.xml

./images/shmeAdapter.jpg

./readme.html

./shmeAdapter.jar

./shmeUtilities.jar

./shmeEisSdkWin32.dll

./shmeEisSdkUnix.so

As shown in the structure above, the Resource Adapter can include
documentation and related files not directly used by the Resource Adapter--for
example, the image and readme files. Packaging the Resource Adapter
means packaging these files as well.

Packaging a Resource Adapter includes the following steps:

1 Create a temporary staging directory.

2 Compile the Resource Adapter Java classes into the staging directory. (Or,
as above, simply copy pre-compiled classes into the staging directory.)

3 Create a JAR file to store the Resource Adapter Java classes. Add this JAR
to the top level of the staging directory.

4 Create a META-INF subdirectory in the staging area.

5 Create a ra.xml deployment descriptor in this subdirectory and add entries
for the Resource Adapter. Refer to Sun Microsystems' documentation for
information on the ra.xml document type definition, at http://java.sun.com/
dtd/connector_1_0.dtd.

6 Create a ra-borland.xml deployment descriptor in this same META-INF
subdirectory and add entries for the Resource Adapter. Refer to the DTD at
the end of this document for details on the necessary entries.

300 BES Developer ’s Guide

Deployment Descr ip tors for the Resource Adapter

7 Create the Resource Adapter Archive:

jar cvf resource-adapter-archive.rar -C staging-directory

This command creates a RAR file that you can deploy to the server. The -C
staging-directory option instructs the JAR command to change to the
staging-directory so that the directory paths recorded in the RAR file are
relative to the directory where the Resource Adapters were staged.

One or more Resource Adapters can be staged in a directory and
packaged in a JAR file.

Deployment Descriptors for the Resource Adapter
The Borland Enterprise Server uses two XML files to specify deployment
information. The first of these is ra.xml, based on Sun Microsystems' DTD for
resource adapters. The second is Borland's proprietary ra-borland.xml, which
includes additional deployment information necessary for Borland Enterprise
Server.

Configuring ra.xml

If you do not already have an ra.xml file associated with your Resource
Adapter, it is necessary to manually create a new one or edit an existing one.
You can use a text editor or the Borland DDEditor to edit these properties. For
the most up-to-date information on creating an ra.xml file, refer to the
Connectors specification at http://java.sun.com/j2ee/connector.

Configuring the Transaction Level Type
It is of critical importance that you specify the transaction level type supported
by your Resource Adapter in the ra.xml deployment descriptor. The following
table shows the transaction levels supported and how they are rendered in
XML.

Configuring ra-borland.xml

The ra-borland.xml file contains information required for deploying a Resource
Adapter to the Borland Enterprise Server. Certain attributes need to be

Transaction Support Type XML representation

None <transaction-support>NoTransaction</
transaction-support>

Local <transaction-
support>LocalTransaction</
transaction-support>

XA <transaction-support>XA</transaction-
support>

Chapter 27: Using Vis iConnect 301

Deployment Descr ip tors for the Resource Adapter

specified in this file in order to deploy the RAR file. This functionality is
consistent with the equivalent .xml extensions for EJBs, EARs, WARs, and
client components for the Borland Enterprise Server.

Until Borland-specific deployment properties are provided in the
ra.borland.xml file, the RAR cannot be deployed to the server. The following
attributes must be specified first in ra-borland.xml:
� Name of the connection factory
� Description of the connection factory
� JNDI name bound to the connection factory
� Reference to a separately deployed connection factory that contains

Resource Adapter components which can then be shared with the current
Resource Adapter.

� Directory where all shared libraries should be copied
� Connection pool parameters that set the following behaviors:

� the initial number of managed connections the server attempts to
allocate at deployment time

� the maximum number of managed connections the server allows to be
allocated at any one time

� the number of managed connections the server attempts to allocate
when fulfilling a request for a new connections

� whether the server attempts to reclaim unused managed connections to
save system resources

� the time the server waits between attempts to reclaim unused managed
connections

� the frequency of time to detect and reclaim connections that have
exceeded their usage time

� the amount of usage time allowed for a connection
� Values for configuration properties defined in a <config-entry> element of

the Sun standard Resource Adapter deployment descriptor
� Mapping of security principals for Resource Adapter/EIS sign-on

processing. This mapping identifies resource principals to be used when
requesting EIS connections for applications that use container-managed
security and for EIS connections requested during initial deployment.

� A flag to indicate whether logging is required for the
ManagedConnectionFactory or ManagedConnection classes.

� The file to store logging information for the two aforementioned classes

Anatomy of ra-borland.xml
The Borland-specific deployment descriptor carries information for defining a
deployable Resource Adapter Connection Factory. It provides for complete
specification of all configurable connection factory parameters including
connection pool parameters, security parameters, and the ability to define

302 BES Developer ’s Guide

Deployment Descr ip tors for the Resource Adapter

values for configuration parameters which exist in the ra.xml deployment
descriptor. A minimum set of this information is required for deployment. The
following is an example of ra-borland.xml:

<connector>
 <connection-factory>
 <factory-name>shmeAdapterConnectionFactory</factory-name>
 <factory-description>SHME Resource Adapter Connection Factory</
factory-description>
 <jndi-name>serial://shme/shmeAdapterConnectionFactory</jndi-name>
 <ra-libraries>/usr/local/shme/Adapter/lib/shmeEisSdkUnix.so</ra-
libraries>
 <pool-parameters>
 <initial-capacity>0</initial-capacity>
 <maximum-capacity>10</maximum-capacity>
 <capacity-delta>1</capacity-delta>
 <cleanup-enabled>true</cleanup-enabled>
 <cleanup-interval>60</cleanup-interval>
 </pool-parameters>
 <security-map>
 <description>Map of billing staff users to the EIS operator
identity</description>
 <user-role>billing</user-role>
 <run-as>
 <description>SHME EIS application operator</description>
 <role-name>SHME_OPR</role-name>
 <run-as>
 </security-map>
 </connection-factory>
</connector>

Configuring the <ra-link-ref> element
The optional <ra-link-ref> element allows you to associate multiple deployed
Resource Adapters with a single deployed Resource Adapter. This provides
for linking and reusing resources already configured in a base Resource
Adapter to another Resource Adapter, modifying only a subset of attributes.
Use of the <ra-link-ref> element avoids duplication of resources (for example,
classes, JARs, images, etc.) where possible. Any values defined in the base
Resource Adapter deployment are inherited by the linked Resource Adapter
unless otherwise specified.

When using <ra-link-ref>, perform one of the following:
� Assign the <maximum-capacity> element to zero (0) using the DDEditor. This

allows the linked Resource Adapter to inherit its <pool-parameters> element
values from the base Resource Adapter.

� Assign the <maximum-capacity> element to any value other than zero (0). The
linked Resource Adapter will inherit no values from the base Resource
Adapter. With this option, all of the <pool-parameters> element values for the
linked Resource Adapter must be specified.

Chapter 27: Using Vis iConnect 303

Developing the Resource Adapter

Configuring the Security Map
To use container-managed sign-on, the Borland Enterprise Server must
identify a resource role and then request the connection to the EIS on behalf
of the resource role. To make this identification, the server looks for a security
map specified with the <security-map> element in the ra-borland.xml descriptor
file. This security map builds the required associations between the server's
user roles (Borland Enterprise Server users with identities defined in a security
realm) and resource roles (users known to the Resource Adapter and/or EIS).
See "Security Map" above for details on using the Security Map.

Developing the Resource Adapter
This section describes how to develop a Connectors 1.0-compliant Resource
Adapter. Resource Adapters must implement the following system contract
requirements, discussed in detail below:
� Connection Management
� Security Management
� Transaction Management
� Packaging and Deployment

Connection Management

The connection management contract for the resource adapter specifies a
number of classes and interfaces necessary for providing the system contract.
The resource adapter must implement the following interfaces:
� javax.resource.spi.ManagedConnection

� javax.resource.spi.ManagedConnectionFactory

� javax.resource.spi.ManagedConnectionMetaData

The ManagedConnection implementation provided by the Resource
Adapter must, in turn, supply implementations of the following interfaces
and classes to provide support to the application server. It is the application
server which will ultimately be managing the connection and associated
transactions.

Note If your environment is non-managed (that is, not managed by the
application server), you are not required to use these interfaces or classes.

� javax.resource.spi.ConnectionEvent

� javax.resource.spi.ConnectionEventListener

In addition, support for error logging and tracing must be provided by
implementing the following methods in the Resource Adapter:
� ManagedConnectionFactory.setLogWriter()

� ManagedConnectionFactory.getLogWriter()

304 BES Developer ’s Guide

Developing the Resource Adapter

� ManagedConnection.setLogWriter()

� ManagedConnection.getLogWriter()

The resource adapter must also provide a default implementation of the
javax.resource.spi.ConnectionManager interface for cases in which the Resource
Adapter is used in a non-managed two-tier application scenario. A default
implementation of ConnectionManager enables the Resource Adapter to provide
services specific to itself. These services can include connection pooling, error
logging and tracing, and security management. The default ConnectionManager
delegates to the ManagedConnectionFactory the creation of physical connections
to the underlying EIS.

In an application-server-managed environment, the Resource Adapter should
not use the default ConnectionManager implementation class. Managed
environments do not allow resource adapters to support their own connection
pooling. In this case, the application server is responsible for connection
pooling. A Resource Adapter can, however, have multiple ConnectionManager
instances per physical connection transparent to the application server and its
components.

Transaction Management

Resource Adapters are easily classified based on the level of transaction
support they provide. These levels are:
� NoTransaction: the Resource Adapter supports neither local not JTA

transactions, and implements no transaction interfaces.
� LocalTransaction: the Resource Adapter supports resource manager

local transactions by implementing the LocalTransaction interface. The local
transaction management contract is specified in Section 6.7 of the
Connectors 1.0 specification from Sun Microsystems.

� XATransaction: the Resource Adapter supports both resource manager
local and JTA/XA transactions by implementing the LocalTransaction and
XAResource interfaces, respectively. The XA Resource-based contract is
specified in Section 6.6 of the Connectors 1.0 specification from Sun
Microsystems.

The transaction support levels above reflect the major steps of transaction
support that a Resource Adapter must implement to allow server-managed
transaction coordination. Depending on its transaction capabilities and the
requirements of its underlying EIS, a Resource Adapter can choose to support
any one of the above levels.

Security Management

The security management contract requirements for a Resource Adapter are
as follows:

Chapter 27: Using Vis iConnect 305

Deploy ing the Resource Adapter

� The Resource Adapter is required to support the security contract by
implementing the ManagedConnectionFactory.createManagedConnection()
method.

� The Resource Adapter is not required to support re-authentication as part
of its ManagedConnection.getConnection() method implementation.

� The Resource Adapter is required to specify its support for the security
contract as part of its deployment descriptor. The relevant deployment
descriptor elements are:
� <authentication-mechanism></authentication-mechanism>

� <authentication-mechanism-type></authentication-mechanism-type>

� <reauthentication-support></reauthentication-support>

� <credential-interface></credential-interface>:

Refer to section 10.3.1 of the Connectors 1.0 specification for more details on
these descriptor elements.

Packaging and Deployment

The file format for a packaged Resource Adapter module defines the contract
between a Resource Adapter provider and a Resource Adapter deployer. A
packaged Resource Adapter includes the following elements:
� Java classes and interfaces that are required for the implementation of both

the Connectors system-level contracts and the functionality of the
Resource Adapter

� Utility Java classes for the Resource Adapter
� Platform-dependent native libraries required by the Resource Adapter
� Help files and documentation
� Descriptive meta information that ties the above elements together

For more information on packaging requirements, refer to Section 10.3 and
10.5 of the Connectors 1.0 specification, which discuss deployment
requirements and supporting JNDI configuration and lookup, respectively.

Deploying the Resource Adapter
Deployment of Resource Adapters is similar to deployment of EJBs,
Enterprise Applications and Web Applications. As with these modules, a
Resource Adapter can be deployed as an archive file or as an expanded
directory. A Resource Adapter can be deployed either dynamically using the
Borland Enterprise Server Console or the iastool utilities, or as a part of an
EAR. See the Borland Enterprise Server User's Guide for deployment details.

When a Resource Adapter is deployed, a name must be specified for the
module. This name provides a logical reference to the Resource Adapter
deployment that, among other things, can be used to update or remove the

306 BES Developer ’s Guide

The ra-bor land.xml deployment descr iptor DTD

Resource Adapter. Borland Enterprise Server implicitly assigns a deployment
name that matches the filename of the RAR file or deployment directory
containing the Resource Adapter. This logical name can be used to manage
the Resource Adapter after the server has started. The Resource Adapter
deployment name remains active in the Borland Enterprise Server until the
module is undeployed.

The ra-borland.xml deployment descriptor DTD
This section provides a complete reference to the Borland Enterprise Server-
specific XML deployment properties used in the VisiConnect Resource
Adapter Archive and an explanation of how to edit the XML deployment
descriptors.

Editing Descriptors

You may either edit the descriptor with the Borland DDEditor or manually
using an ASCII text editor. Information on using the DDEditor to edit
descriptors is provided in Chapter 5, "Using the Deployment Descriptor
Editor," in the Borland Enterprise Server User's Guide.

If you choose to edit the descriptor manually, use an ASCII text editor which
does not reformat the XML or insert addition characters that could invalidate
the file. (Remember, this file must conform to the DTD--being well-formed is
not sufficient.) You must be careful to use the correct case for file and
directory names, even if the host operating system ignores case. You may set
default values for an element either by omitting it entirely or leaving the value
blank.

DOCTYPE Header Information
You must supply the correct DOCTYPE header for each descriptor you create.
Using incorrect elements within the DOCTYPE header can result in parsing errors
which may be difficult to diagnose.

The header refers to the location and version of the Document Type Definition
(DTD) file of the deployment descriptor. Although this header references an
external URL at java.sun.com, the Borland Enterprise Server contains its own
local copy of the DTD file, so that the host server need not require Internet
access. However, the <!DOCTYPE ... > element must still be included in the
ra.xml file, and it must reference the external URL, as the version of the DTD
defined in this element is used to identify the version of the deployment
descriptor.

Chapter 27: Using Vis iConnect 307

The ra-bor land.xml deployment descrip tor DTD

The following table shows the DOCTYPE headers for both ra.xml and ra-
borland.xml:

Deployment descriptors with incorrect header information may yield error
messages similar to the following when used with a utility that parses the XML:

SAXException: This document may not have the identifier identifier-name

where identifier-name generally includes the text from the PUBLIC element.

Table 27.1 DOCTYPE headers

Descriptor File DOCTYPE Header

ra.xml <!DOCTYPE connector PUBLIC -//Sun
Microsystems, Inc.//DTD Connector 1.0//EN
'http://java.sun.com/dtd/
connector_1_0.dtd>

ra-borland.xml <!DOCTYPE ejb-jar PUBLIC"-//Borland
Software Corporation//DTD Connector 1.0//
EN" "http://www.borland.com/devsupport/
appserver/dtds/connector-_1_0-
borland.dtd">

308 BES Developer ’s Guide

The ra-bor land.xml deployment descr iptor DTD

Element Hierarchy

The element hierarchy of ra-borland.xml is as follows:

Code sample ra-borland.xml element hierarchy

<connector>
 <connection-factory>
 <factory-name></factory-name>
 <factory-description></factory-description>
 <jndi-name></jndi-name>
 <ra-link-ref></ra-link-ref>
 <ra-libraries></ra-libraries>
 <pool-parameters>
 <initial-capacity></initial-capacity>
 <maximum-capacity></maximum-capacity>
 <capacity-delta></capacity-delta>
 <cleanup-enabled></cleanup-enabled>
 <cleanup-interval></cleanup-interval>
 </pool-parameters>
 <logging-enabled></logging-enabled>
 <log-file-name></log-file-name>
 <property>
 <prop-name></prop-name>

Chapter 27: Using Vis iConnect 309

The ra-bor land.xml deployment descrip tor DTD

 <prop-type></prop-type>
 <prop-value></prop-value>
 </property>
 <security-map>
 <description/>
 <user-role></user-role>
 and either
 <use-caller-identity/>
 or
 <run-as>
 <role-name></role-name>
 <role-description/>
 </run-as>
 </security-map>
 </connection-factory>
</connector>

The DTD

<!--
This DTD defines the Borland specific deployment information for defining
a deployable Resource Adapter Connection Factory. It provides for complete
specification of all configurable Connection Factory parameters including
Connection Pool parameters, Security parameters for Resource Role Mapping
and the ability to define values for configuration parameters which exist
in
the ra.xml deployment descriptor.
-->

<!ELEMENT connector (connection-factory)>

<!--
The connection-factory element is the root element of the
Borland specific deployment descriptor for the deployed
resource adapter.
-->

<!ELEMENT connection-factory (factory-name, factory-description?, jndi-
name, ra-link-ref?, ra-libraries?, pool-parameters?, (logging-enabled, log-
file-name)?, property*, security-map*, authorization-domain?)>

<!--
The factory-name element defines that logical name that
will be associated with this specific deployment of the
Resource Adapter and its corresponding Connection Factory.

The value of factory-name can be used in other deployed
Resource Adapters via the ra-link-ref element. This will
allow multiple deployed Connection Factories to utilize a
common deployed Resource Adapter, as well as share
configuration specifications.

310 BES Developer ’s Guide

The ra-bor land.xml deployment descr iptor DTD

This is a required element.
-->

<!ELEMENT factory-name (#PCDATA)>

<!--
The factory-description element is used to provide text
describing the parent element. The factory-description
element should include any information that the deployer
wants to describe about the deployed Connection Factory.

This is an optional element.
-->

<!ELEMENT factory-description (#PCDATA)>

<!--
The jndi-name element defines the name that will be used to bind the
Connection Factory Object into the JNDI Namespace. Client EJBs and
Servlets will use this same JNDI in their defined Reference Descriptor
elements of the Borland specific deployment descriptors.

This is a required element.
-->

<!ELEMENT jndi-name (#PCDATA)>

<!--
The ra-link-ref element allows for the logical association of
multiple deployed Connection Factories with a single deployed Resource
Adapter. The specification of the optional ra-link-ref element with
a value identifying a separately deployed Connection Factory will
result in this new deployed Connection Factory sharing the
Resource Adapter which had been deployed with the referenced
Connection Factory.

In addition, any values defined in the referred Connection Factories
deployment will be inherited by this newly deployed Connection Factory
unless specified.

This is an optional element.
-->

<!ELEMENT ra-link-ref (#PCDATA)>

<!--
The ra-libraries element identifies the directory location to be
used for all native libraries present in this resource adapter
deployment. As part of deployment processing, all encountered
native libraries will be copied to the location specified.

It is the responsibility of the Administrator to perform the necessary
platform actions such that these libraries will be found at runtime.

Chapter 27: Using Vis iConnect 311

The ra-bor land.xml deployment descrip tor DTD

This is a required element IF native libraries are present.
-->

<!ELEMENT ra-libraries (#PCDATA)>

<!--
The pool-parameters element is the root element for providing Connection
Pool specific parameters for this Connection Factory.

VisiConnect will use these specifications in controlling the behavior
of the maintained pool of Managed Connections.

This is an optional element. Failure to specify this element or any
of its specific element items will result in default values being
assigned. Refer to the description of each individual element for
the designated default value.
-->

<!ELEMENT pool-parameters (initial-capacity?, maximum-capacity?, capacity-
delta?, cleanup-enabled?, cleanup-delta?)>

<!--
The initial-capacity element identifies the initial number of managed
connections which VisiConnect will attempt to obtain during deployment.

This is an optional element.

Failure to specify this value will result in VisiConnect using its
defined default value.

Default Value: 1
-->

<!ELEMENT initial-capacity (#PCDATA)>

<!--
The maximum-capacity element identifies the maximum number of
managed connections which VisiConnect will allow. Requests for newly
allocated managed connections beyond this limit will result in a
ResourceAllocationException being returned to the caller.

This is an optional element.

Failure to specify this value will result in VisiConnect using its
defined default value.

Default Value: 10
-->

<!ELEMENT maximum-capacity (#PCDATA)>

<!--
The capacity-delta element identifies the number of additional
managed connections which the VisiConnect will attempt to obtain

312 BES Developer ’s Guide

The ra-bor land.xml deployment descr iptor DTD

during resizing of the maintained connection pool.

This is an optional element.

Failure to specify this value will result in VisiConnect using its
defined default value.

Default Value: 1
-->

<!ELEMENT capacity-delta (#PCDATA)>

<!--
The cleanup-enabled element indicates whether or not the
Connection Pool should have unused Managed Connections reclaimed
as a means to control system resources.

This is an optional element.

Failure to specify this value will result in VisiConnect using its
defined default value.

Value Range: true|false

Default Value: true
-->

<!ELEMENT cleanup-enabled (#PCDATA)>

<!--
The cleanup-delta element identifies the amount of time the
Connection Pool Management will wait between attempts to reclaim
unused Managed Connections.

This is an optional element.

Failure to specify this value will result in VisiConnect using its
defined default value.

Default Value: 1
-->

<!ELEMENT cleanup-delta (#PCDATA)>

<!--
The logging-enabled element indicates whether or not the log writer
is set for either the ManagedConnectionFactory or ManagedConnection.
If this element is set to true, output generated from either the
ManagedConnectionFactory or ManagedConnection will be sent to the file
specified by the log-filename element.

This is an optional element.

Chapter 27: Using Vis iConnect 313

The ra-bor land.xml deployment descrip tor DTD

Failure to specify this value will result in VisiConnect using its
defined default value.

Value Range: true|false

Default Value: false
-->

<!ELEMENT logging-enabled (#PCDATA)>

<!--
The log-file-name element specifies the name of the log file which output
generated from either the ManagedConnectionFactory or a ManagedConnection
are sent.

The full address of the file name is required.

This is an optional element.
-->

<!ELEMENT log-file-name (#PCDATA)>

<!--
Each property element identifies a configuration property
name, type and value that corresponds to an ra.xml entry
element with the corresponding property-name.

At deployment time, all values present in a property
specification will be set on the ManagedConnectionFactory.

Values specified via a property will supersede any default
value that may have been specified in the corresponding ra.xml
config-property element.

This is an optional element.
-->

<!ELEMENT property (prop-name, prop-type, prop-value)>
<!ELEMENT prop-name (#PCDATA)>
<!ELEMENT prop-type (#PCDATA)>
<!ELEMENT prop-value (#PCDATA)>

<!--
The security-map element specifies whwhether the caller's security identity
is to be used for the execution of the methods of the enterprise bean
or whether a specific run-as identity is to be used. It contains an
optional description and a specification of the security identity to
be used.

Each security-map element provides a mechanism to define appropriate
Resource Role values for Resource Adapter/EIS authorization processing,
through the use of the run-as element.

314 BES Developer ’s Guide

The ra-bor land.xml deployment descr iptor DTD

This element allows for the specification of a defined set of
user roles and the corresponding run-as roles (representing
EIS identities) that should be used when allocating
Managed Connections and Connection Handles.

A default Resource run-as role can be defined for the Connection
Factory via the map. By specifying a user-role value of '*'
and a corresponding run-as role, the defined run-as will be utilized
whenever the current role is NOT matched elsewhere in
the map.

This is an optional element, however, it must be specified in some
form if Container Managed Sign-on is supported by the Resource Adapter
and used by ANY client.

In addition, the deployment-time population of the Connection Pool
with Managed Connections will be attempted using the defined
'default' run-as if one is specified.
-->

<!ELEMENT security-map (description?, user-role+, (use-caller-identity|run-
as))>

<!--
The user-role element contains one or more role names, defined for
use as the security identity, or mapped to a appropriate Resource
Role run-as identity, for interactions with the resource.
-->
<!ELEMENT user-role (#PCDATA)>

<!--
The use-caller-identity element specifies that the caller's security
identity be used as the security identity for the execution of the
Resource Adapter's methods.

Used in: security-map
-->
<!ELEMENT use-caller-identity EMPTY>

<!--
The run-as element specifies the run-as identity to be used for the
execution of the enterprise bebean. Itontains an optional description, and
the name of a security role.

Used in: security-map
-->
<!ELEMENT run-as (description?, role-name)>

<!--
The role-name element contains the name of a security role.

The name must conform to the lexical rules for an NMTOKEN.

Used in: run-as

Chapter 27: Using Vis iConnect 315

Appl icat ion Development Overv iew

-->

<!ELEMENT role-name (#PCDATA)>

<!--
The authorization-domain element specifies the authorization domain to
be used for determining the definable set of valid user roles.
-->

<!ELEMENT authorization-domain (#PCDATA)>

<!ELEMENT description (#PCDATA)>

Application Development Overview

Developing Application Components

Common Client Interface (CCI)
The client APIs used by application components for EIS access can be
categorized as follows:
� The standard common client interface (CCI) defined in Section 9 of the

Connectors 1.0 specification.
� A general client interface specific to the type of Resource Adapter and its

underlying EIS. For example, JDBC is one such interface for RDBMSs.
� A proprietary client interface specific to the particular Resource Adapter

and its underlying EIS. For example, the CICS Java Gateway is one such
interface for the IBM CICS transaction processor, and the JFC for the SAP
R/3 enterprise resource planner is another.

The Connectors 1.0 specification defines the CCI for EIS access. The CCI is a
standard client API for application components that enables these and EAI
frameworks to drive interactions across heterogeneous EISs. The CCI is
primarily targeted for Enterprise Application Integration (EAI), third-party
enterprise tool vendors, and migration of legacy modules to the J2EE
Platform. In the CCI, a connection factory is a public interface that enables
connection to an EIS instance. The ConnectionFactory interface is
implemented by the Resource Adapter to provide this service. An application
looks up a ConnectionFactory instance in the JNDI namespace, and uses it to
request to obtain EIS connections. The application then uses the returned
Connection interface to access the EIS. To provide a consistent application
programming model across both CCI and EIS-specific APIs, the
ConnectionFactory and Connection interfaces comply to the Interface
Template design pattern. This defines the skeleton of the connection creation
and connection closing, deferring the appropriate steps to subclasses. This
allows for these interfaces to be easily extended and adapted to redefine
certain steps of connection creation and closing without changing these
operations' structure. For more information on the application of the Interface

316 BES Developer ’s Guide

Appl icat ion Development Overv iew

Template design pattern to these interfaces, refer to Section 5.5.1 in the
Connectors 1.0 specification (http://java.sun.com/j2ee/connector).

Managed Application Scenario
The following steps are performed when a managed application requests to
obtain a connection to an EIS instance from a connection factory, as specified
in the res-type variable:

1 The application assembler or component provider specifies the connection
factory requirements for an application component by using a deployment
descriptor:

res-ref-name: shme/shmeAdapter
res-type:javax.resource.cci.ConnectionFactory
res-auth: Application | Container

2 The Resource Adapter deployer sets the configuration information for the
Resource Adapter.

3 VisiConnect uses a configured Resource Adapter to create physical
connections to the underlying EIS.

4 The application component performs a JNDI lookup of a connection factory
instance in the component's environment:

// obtain the initial JNDI Naming context
 javax.naming.Context ctx = new javax.naming.InitialContext();
 // perform the JNDI lookup to obtain the connection factory
 javax.resource.cci.ConnectionFactory cxFactory =
(javax.resource.cci.ConnectionFactory)ctx.lookup(
 "java:comp/env/shme/shmeAdapterConnectionFactory");

5 The JNDI name passed in the context lookup is that same as that specified
in the res-ref-element of the component's deployment descriptor. The JNDI
lookup returns a connection factory instance of type
java.resource.cci.ConnectionFactory as specified in the res-type element.

6 The application component invokes the getConnection() method on the
connection factory to request to obtain an EIS connection. The returned
connection instance represents an application level handle to an underlying
physical connection. An application component requests multiple
connections by invoking the getConnection() method on the connection
factory multiple times.

javax.resource.cci.Connection cx = cxFactory.getConnection();

7 The application component uses the returned connection to access the
underlying EIS. This is specific to the Resource Adapter.

8 After the component finishes with the connection, it closes it using the
close() method on the connection interface.

cx.close();

9 If the application component fails to close an allocated connection after its
use, that connection is considered an unused connection. Borland
Enterprise Server manages to cleanup of unused connections. When the

Chapter 27: Using Vis iConnect 317

Appl icat ion Development Overv iew

container terminates a component instance, the container cleans up all the
connections used by that component instance.

Non-Managed Application Scenario
In the non-managed application scenario, a similar programming model must
be followed in the application component. The non-managed application must
lookup a connection factory instance, request to obtain an EIS connection, use
the connection for EIS interactions, and close the connection when completed.

The following steps are performed when a non-managed application
component requests to obtain a connection to an EIS instance from a
connection factory:

1 The application component calls the getConnection() method on the
javax.resource.cci.ConnectionFactory instance to get a connection to the
underlying EIS instance.

2 The connection factory instance delegates the connection request to to the
default connection manager instance. The Resource Adapter provides the
default connection manager implementation.

3 The connection manager instance creates a new physical connection to the
underlying EIS instance by calling the
ManagedConnectionFactory.createManagedConnection() method.

4 Invoking ManagedConnectionFactory.createManagedConnection() creates a new
physical connection to the underlying EIS, represented by the
ManagedConnection instance it returns. The ManagedConnectionFactory uses the
security information from the JAAS Subject object, and
ConnectionRequestInfo, and its configured set of properties (port number,
server name, etc.) to create the new ManagedConnection instance.

5 The connection manager instance calls the
ManagedConnection.getConnection() method to get an application-level
connection handle. This method call does not necessarily create a new
physical connection to the EIS instance; it produces a temporary handle
that is used by an application to access the underlying physical connection,
represented by the ManagedConnection instance.

6 The connection manager instance returns the connection handle to the
connection factory instance; the connection factory in turn returns the
connection to the requesting application component.

Code Excerpts - Programming to the CCI
The following code excerpts illustrate the application programming model
based on the CCI - requesting to obtain a connection, obtaining the
connection factory, creating the interaction and interaction spec, obtaining a
record factory and records, executing the interaction with the records, and
performing the same using result sets and custom records.

// Get a connection to an EIS instance after lookup of a connection factory
// instance from the JNDI namespace. In this case, the component allows the
// container to manage the EIS sign-on

318 BES Developer ’s Guide

Appl icat ion Development Overv iew

javax.naming.Context ctx = new javax.naming.InitialContext();
javax.resource.cci.ConnectionFactory cxFactory =
(javax.resource.cci.ConnectionFactory)ctx.lookup(
 "java:comp/env/shme/shmeAdapter");
javax.resource.cci.Connection cx = cxFactory.getConnection();

// Create an Interaction instance
javax.resource.cci.Interaction ix = ct.createInteraction();

// Create a new instance of the respective InteractionSpec
com.shme.shmeAdapter.InteractionSpecImpl ixSpec = new
com.shme.shmeAdapter.InteractionSpecImpl();
ixSpec.setFunctionName("S_EXEC");
ixSpec.setInteractionVerb(
javax.resource.cci.InteractionSpec.SYNC_SEND_RECEIVE);
// ...

// Get a RecordFactory instance
javax.resource.cci.RecordFactory recFactory = // ... get a RecordFactory

// Create a generic MappedRecord using the RecordFactory instance. This
record
// instance acts as an input to the execution of an interaction. The name
of the
// Record acts as a pointer to the metadata for a specific record type
javax.resource.cci.MappedRecord input = recFactory.createMappedRecord(
"ShmeExecRecord");

// Populate the generic MappedRecord instance with input values. The
component
// code adds values based on the metadata it has accessed from the metadata
// repository
input.put("<key: element0>", new String("S_APP01");
input.put("<key: element1>", // ...);
// ...

// Create a generic IndexedRecord to hold output values that are set by the
// execution of the interaction
javax.resource.cci.IndexedRecord output = recFactory.createIndexedRecord(
"ShmeExecRecord");

// Execute the Interaction
boolean response = ix.execute(ixSpec, input, output);

// Extract data from the output IndexedRecord. Note that type mapping is
done
// in the generic IndexedRecord by mean of the type mapping information in
the
// metadata repository. Since the component uses generic methods on the
// IndexedRecord, the component code performs the required type casting
java.util.Iterator iter = output.iterator();

Chapter 27: Using Vis iConnect 319

Appl icat ion Development Overv iew

while (iter != null && iter.hasNext())
{
 // Get a record element and extract value ...
}

// Set up the requirements for the ResultSet returned by the execution of
// an Interaction. This step is optional. Default values are used if
// requirements are not explicitly set.
com.shme.shmeAdapter.InteractionSpecImpl rsIxSpec = new
com.shme.shmeAdapter.InteractionSpecImpl();
rsIxSpec.setFetchSize(20);
rsIxSpec,setResultSetType(
javax.resource.cci.ResultSet.TYPE_SCROLL_INSENSITIVE);

// Execute an Interaction that returns a ResultSet
javax.resource.cci.ResultSet rSet =
(javax.resource.cci.ResultSet)ix.execute(rsIxSpec, input);

// Iterate over the ResultSet. The example here positions the cursor on the
// first row and then iterates forward through the contents of the
ResultSet.
// Appropriate get methods are then used to retrieve column values.
rSet.beforeFirst();

while (rSet != null && rSet.next())
{ // get the column values for the current row using the appropriate
 // get methods
}

// This illustrates reverse iteration through the ResultSet
rSet.afterLast();

while (rSet.previous())
{ // get the column values for the current row using the appropriate
 // get methods
}

// Extend the Record interface to represent an EIS-specific custom Record.
// The interface CustomerRecord supports a simple accessor/mutator design
// pattern for its field values. A development tool would generate the
// implementation class of the CustomerRecord
public interface CustomerRecord extends javax.resource.cci.Record,
javax.resource.cci.Streamable
{
 public void setName(String name);
 public void setId(String custId);
 public void setAddress(String address);

 public String getName();
 public String getId();
 public String getAddress();
}

320 BES Developer ’s Guide

Appl icat ion Development Overv iew

// Create an empty CustomerRecord instance to hold output from
// the execution of an Interaction
CustomerRecord customer = // ... create an instance

// Create a PurchaseOrderRecord instance as an input to the Interaction
// and set properties on this instance. The PurchaseOrderRecord is another
// example of a custom Record
PurchaseOrderRecord purchaseOrder = // ... create an instance
purchaseOrder.setProductName("...");
purchaseOrder.setQuantity("...");
// ...

// Execute an Interaction that populates the output CustomerRecord instance
boolean crResponse = ix.execute(rsIxSpec, purchaseOrder, customer);

// Check the CustomerRecord
System.out.println("Customer Name = [" + customer.getName() + "], Customer
ID = [" + customer.getId() +
 "], Customer Address = [" + customer.getAddress() + "]");

Deployment Descriptors for Application Components

The application component deployment descriptors need to specify
connection factory information for the Resource Adapter which the component
will use. Appropriate entries are required in:

1 In the component's Sun standard deployment descriptor. For example, in
ejb-jar.xml, the following is required:
� res-ref-name: shme/shmeAdapter

� res-type: javax.resource.cci.ConnectionFactory

� res-auth: Application | Container

2 In addition, any version specific entries can be included. For example, EJB
2.0's res-sharing-scope:
� res-sharing-scope: Shareable | Unshareable

3 In the component's Borland-specific deployment descriptor. For example, in
ejb-borland.xml, the following is required:
� res-ref-name: shme/shmeAdapter

� res-type: javax.resource.cci.ConnectionFactory

4 In addition, any version specific entries can be included. For example, EJB
1.1's cmp-resource:
� cmp-resource: True | False

The following details example deployment descriptors for two EJBs - the first
written to the EJB 2.0 spec, the second written to the EJB 1.1 spec. Both the
standard and Borland-specific deployment descriptors are shown. In these
examples, a hypothetical Resource Adapter is referenced.

Chapter 27: Using Vis iConnect 321

Appl icat ion Development Overv iew

EJB 2.x example

ejb-jar.xml deployment descriptor
This example uses container-managed persistence

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">
<ejb-jar>
 <display-name>SHME Integration Jar</display-name>
 <enterprise-beans>
 <session>
 <description>Interface EJB for shmeAdapter Class /shme/test/
shmeAdapter/schema/Customer</description>
 <display-name>customer_bean</display-name>
 <ejb-name>shme/customer_bean</ejb-name>
 <home>com.shme.test.shmeAdapter.schema.CustomerHome</home>
 <remote>com.shme.test.shmeAdapter.schema.CustomerRemote</
remote>
 <ejb-class>com.shme.test.shmeAdapter.schema.CustomerBean</ejb-
class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
 <env-entry>
 <description>SHME Repository URL for Connector
configuration</description>
 <env-entry-name>repositoryUrl</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>s_repository://S_APP01</env-entry-value>
 </env-entry>
 <env-entry>
 <description>Location of Resource Adapter Configuration
within the SHME Repository</description>
 <env-entry-name>configurationUrl</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>/shme/client</env-entry-value>
 </env-entry>
 <resource-ref>
 <description>Reference to SHME Resource Adapter</
description>
 <res-ref-name>shme/shmeAdapter</res-ref-name>
 <res-type>com.shme.shmeAdapter.ConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>customer_bean</ejb-name>

322 BES Developer ’s Guide

Appl icat ion Development Overv iew

 <method-intf>Remote</method-intf>
 <method-name>s_exec_customer_query</method-name>
 <method-params/>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

This corresponds to the ejb-jar.xml above.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC "-//Borland Software Corporation//DTD Enterprise
JavaBeans 2.0//EN" "http://www.borland.com/devsupport/appserver/dtds/ejb-
jar_2_0-borland.dtd">
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>shme/customer_bean</ejb-name>
 <bean-home-name>shme/customer_bean</bean-home-name>
 <resource-ref>
 <res-ref-name>shme/shmeAdapter</res-ref-name>
 <jndi-name>serial://eis/shmeAdapter</jndi-name>
 </resource-ref>
 </session>
 </enterprise-beans>
</ejb-jar>

EJB 1.1 example

ejb-jar.xml deployment descriptor
This example uses bean-managed persistence.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN' 'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>
<ejb-jar>
 <description />
 <display-name>ShmeAdapter Interface Jar</display-name>
 <small-icon />
 <large-icon />
 <enterprise-beans>
 <session>
 <description>Interface EJB for SHME Class /shme/test/shmeAdapter/schema/
Customer</description>
 <display-name>customer_bean</display-name>
 <ejb-name>shme/customer_bean</ejb-name>
 <home>com.shme.test.shmeAdapter.schema.CustomerHome</home>
 <remote>com.shme.test.shmeAdapter.schema.CustomerRemote</remote>
 <ejb-class>com.shme.test.shmeAdapter.schema.CustomerBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Bean</transaction-type>

Chapter 27: Using Vis iConnect 323

Appl icat ion Development Overv iew

 <env-entry>
 <description>SHME Repository URL for Connector configuration</
description>
 <env-entry-name>repositoryUrl</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>s_repository://S_APP01</env-entry-value>
 </env-entry>
 <env-entry>
 <description>Location of Resource Adapter configuration within the SHME
Repository</description>
 <env-entry-name>configurationUrl</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>/shme/client</env-entry-value>
 </env-entry>
 <resource-ref>
 <description>Reference to SHME Resource Adapter</description>
 <res-ref-name>shme/shmeAdapter</res-ref-name>
 <res-type>com.shme.shmeAdapter.ConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 </session>
</enterprise-beans>
<ejb-client-jar />
</ejb-jar>

ejb-inprise.xml deployment descriptor
This corresponds to the ejb-jar.xml above.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE inprise-specific PUBLIC '-//Inprise Corporation//DTD Enterprise
JavaBeans 1.1//EN' 'http://www.borland.com/devsupport/appserver/dtds/ejb-
inprise.dtd'>
<inprise-specific>
 <enterprise-beans>
 <session>
 <ejb-name>shme/customer_bean</ejb-name>
 <bean-home-name>shme/customer_bean</bean-home-name>
 <timeout>0</timeout>
 <resource-ref>
 <res-ref-name>shme/shmeAdapter</res-ref-name>
 <jndi-name>serial://eis/shmeAdapter</jndi-name>
 <cmp-resource>False</cmp-resource>
 </resource-ref>
 </session>
 </enterprise-beans>
</inprise-specific>

324 BES Developer ’s Guide

Other Considerat ions

Other Considerations

Converting a Local Connector to a Remote Connector

VisiConnect is the sole Connector Container which supports
RemoteConnectors. The issue of Remote Connectors is presently outside the
Connectors specifications. As a result, most Resource Adapters available on
the market are implemented as Local Connectors. Therefore, if you have a
requirement to use a Remote Connector, such as:
� Migrating a non-J2EE application to J2EE, where it is required to interface

the legacy application to Connectors as a migration step,
� Running a non-J2EE application outside the aegis of an Application Server,

where it is required to interface the application with Connectors,
� Running CORBA clients/servers which are required to interface with

Connectors,
� Partitioning an application environment by host, where, for example, it is

required to run the Connectors layer on a host remote to the Application
layer, or

� Working with some other requirements where it is required to access
Connectors outside of J2EE, or remotely, and you do not have a Remote
Connector for the desired EIS, you will need to convert the available Local
Connector to a Remote Connector. Fortunately, this process is very
straightforward and quick to accomplish.

Conversion
The main steps for converting a Local Connector into a Remote Connector
are:

1 Extend the connection factory class of the Local Connector, and have the
extension:
� Implement java.rmi.Remote
� Throw java.rmi.RemoteException from each method VisiConnect bundles

ready extensions to javax.sql.DataSource and
javax.resource.cci.ConnectionFactory:
com.borland.enterprise.visiconnect.DataSource extends
javax.sql.DataSource to maremoteteable

� com.borland.enterprise.visiconnect.cci.ConnectionFactory extends
javax.resource.cci.ConnectionFactoryto make it remote.

2 The VisiConnect Remote Connector Example illustrates how to extend the
connection factory in this fashion, for both CCI and non-CCI cases. This is
available at $installRoot/examples/j2ee/visiremote. As such, if you wish to
make a Resource Adapter with a connection factory implementing
javax.sql.DataSource or javax.resource.cci.ConnectionFactory a Remote
Connector, all you need to do is to use the

Chapter 27: Using Vis iConnect 325

Other Considerat ions

com.borland.enterprise.visiconnect.DataSource or the
com.borland.enterprise.visiconnect.cci.ConnectionFactory interfaces.

3 Update the classes in the ra.xml standard deployment descriptor file. For
example, before extending the interfaces, the ra.xml may look something
like this:

 <managedconnectionfactory-
class>com.borland.enterprise.connector.serial.
LocalTxManagedConnectionFactory</managedconnectionfactory-class>
 <connectionfactory-interface>javax.sql.DataSource</connectionfactory-
interface>
 <connectionfactory-impl-
class>com.borland.enterprise.connector.serial.JdbcDataSource</
connectionfactory-impl-class>
 <connection-interface>java.sql.Connection</connection-interface>
 <connection-impl-
class>com.borland.enterprise.connector.serial.JdbcConnection</
connection-impl-class>

4 After extending the interfaces, the ra.xml may look something like this:

 <managedconnectionfactory-
class>com.borland.enterprise.connector.serial.LocalTxManagedConnectionFa
ctory</managedconnectionfactory-class>
 <connectionfactory-
interface>com.borland.enterprise.visiconnect.DataSource</
connectionfactory-interface>
 <connectionfactory-impl-
class>com.borland.enterprise.connector.serial.RemoteJdbcDataSource</
connectionfactory-impl-class>
 <connection-interface>java.sql.Connection</connection-interface>
 <connection-impl-
class>com.borland.enterprise.connector.serial.JdbcConnection</
connection-impl-class>

As this illustrates, this conversion impacts the connection factory only. No
other Resource Adapter classes are affected by this conversion.

1 Compile the Java code for the extended interface and implementation into
class files.

2 Package these into the Resource Adapter's Java Archive (.jar) file.

3 Update the Resource Adapter Archive (.rar) file with this extended .jar.

4 Deploy the Resource Adapter Archive, or include it in a Enterprise
Application Archive (.ear) file to be deployed as part of a J2EE application,
to VisiConnect running standalone or as a partition service in the Borland
Enterprise Server.

You now have a Remote Connector. The Resource Adapter's connection
factory will be registered in JNDI via CosNaming. You can browse this using
the JNDI Browser in the Console. Any CORBA client can now use this
Connector. The client can be written in any language which has an IDL

326 BES Developer ’s Guide

Other Considerat ions

mapping, which includes C, C++, Delphi (Object Pascal), Ada, COBOL,
COBOL Scripting Language, Lisp, PL/1, Python, and Smalltalk.

Working with Poorly Implemented Resource Adapters

Some commercially available Resource Adapters may be poorly implemented.
As there does not yet exist any mechanism to test a Resource Adapter for
compliance to the Connectors specs (as the J2EE Compatibility Test Suite
(CTS) tests a Connectors implementation for spec compliance), it is currently
not a simple task to recognize, but among the symptoms, you will find:

1 The Resource Adapter will exhibit strange errors during deployment

2 The Resource Adapter will exhibit strange errors during method invocation
on the connection factory.

As VisiConnect strictly implements J2EE 1.3 and Connectors 1.0
requirements, it is often the only Connector Container which will detect poorly
implemented Resource Adapters and not ignore the problem.

Examples of Poorly Implemented Resource Adapters
Generally, poorly implemented Resource Adapters are not compliant with the
Connectors 1.0 specification. Examples of such Resource Adapters include:
� The Resource Adapter with a connection factory implementing only

java.io.Serializable, and not both java.io.Serializable and
javax.resource.Referenceable as per the Connectors specification (Section
10.5 "JNDI Configuration and Lookup"). The local JNDI context handlers of
application servers such as Borland Enterprise Server can only register
objects if they implement both interfaces. If a Resource Adapter
implements a connection factory as Serializable, and doesn't implement
Referenceable, you will see exceptions thrown when the application server
attempts to deploy the connection factory to JNDI.

� The Resource Adapter with a connection factory which poorly implements
javax.resource.Referenceable (which inherits getReference() from
javax.naming.Referenceable). The J2SE 1.3.x and 1.4.x specs specify that for
javax.naming.Referenceable, getReference() either:

1 Returns a valid, non-null reference of the Referenceable object, or

2 Throws an exception (javax.naming.NamingException).

If the Resource Adapter implements Referenceable such that getReference() can
(and will) return null, you will see exceptions thrown when a client attempts to
invoke a connection factory method such as getConnection().
� The Resource Adapter with a connection factory correctly implementing

Referenceable, but which does not provide an implementation of
javax.naming.spi.ObjectFactory (which is required by the Connectors
specification (Section 10.5 "JNDI Configuration and Lookup")). Although
such a Resource Adapter can be deployed to an application server without
incident, it cannot be deployed to JNDI outside the aegis of an application
server, as a non-managed Connector. Also, including a

Chapter 27: Using Vis iConnect 327

Other Considerat ions

javax.naming.spi.ObjectFactory implemenation source Adapter with backup
mechanism for JNDI Reference-based connection factory lookup.

� The Resource Adapter which specifies an connection factory or connection
interface while not implementing that interface in its connection factory or
connection class, respectively. Section 10.6 "Resource Adapter XML DTD"
in the Connectors spec discusses the related requirements. To illustrate,
let's say that in the ra.xml of a particular Resource Adapter, you have the
following elements:

//...
<connection-interface>java.sql.Connection</connection-interface>
<connection-impl-class>com.shme.shmeAdapter.ShmeConnection</connection-
impl-class>
//...

But your implementation of ShmeConnection is as follows:

package shme;
public class ShmeConnection
{
private ShmeManagedConnection mc;

 public ShmeConnection(ShmeManagedConnection mc)
 {
System.out.println("In ShmeConnection");
this.mc = mc;
 }
}

Any attempt to invoke getConnection() on this Resource Adapter's connection
factory will result in a java.lang.ClassCastException, as you're indicating to the
appserver in ra.xml that connection objects returned by the Resource Adapter
are to be cast to java.sql.Connection.

Working with a Poor Resource Adapter Implementation
To work around a poor Resource Adapter implementation, perform the
following:

Extend the connection factory and/or connection class of the Local Connector,
and have the extension correctly implement the poorly implemented code. For
example, when dealing with a connection factory which implements
Serializable, and doesn't implement Referenceable the idea is to extend the
original connection factory to implement Referenceable, which means
implementing getReference() and setReference().

To illustrate, if the connection factory is com.shme.BadConnectionFactory, extend
the connection factory as com.shme.GoodConnectionFactory, and implement
Referenceable as follows:

package com.shme.shmeAdapter;

public class GoodConnectionFactory
{

328 BES Developer ’s Guide

Other Considerat ions

private javax.naming.Reference ref;
// ...
public javax.naming.Reference getReference()
{
// implement such that getReference() never returns null
// ...
 return ref;
 }
public javax.naming.Reference setReference(javax.naming.Reference ref)
 // this.ref = ref;
 }
 //

Also, when dealing with a poorly behaving getReference(), there are various
ways to accomplish this, but principally, the idea is to implement getReference()
such that it never returns null. The best approach is to implement:
� A fallback mechanism in getReference() which sets the reference to be

returned correctly if the connection factory's reference attribute is null -
returning a registerable javax.naming.Reference object, and

� A helper class implementing javax.naming.spi.ObjectFactory to provide the
fallback objecfall back to create the connection factory object from the valid
Reference instance.

To illustrate, if the connection factory is com.shme.BadConnectionFactory, extend
the connection factory as com.shme.GoodConnectionFactory, and override
getReference() as follows:

package com.shme.shmeAdapter;

public class GoodConnectionFactory
{
 // ...

 public javax.naming.Reference getReference()
 {
 if (ref == null)
 {
 ref = new javax.naming.Reference(this.getClass().getName(),
 "com.shme.shmeAdapter.GoodCFObjectFactory"
 /* object factory for GoodConnectionFactory references */,
 null);
 String value;
 value = managedCxFactory.getClass().getName();

 if (value != null)
 {
 ref.add(new javax.naming.StringRefAddr(
 "managedconnectionfactory-class", value));
 }

 value = cxManager.getClass().getName();

Chapter 27: Using Vis iConnect 329

Other Considerat ions

 if (value != null)
 {
 ref.add(new javax.naming.StringRefAddr(
 "connectionmanager-class", value));
 }
 }

 return ref;
 }

 // ...
}

Then implement the associated object factory class, in this case:

com.shme.shmeAdapter.GoodCFObjectFactory
package com.shme.shmeAdapter;

import javax.naming.spi.*;
import javax.resource.spi.*;

public class GoodCFObjectFactory implements ObjectFactory {
 public GoodCFObjectFactory() {};

 public Object getObjectInstance(Object obj,
javax.naming.Name name,
 javax.naming.Context context,
 java.util.Hashtable env)
 throws Exception
 {
 if (!(obj instanceof javinstance ofReference))
 {
 return null;
 }

 javax.naming.Reference ref = (javax.naming.Reference)obj;

 if (ref.getClassName().equals(
"com.shme.shmeAdapter.GoodConnectionFactory"))
 {
 ManagedConnectionFactory refMcf = null;
 ConnectionManager refCm = null;

if (ref.get("managedconnectionfactory-class") != null)
 {
 String managedCxFactoryStr =
 (String)ref.get("managedconnectionfactory-class").getContent();
 Class mcfClass = Class.forName(managedCxFactoryStr);
 refMcf = (ManagedConnectionFactory)mcfClass.newInstance();
 }

if (ref.get("connectionmanager-class") != null)

330 BES Developer ’s Guide

Other Considerat ions

 {
 String cxManagerStr = (String)ref.get("connectionmanager-class"
).getContent();
 Class cxmClass = Class.forName(cxManagerStr);
 java.lang.ClassLoader cloader = cxmClass.getClassLoader();
 refCm = (ConnectionManager)cxmClass.newInstance();
 }

 GoodConnectionFactory cf = null;

 if (refCm != null)
 {
 cf = new GoodConnectionFactory(refMcf, refCm);
 }
 else
 {
 cf = new GoodConnectionFactory(refMcf);
 }

 return cf;
 }

 return null;
 }
}

Update the classes in the ra.xml standard deployment descriptor file. For
example, before extending the implementation, the ra.xml may look something
like this:

<managedconnectionfactory-class>com.shme.shmeAdapter.
LocalTxManagedConnectionFactory</managedconnectionfactory-class>
<connectionfactory-interface>javax.sql.DataSource</connectionfactory-
interface>
<connectionfactory-impl-class>com.shme.shmeAdapter.BadConnnectionFactory</
connectionfactory-impl-class>
<connection-interface>java.sql.Connection</connection-interface>
<connection-impl-class>com.shme.Connection</connection-impl-class>

After extending the interfaces, the ra.xml may look something like this:

<managedconnectionfactory-class>com.shme.shmeAdapter.
LocalTxManagedConnectionFactory </managedconnectionfactory-class>
<connectionfactory-interface>javax.sql.DataSource</connectionfactory-
interface>
<connectionfactory-impl-class>com.shme.shmeAdapter.GoodConnectionFactory</
connectionfactory-impl-class>
<connection-interface>java.sql.Connection</connection-interface>
<connection-impl-class>com.shme.shmeAdapter.Connection</connection-impl-
class>

As this illustrates, this conversion only impacts the connection factory. No
other Resource Adapter classes are affected by this conversion.

Chapter 27: Using Vis iConnect 331

Other Considerat ions

Compile the Java code for the extended implementation (and any helper
classes) into class files.

Package these into the Resource Adapter's Java Archive (.jar) file.

Update the Resource Adapter Archive (.rar) file with this extended .jar.

Deploy the Resource Adapter Archive, or include it in an Enterprise
Application Archive (.ear) file to be deployed as part of a J2EE application, to
VisiConnect running standalone or as a Partition service in the Borland
Enterprise Server.

You've now converted a badly behaving Resource Adapter into a well
behaving one.

Sometimes the design of a Resource Adapter makes it impossible to extend
the existing API implementation. In such cases you need to re-implement the
offending class or classes, and set the elements in ra.xml to reference the re-
implementation(s). Or better yet, choose another Resource Adapter, which is
compliant with the Connectors specification to work with.

332 BES Developer ’s Guide

Chapter 28: Apache Ant and running BES examples 333

C h a p t e r

28
Chapter28Apache Ant and running BES

examples
Many of the BES examples now employ the Ant build script system. In addition
to Ant's core functionality, the BES version of Ant includes customized tasks
for several of the BES command line tools, including commands of the
following:
� appclient

� iastool

� java2iiop

� idl2java

These customized ant tasks have the following advantages over using exec or
apply directives:
� Customized ant tasks run under the VM used to launch the ant script,

hence they run faster and use less memory compared to spawning new
JVM's with the exec/apply commands.

� Customized tasks have a much simpler command syntax than the exec/
apply version.

� Ant features such as filesets and patternsets are available in a more natural
way.

334 BES Developer ’s Guide

Syntax and genera l usage

Syntax and general usage
The following table shows the currently defined tasks and their relationship to
the equivalent commands.

The Fileset Attributes column indicate attributes which can accept multiple file
names. Such attributes can employ the Ant <fileset> element to designate
these files. Techniques for including multiple files is explained in “Multiple File
Arguments” on page 336.

Ant Task Name
Equivalent
Command Line Function Fileset Attribute

appclient appclient Runs a client
application.

iascompilejsp iastool -compilejsp Precompiles JSP's.

iasdeploy iastool -deploy Deploys a J2EE
module.

jars

iasgendeployable iastool -
gendeployable

Generates a
manually
deployable
module.

iasgenclient iastool -genclient Generates a client
library.

jars

iasgenstubs iastool -genstubs Generate a stub
library.

iasmerge iastool -merge Merges a set of
JAR files into a
single JAR file.

jars

iaskill iastool -kill Kills a Managed
Object.

iasrestart iastool -restart Restarts a
Managed Object.

iasstop iastool -stop Stops a Managed
Object.

iasundeploy iastool -undeploy Undeploys a
managed object.

java2iiop java2iiop Executes the
java2iiop
command.

idl2java idl2java Converts IDL to
Java classes.

Chapter 28: Apache Ant and running BES examples 335

Translat ing BES commands into Ant tasks

Translating BES commands into Ant tasks

Basic Syntax

The options for a command-line tool translated into equivalent XML attributes.
For example, the command line:

iastool -verify -src cart_beans_client.jar -role DEVELOPER -warn -nostrict

translates into the Ant task:

<iasverify src="cart_beans_client.jar" role="DEPLOYER" warn="true"
strict="false" />

For boolean-style attributes, use the base name of the attribute. For example,
the following command sets the warn attribute to false:

iastool -verify -src cart_beans_client.jar -role DEVELOPER -nowarn -
nostrict

The equivalent Ant task is:

<iasverify src="cart_beans_client.jar" role="DEPLOYER" warn="false"
strict="false"

Note It is not valid to use "nowarn" as an attribute. For instance, the following line
causes a syntax error:

****** INCORRECT SYNTAX!!! ******
<iasverify src="cart_beans_client.jar" role="DEPLOYER" nowarn="false"
strict="false" />

Omitting attributes

Omitting an attribute from the Ant task call has the same effect as omitting the
option from the command line. Since some attributes are true by default,
omitting an attribute does not necessarily set the attribute to false. For
example, the syntax for the iastool -verify command is:

iastool -verify -src srcjar -role <DEVELOPER|ASSEMBLER|DEPLOYER> [-nowarn]
[-strict] [-classpath <classpath>]

As the -nowarn and -strict options are the default command options, the
following commands are equivalent:

iastool -verify -src cart_beans_client.jar -role DEVELOPER

iastool -verify -src cart_beans_client.jar -role DEVELOPER -nowarn -strict

The equivalent Ant calls are:

<iasverify src="cart_beans_client.jar" role="DEPLOYER" />

<iasverify src="cart_beans_client.jar" role="DEPLOYER" warn="false"
strict="true" />

Chapter 28: Apache Ant and running BES examples 336

Bui ld ing the example

For more information on the default values of these options, go to Chapter 29,
“iastool command-line utility”.

Multiple File Arguments

Many commands either act on multiple files or have options which can point to
multiple files. There are several ways to achieve this functionality in the
equivalent Ant task. For example, the iastool -merge command:

iastool -merge -target build\client.jar -type lib client\build\
local_client.jar build\local_stubs.jar

has the Ant equivalent:

<iasmerge target="${build.dir}/client.jar" type="lib" jars="client/build/
local_client.jar ;
build/local_stubs.jar" />

Note The files in the jars attribute must be separated by semi-colons (;) or colons (:)
- spaces and commas are not valid separators.

Ant provides a convenient <fileset> task to include multiple files:

<iasmerge target="build/client.jar" type="lib" >
<fileset dir="client/build" includes="local_client.jar" />
<fileset dir="build" includes="local_stubs.jar" />
</iasmerge>

The patternset feature of Ant can also be useful. The following alteration now
includes all of the jar files contained in the build directory and all of its sub-
directories:

<iasmerge target="${build.dir}/client.jar" type="lib" >
<fileset dir="${build.dir}" includes="**/*.jar" />
</iasmerge>

Class path attributes can include multiple paths separated by semicolons:

<iasverify src="cart_beans_client.jar" role="DEPLOYER"
classpath="alib.jar;blib.jar" />

or use the <classpath> element:

<iasverfify src="cart_beans_client.jar" role="DEPLOYER" >
<classpath>
<pathelement location="alib.jar" />
<pathelement location="blib.jar" />
</classpath>

Building the example
Note Many of the BES examples have their own readme.html files located in:

<install_dir>/examples

1 Open a command line window.

Chapter 28: Apache Ant and running BES examples 337

Deploy ing the example

2 Set the current directory to an example directory. The "Hello World"
example located at <install_dir>/examples/j2ee/hello is a good place to
start.

3 On the command line, enter "ant".

The example should build automatically.

Note The server does not have to be running to build the example. However,
deployment and undeployment require that the server be operational.
Executing an example requires that the partion be running.

Deploying the example
1 Make sure that a server is running.

2 On the command line, enter ant deploy.

This will deploy the example to the hub, configuration, and partition set in
the <install_dir>\examples\deploy.properties file.

If you wish to deploy to a different combination of hub/configuration/partition,
you can either edit the deploy.properties file to change the settings, or use -D
options on the command line to override the deploy.properties settings.

For example, to use a hub named "myhub", use the command:

ant -Dhub.name=myhub deploy

This will override the default hub name in deploy.properties with the value
myhub.

Running the example
1 Make sure that the Partition is running.

2 On the command line, enter ant execute.

The precise response depends on the particular example.

Undeploying the example
1 Make sure that a server is running.

2 On the command line, enter undeploy.

Troubleshooting
1 Make sure that the <bes_install_dir>/bin directory is on your path and

precedes the path to any alternative Ant installations.

338 BES Developer ’s Guide

Troubleshoot ing

2 Before calling the ant execute command, make sure that the server and the
Partition are running.

3 The <bes_install_dir>\examples\deploy.properties contains default settings
for the Hub, Configuration, Partition, and Management Port. These default
properties include:
� hub.name=your_machine_name

� cfg.name=j2ee

� partition.name=standard

� realm.name=ServerRealm

� server.user.name=admin

� server.user.pwd=admin

where your_machine_name is the machine name designated at installation.
You can reset these values as needed or specify them on the Ant
command line using the -D option.

Chapter 29: iastool command- l ine ut i l i ty 339

C h a p t e r

29
Chapter29iastool command-line utility

This section describes the iastool command-line utility that you can use to
manage your managed objects.

Important For documentation updates, go to www.borland.com/techpubs/bes.

Using the iastool command-line tools
The iastool utility is a set of command-line tools for manipulating managed
objects. The following table shows the command-line tools provided with the
iastool utility:

Table 29.1 iastool command-line utilities

Use... To...

-compilejsp Precompile JSPs in a standalone WAR
or all WARs in an EAR. For more
information, see “compilejsp” on
page 341.

-compress Compress a JAR file. For more
information, see “compress” on page 342

-deploy Deploy a J2EE module to the specified
Partition. For more information, see
“deploy” on page 343.

-dumpstack Dump the stack trace of a Partition
process to the partition event log file. For
more information, see “dumpstack” on
page 345.

340 BES Developer ’s Guide

Using the iastoo l command-l ine too ls

-genclient Generate a library containing client
stubs, EJB interfaces, and dependent
classes. For more information, see
“genclient” on page 346.

-gendeployable Generate a manually deployable module.
For more information, see
“gendeployable” on page 347.

-genstubs Generate a library containing client or
server stubs only. For more information,
see “genstubs” on page 348.

-info Display system configuration information.
For more information, see “info” on
page 349.

-kill Kill a managed object. For more
information, see “kill” on page 350.

-listpartitions List the partitions on a hub. For more
information, see “listpartitions” on
page 352.

-listhubs List the available hubs on a management
port. For more information, see “listhubs”
on page 353.

-listservices List the services on a hub. For more
information, see “listservices” on
page 354.

-merge Merge a set of JAR files into a single JAR
file. For more information, see “merge”
on page 355.

-migrate Migrate a module from J2EE 1.2 to J2EE
1.3. For more information, see “migrate”
on page 357.

-patch Apply one or more patches to a JAR file.
For more information, see “patch” on
page 357.

-ping Ping a managed object or hub for its
current state. For more information, see
“ping” on page 358.

-pservice Enables, disables, or gets the state of a
partition service. For more information,
see “pservice” on page 360.

-removestubs Remove all stub files from a JAR file. For
more information, see “removestubs” on
page 362.

-restart Restart a hub or managed object. For
more information, see “restart” on
page 362.

-setmain Set the main class of a standalone Client
Jar or a Client Jar in an EAR. For more
information, see “setmain” on page 364.

Table 29.1 iastool command-line utilities

Use... To...

Chapter 29: iastool command- l ine ut i l i ty 341

Using the iastoo l command- l ine tools

compilejsp

Use this tool to precompile JSP pages in a standalone WAR or in all Wars in
an EAR. The JSP pages are compiled into Java servlet classes and saved in a
WAR file. This operation enables the JSP pages to be served faster the first
time they are accessed.

Syntax

-compilejsp -src <war_or_ear> -target <target_file> [-package
<package_root>]
[-loglevel <0-4>] [-classpath <classpath>]

Default Output
By default, compilejsp reports if the operation was successful or not.

Options
The following table describes the options available when using the compilejsp
tool.

-start Start a managed object. For more
information, see “start” on page 365.

-stop Stop a hub or managed object. For more
information, see “stop” on page 366.

-uncompress Uncompress a JAR file. For more
information, see “uncompress” on
page 368.

-undeploy Remove a J2EE module from a Partition.
For more information, see “undeploy” on
page 369.

-usage Display the usage of command-line
options. For more information, see
“usage” on page 370.

-verify Verify a J2EE module. For more
information, see “verify” on page 370.

Option Description

-src <war_or_ear> Specifies the WAR or EAR file you want
to compile. The full or relative path to the
file must be specified. There is no
default.

-target <target_file> Specifies the name of the file to be
generated. The file name you specify
cannot already exist. The full or relative
path to the file must be specified. There
is no default.

Table 29.1 iastool command-line utilities

Use... To...

342 BES Developer ’s Guide

Using the iastoo l command-l ine too ls

Example
To precompile the JSP pages contained in a WAR file called proj1.war located
in the current directory into a WAR file called proj1compiled.war in the same
location:

iastool -compilejsp -src proj1.war -target proj1compiled.war

To precompile the JSP pages contained in an EAR file called proj1.ear located
in the directory c:\myprojects\ into an EAR file called proj1compiled.ear in the
same location and generate the maximum amount of diagnostic messages:

iastool -compilejsp -src c:\myprojects\proj1.ear -target
c:\myprojects\proj1compiled.ear -loglevel 4

compress

Use this tool to compress a JAR file.

Syntax

-compress -src <srcjar> -target <targetjar>

Default Output
By default, compress reports if the operation was successful or not.

-package <package_root> Specifies the base package name for the
precompiled JSP servlet classes. The
default is com.bes.compiledjsp.

-loglevel <0-4> Specifies the amount of output diagnostic
messages to be generated. A value
greater than 2 will also leave the
temporary servlet Java files for further
inspection. The default is 2.

-classpath <classpath> Specifies any additional libraries that
may be required for compiling the JSP
pages. There is no default.

Option Description

Chapter 29: iastool command- l ine ut i l i ty 343

Using the iastoo l command- l ine tools

Options
The following table describes the options available when using the compress
tool.

Example
To compress a JAR file, called proj1.jar and located in the current directory,
into a file called proj1compress.jar in the same location:

iastool -compress -src proj1.jar -target proj1compress.jar

To compress a JAR file called proj1.jar located in the directory c:\myprojects\
into a file called proj1compress.jar in the same location:

iastool -compress -src c:\myprojects\proj1.jar
-target c:\myprojects\proj1compress.jar

deploy

Use this tool to deploy a J2EE module to a specified Partition on the specified
hub and configuration.

Syntax

-deploy -jars <jar1,jar2,...> <-hub <hub> | -host <host>:listener_port>>
-cfg <configname> -partition <partitionname> [-force_restart] [-cp
<classpath>]
[-args <args>] [-javac_args <args>] [-noverify] [-nostubs] [-mgmtport
<nnnnn>]
[-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

Default Output
By default, deploy reports if the operation was successful.

Option Description

-src <srcjar> Specifies the JAR file that you want to
compress. The full or relative path to the
file must be specified. There is no
default.

-target <targetjar> Specifies the name of the compressed
JAR file to be generated. The full or
relative path to the file must be specified.
There is no default.

344 BES Developer ’s Guide

Using the iastoo l command-l ine too ls

Options
The following table describes the options available when using the deploy tool.

Option Description

-jars <jar1,jar2...> Specifies the names of one or more JAR
files to be deployed. To specify more
than one JAR file, enter a comma (,)
between each file name (no spaces). The
full or relative path to the files must be
specified. There is no default.

-hub <hub> Specifies the name of the hub in which to
deploy the JAR files.

-host <host>:<listener_port> Specifies the host name and the listener
port of the machine on which the partition
you are interested in is running. This
option enables the iastool utility to locate
a partition on a different subnet than the
machine on which iastool is running.

-cfg <configname> Specifies the name of the configuration
containing the partition in which you want
to load the JAR file.

partition <partitionname> Specifies the name of the Partition in
which you want to load the JAR file.

-force_restart Restarts the specified Partition after
deploying the module. If this option is not
specified, you will need to restart the
Partition manually to initialize the
module.

-cp <classpath> Specifies the classpath containing the
class dependencies of the JAR file(s) to
be deployed.

-args <args> Specifies any arguments that are needed
by the JAR file. For details, see the
VisiBroker for Java Developer’s Guide
Programmer tools for Java section.

-javac_args <args> Specifies any Java compiler arguments
that are needed by the JAR file.

-noverify Turns off verification of the active
connections to a Partition on a specified
management port.

-nostubs Prevents creation of client or server-side
stub files for the deployed module.

-mgmtport <nnnnn> Specifies the management port number
used by the specified hub. The default is
42424.

-realm <realm> Specifies the realm used to authenticate
a user when the user and password
options are specified.

-user <username> Specifies the user to authenticate against
the specified realm.

Chapter 29: iastool command- l ine ut i l i ty 345

Using the iastoo l command- l ine tools

dumpstack

Use this tool to obtain diagnostic information about the threads running in a
Partition. This tool causes the Partition to generate a stack trace of all threads,
and the output is stored in the Partition's event log file. The stack trace may be
useful for diagnosing problems with the Partition. The log file is located in the
directory:

<install_dir>\var\domains\<domain_name>\configurations\<config_name>\
 <partition_name>\adm\logs\partition_log.xml

Syntax

-dumpstack <-hub <hub> | -host <host>:<listener_port>> -cfg <configname>
-partition <partitionname> [-mgmtport <nnnnn>] [-realm <realm>]
[-user <username>] [-pwd <password>] [-file <login_file>]

Options
The following table describes the options available when using the dumpstack
tool.

-pwd <password> Specifies the user's password to
authenticate against the specified realm.

-file <login_file> Specifies a login script file containing the
realm, user name , and password used
to authenticate a user. The full or relative
path to this file must be specified. See
“Executing iastool command-line tools
from a script file” on page 372 for more
information.

Option Description

-hub <hub> | -host
<hostname>:<listener_port>

Specifies the name of the hub or the host
name and the listener port of the
machine on which the partition process
you are interested in is running. You
must specify either a hub name or a host
name and listener port. Specifying a
listener port enables the iastool utility to
locate a hub on a different subnet than
the machine on which iastool is running.

-cfg <configname> Specifies the name of the configuration
containing the specified partition.

-partition <partitionname> Specifies the name of the Partition that
you want to diagnose. The name of a
valid Partition must be specified.

-mgmtport <nnnnn> Specifies the management port number
used by the specified hub. The default is
42424

Option Description

346 BES Developer ’s Guide

Using the iastoo l command-l ine too ls

Examples
The following example shows how to perform a thread dump of the standard
Partition in the j2ee configuration on the BES1 hub:

iastool -dumpstack -hub BES1 -cfg j2ee -partition standard

The following example shows how to perform a thread dump of the standard
Partition on a computer host on a specific listener port. Note that the -host
option can be used regardless of whether iastool is executed on the same or a
different host machine on which the partition is running.

iastool -dumpstack -host mymachine:1234 -cfg j2ee -partition standard

genclient

Use this tool to generate a library containing client stubs files, EJB interfaces,
and dependent class files for one or more EJB JAR files, and to package them
into one or more client JAR files. The client JAR is not an EJB, but is an EJB
client.

If genclient fails for one of the EJB JARs in the argument list, an error is
displayed and the genclient tool will continue to attempt to generate a client
JAR on the remainder of the specified list.

The genclient tool will exit 0 (zero), for 100% success, or 1, for any failure.

Syntax

-genclient -jars <jar1,jar2,...> -target <client_jar> [-cp <classpath>]
[-args <java2iiop_args>] [-javac_args <args>]

Default Output
The default output returns nothing to standard output (stdout).

-realm <realm> Specifies the realm used to authenticate
a user when the user and password
options are specified.

-user <username> Specifies the user to authenticate against
the specified realm.

-pwd <password> Specifies the user's password to
authenticate against the specified realm.

-file <login_file> Specifies a login script file containing the
realm, user name , and password used
to authenticate a user. The full or relative
path to this file must be specified. See
“Executing iastool command-line tools
from a script file” on page 372 for more
information.

Option Description

Chapter 29: iastool command- l ine ut i l i ty 347

Using the iastoo l command- l ine tools

Options
The following table describes the options available when using the genclient
tool.

Example
The following example shows how to generate a manually deployable module
client JAR file from each of the EJB JAR files: proj1.jar, proj2.jar, and
proj3.jar into the EJB JAR myproj.jar.

iastool -genclient -jars proj1.jar,proj2.jar,proj3.jar -target myproj.jar

gendeployable

Use this tool to create a manually deployable server-side module. Server-side
deployable JAR files are archives (EAR, WAR, or JAR beans only) that have
been compiled to resolve all external code references by using stubs and are,
therefore, ready for deployment.

For example, first use gendeployable to create the server-side deployable JAR
file on a local machine, then use the deploy tool to copy and load it on the hub.
The hub is advised of the presence of the new JAR file and loads it
automatically. Using the command-line tools lets you script a creation and
deployment to several servers quite simply. You can also manually copy the
server-side deployable JAR file to the correct location on each hub, but this
requires restarting each hub to cause it to be recognized and loaded.

Option Description

-jars <jar1,jar2,...> Specifies one or more JAR files for which
you want to generate one or more client
JAR files. To specify more than one JAR
file, enter a comma (,) between each file
name (no spaces). The full or relative
path to the JAR files must be specified.
There is no default.

-target <client_jar> Specifies the client-JAR files to be
generated on the localhost. The full or
relative path to the JAR files must be
specified. There is no default.

-cp <classpath> Specifies the classpath containing the
class dependencies of the JAR file for
which you want to generate a client JAR
file. The default is none.

-args <java2iiop_args> Specifies any arguments that are needed
by the file. For details, see the VisiBroker
for Java Developer’s Guide, Programmer
tools for Java section.

-javac_args <args> Specifies any Java compiler arguments
that are needed by the JAR file.

348 BES Developer ’s Guide

Using the iastoo l command-l ine too ls

Syntax

-gendeployable -src <input_jar> -target <output_jar> [-cp <classpath>]
[-args <java2iiop_args>] [-javac_args <args>]

Default Output
The default output returns nothing to standard output (stdout).

Options
The following table describes the options available when using the
gendeployable tool.

Example
The following example shows how to generate a server-side deployable
module JAR file for proj1.jar into the file server-side.jar.

iastool -gendeployable -src proj1.jar -target serverside.jar

genstubs

Use this tool to create a stubs library file containing client or server stubs.

Syntax

-genstubs -src <input_jar> -target <output_jar> [-client] [-cp <classpath>]
[-args <java2iiop_args>] [-javac_args <args>]

Option Description

-src <input_jar> Specifies the JAR file that you want to
use to generate a new deployable JAR
file. The full or relative path to the JAR
file must be specified. There is no
default.

-target <output_jar> Specifies the deployable JAR files to be
generated on the localhost. The full or
relative path to the JAR files must be
specified. There is no default.

-cp <classpath> Specifies the classpath containing the
class dependencies of the JAR file for
which you want to generate a client JAR
file. The default is none.

-args <java2iiop_args> Specifies any arguments that are needed
by the file. For details, see the VisiBroker
For Java Developer’s Guide,
Programmer tools for Java section.

-javac_args <args> Specifies any Java compiler arguments
that are needed by the JAR file.

Chapter 29: iastool command- l ine ut i l i ty 349

Using the iastoo l command- l ine tools

Default Output
The default output returns nothing to standard output (stdout).

Options
The following table describes the options available when using the genstubs
tool.

Examples
The following example shows how to generate a server-side stubs of the EJB
JAR proj1.jar into the EJB JAR server-side.jar.

iastool -genstubs -src proj1.jar -target serverside.jar

The following example shows how to generate a client-side stub file for the
EJB JAR myproj.jar into the EJB JAR client-side.jar.

iastool -genstubs -src c:\dev\proj1.jar -target
-client c:\builds\client-side.jar

info

Use this tool to display the Java system properties for the JVM the iastool is
running in.

Option Description

-src <input_jar> Specifies the JAR file for which you want
to generate a stubs library. The full or
relative path to the JAR file must be
specified. There is no default.

-target <output_jar> Specifies the name of the JAR file that
will be generated on the localhost. The
full or relative path to the JAR file(s) must
be specified. There is no default.

-client Specifies that you want to generate
client-side stubs. If this option is not
specified, the genstubs tool will generate
server-side stubs.

-cp <classpath> Specifies the classpath containing the
class dependencies of the JAR file for
which you want to generate a client JAR
file(s). The default is none.

-args <java2iiop_args> Specifies any arguments that are needed
by the file. For details, see the VisiBroker
for Java Developer’s Guide, Programmer
tools for Java section.

-javac_args <args> Specifies any Java compiler arguments
that are needed by the JAR file.

350 BES Developer ’s Guide

Using the iastoo l command-l ine too ls

Syntax

-info

Default Output
The default output is the current Java system properties for the JVM the
iastool is running in. For example, the first few lines of output look like the
following partial listing:

application.home : C:\Program Files\BES
awt.toolkit : sun.awt.windows.WToolkit
file.encoding : Cp1252
file.encoding.pkg : sun.io
file.separator : \
java.awt.fonts :
java.awt.graphicsenv : sun.awt.Win32GraphicsEnvironment
java.awt.printerjob : sun.awt.windows.WPrinterJob
java.class.path : C:\Program Files\BES\jdk\lib\tools.jar
.
.
.

Example
The following example shows how to display configuration information.

iastool -info | more

kill

Use this tool to kill a managed object on a specified hub and configuration.

Syntax

-kill <-hub <hub> | -host <host>:listener_port>> -cfg <configname>
-mo <managedobjectname> -moagent <managedobjectagent> [-mgmtport <nnnnn>]
[-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

Default Output
By default, the kill tool lists the managed object that has been killed.

Chapter 29: iastool command- l ine ut i l i ty 351

Using the iastoo l command- l ine tools

Options
The following table describes the options available when using the kill tool.

Examples
The following example kills the managed object j2ee-server using the default
management port:

iastool -kill -hub BES1 -cfg j2ee -mo j2ee-server

The following example kills the partition naming service running on the
configuration j2ee using the management port 24410:

iastool -kill -hub BES1 -cfg j2ee -mo standard_visinaming -mgmtport 24410

Option Description

-hub <hub> Specifies the name of the hub on which
you want to kill a managed object.

-host <host>:<listener_port> Specifies the host name and the listener
port of the machine on which the
managed object you are interested in is
running. The option is enables the
iastool utility to locate a hub on a
different subnet than the machine on
which iastool is running.

-cfg <configname> Specifies the name of the configuration
containing the specified managed object.

-mo <managedobjectname> Specifies the name of the managed
object.

-moagent <managedobjectagent> Specifies the managed object agent
name. Use this option if the specified hub
has more than one agent.

-mgmtport <nnnnn> Specifies the management port number
used by the specified hub. The default is
42424.

-realm <realm> Specifies the realm used to authenticate
a user when the user and password
options are specified.

-user <username> Specifies the user to authenticate against
the specified realm.

-pwd <password> Specifies the user's password to
authenticate against the specified realm.

-file <login_file> Specifies a login script file containing the
realm, user name , and password used
to authenticate a user. The full or relative
path to this file must be specified. See
“Executing iastool command-line tools
from a script file” on page 372 for more
information.

352 BES Developer ’s Guide

Using the iastoo l command-l ine too ls

listpartitions

Use this tool to list the partitions running on a specified hub, and optionally on
a specified configuration or management port.

Syntax

-listpartitions <-hub <hub> | -host <host>:<listener_port>>
[-cfg <configname>] [-mgmtport <nnnnn>] [-bare] [-realm <realm>]
[-user <username>] [-pwd <password>] [-file <login_file>]

Default Output
By default, the listpartitions tool displays the partitions running on a specified
hub, or displays the partitions running on a specified hub on a specified
configuration or management port.

Options
The following table describes the options available when using the
listpartitions tool.

Option Description

-hub <hub> Specifies the hub name for which you
want to list the running partitions.

-host <host>:<listener_port> Specifies the host name and the listener
port of the machine on which the
partitions you are interested in are
running. The option is enables the
iastool utility to locate a hub on a
different subnet than the machine on
which iastool is running.

-cfg <configname> Specifies the name of the configuration
on which to list partitions.

-mgmtport <nnnnn> Specifies the management port number
used by the specified hub. The default is
42424.

-bare Suppresses the output information, other
than the names of the running partitions.

-realm <realm> Specifies the realm used to authenticate
a user when the user and password
options are specified.

-user <username> Specifies the user to authenticate against
the specified realm.

Chapter 29: iastool command- l ine ut i l i ty 353

Using the iastoo l command- l ine tools

Examples
The following example lists the partitions running on the hub BES1 using the
default management port:

iastool -listpartitions -hub BES1

The following example lists the partitions running on the hub BES1 using the
management port 24410:

iastool -listpartitions -hub BES1 -mgmtport 24100

listhubs

Use this tool to list hubs running on a particular management port located on
the same local area network.

Syntax

-listhubs [-mgmtport <nnnnn>] [-bare] [-realm <realm>] [-user <username>]
[-pwd <password>] [-file <login_file>]

Default Output
By default, the listhubs tool displays the hubs running in the default
management port or on a specified management port.

Note If a particular hub that is queried is down, it is not listed.

Options
The following table describes the options available when using the listhubs
tool.

-pwd <password> Specifies the user's password to
authenticate against the specified realm.

-file <login_file> Specifies a login script file containing the
realm, user name , and password used
to authenticate a user. The full or relative
path to this file must be specified. See
“Executing iastool command-line tools
from a script file” on page 372 for more
information.

Option Description

Option Description

-mgmtport <nnnnn> Specifies a management port number of
the running hub you want to list. The
default is 42424.

-bare Suppresses output information, other
than the names of the running hubs.

354 BES Developer ’s Guide

Using the iastoo l command-l ine too ls

Examples
The following example lists the hubs running in the default management port:

iastool -listhubs

The following example lists the hubs running in the management port 24410:

iastool -listhubs -mgmtport 24100

listservices

Use this tool to list one or more services running on a hub.

Syntax

-listservices <-hub <hub> | -host <host>:<listener_port>> [-cfg
<configname>]
[-mgmtport <nnnnn>] [-bare] [-realm <realm>] [-user <username>]
[-pwd <password>] [-file <login_file>]

Default Output
By default, listservices displays a list of all partition services registered for the
specified hub on a particular management port.

-realm <realm> Specifies the realm used to authenticate
a user when the user and password
options are specified.

-user <username> Specifies the user to authenticate against
the specified realm.

-pwd <password> Specifies the user's password to
authenticate against the specified realm.

-file <login_file> Specifies a login script file containing the
realm, user name , and password used
to authenticate a user. The full or relative
path to this file must be specified. See
“Executing iastool command-line tools
from a script file” on page 372 for more
information.

Option Description

Chapter 29: iastool command- l ine ut i l i ty 355

Using the iastoo l command- l ine tools

Options
The following table describes the options available when using the
listservices tool.

Example
The following example lists all services running on the salsa hub:

iastool -listservices -hub salsa

merge

Use this tool to produce a single, new Java Archive file (EJB-JAR) containing
the contents of a specified list of EJB-JARs. Multiple EJB 1.1 and EJB 2.0
deployment descriptors (if any) will be consolidated into a single deployment
descriptor. If merging fails for one of the EJB-JARs in the argument list an
error is displayed and the merge command will exit indicating failure.

Option Description

-hub <hub> Specifies the name of the hub for which
you want to list the running services.

-host <host>:<listener_port> Specifies the host name and the listener
port of the machine on which the
services you are interested in are
running. The option is enables the
iastool utility to locate a hub on a
different subnet than the machine on
which iastool is running.

-cfg <configname> Specifies the name of the configuration
on which to list services.

-mgmtport <nnnnn> Specifies the management port number
used by the specified hub. The default is
42424.

-bare Suppresses output of information other
than the names of the running services.

-realm <realm> Specifies the realm used to authenticate
a user when the user and password
options are specified.

-user <username> Specifies the user to authenticate against
the specified realm.

-pwd <password> Specifies the user's password to
authenticate against the specified realm.

-file <login_file> Specifies a login script file containing the
realm, user name , and password used
to authenticate a user. The full or relative
path to this file must be specified. See
“Executing iastool command-line tools
from a script file” on page 372 for more
information.

356 BES Developer ’s Guide

Using the iastoo l command-l ine too ls

Syntax

-merge -jars <jar1,jar2,...> -target <new_jar> -type <valid_type>

Default Output
The default output returns nothing to standard output (stdout).

Options
The following table describes the options available when using the merge tool.

Example
The following example merges the EJB-JAR files proj1.jar, proj2.jar, and
proj3.jar into a new version 2.0 EJB-JAR file named combined.jar:

Option Description

-jars <jar1,jar2,..> Specifies the JAR files to merge, comma
separated and no spaces. The full or
relative path to the JAR files must be
specified. There is no default.

-target <new_jar> Specifies the name of the new JAR file to
be created containing the merged
contents of the specified list of JAR files.
The full or relative path to the new JAR
file must be specified. There is no
default.

-type valid_type Specifies the type of the new archive file
using one of the following supported
formats:

� ejb2.0 - Version 2.0 Enterprise Java
Bean

� ejb1.1 - Version 1.1 Enterprise Java
Bean

� ear1.3 - Version 1.3 Enterprise
Application Resource

� ear1.2 - Version 1.2 Enterprise
Application Resource

� lib - Library file

� war2.3 - Version 2.3 Web Application
Archive

� war2.2 - Version 2.2 Web Application
Archive

� rar1.0 - Version 1.0 Resource
Adapter Archive

� client1.2 - Version 1.2 Client JAR

� client1.3 - Version 1.3 Client JAR

� jndi1.2 - Version 1.2 Java Naming
and Directory Interface

Chapter 29: iastool command- l ine ut i l i ty 357

Using the iastoo l command- l ine tools

iastool -merge -jars proj1.jar,proj2.jar,proj2.jar
-target combined.jar -type ejb2.0

migrate

Use this tool to convert a JAR or XML file from J2EE version 1.2 to J2EE
version 1.3.

Note The migrate command only converts the deployment descriptor for an EJB; as
such, code changes may also be required to implement the conversion
properly in your deployment.

If the conversion fails, an error is displayed.

Syntax

-migrate -src <srcjar> -target <targetjar>

Default Output
The default returns nothing to standard output (stdout).

Options
The following table describes the options available when using the migrate
tool.

Example
The following example migrates the file myj1_2.jar from J2EE version 1.2 to
J2EE version 1.3 into new file called myj1_3.jar:

iastool -migrate -src myj1_2.jar -target myj1_3.jar

patch

Use this tool to apply one or more patches to a JAR file and produce a new
JAR file with the applied patches.

Syntax

-patch -src <original_jar> -patches <patch1_jar,...> -target <new_jar>

Option Description

-src <srcjar> Specifies the J2EE version 1.2 file to
convert. The full or relative path to the
JAR file must be specified. There is no
default.

-target <targetjar> Specifies the name of the J2EE version
1.3 file to be created. The full or relative
path to the JAR file must be specified.
There is no default.

358 BES Developer ’s Guide

Using the iastoo l command-l ine too ls

Default Output
The default output displays the patches that were applied.

Options
The following table describes the options available when using the patch tool.

Example
The following example applies the patches contained in the files mypatch1.jar
and mypatch2.jar to the file myold.jar which are all located in the current
directory and creates a new file called mynew.jar in the same location:

iastool -patch -src myold.jar -patches mypatch1.jar,mypatch2.jar
-target mynew.jar

ping

Use this tool to verify the current state of a hub or a managed object. The ping
command will return nothing for a hub that is not running.

Syntax

-ping <-hub <hub> | -host <host>:<listener_port>> [-mgmtport <nnnnn>]
[-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

or

-ping <-hub <hub> | -host <host>:<listener_port>> -cfg <configname>
-mo <managedobjectname> -moagent <managedobjectagent> [-mgmtport <nnnnn>]
[-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

Default Output
The default output shows the name and status of the hub (and optionally the
managed object) if the process is pinged and running. For example:

Option Description

-src <original_jar> Specifies the JAR file to which you want
to apply one or more patches. The full or
relative path to the JAR file must be
specified. There is no default.

-patches <patch1_jar,...> Specifies one or more JAR files that
contain the patches you want to apply.
To specify more than one file, enter a
comma (,) between each file name (no
spaces). The full or relative path to the
files must be specified. There is no
default.

-target <new_jar> Specifies the name of the new JAR file to
be created. The full or relative path to the
JAR file must be specified. There is no
default.

Chapter 29: iastool command- l ine ut i l i ty 359

Using the iastoo l command- l ine tools

Pinging Hub xyz_corp1: Running

The ping tool returns one of the following states:
� Running
� Starting
� Stopping
� Not Running
� Restarting
� Cannot Load
� Cannot Start
� Terminated
� Unknown

Options
The following table describes the options available when using the ping tool.

Option Description

-hub <hub> Specifies the hub to ping or whose
services to ping. There is no default.

-host <host>:<listener_port> Specifies the host name and the listener
port of the machine on which the hub or
managed object you are interested in is
running. The option is enables the
iastool utility to locate a managed object
on a different subnet than the machine
on which iastool is running.

-cfg <configname> Specifies the name of the configuration
on which to ping for managed objects.

-mo <managedobjectname> Specifies the name of the managed
object.

-moagent <managedobjectagent> Specifies the managed object agent
name. Use this option if the specified hub
has more than one agent.

-mgmtport <nnnnn> Specifies the management port number
used by the specified hub. The default is
42424.

-realm <realm> Specifies the realm used to authenticate
a user when the user and password
options are specified.

-user <username> Specifies the user to authenticate against
the specified realm.

360 BES Developer ’s Guide

Using the iastoo l command-l ine too ls

Examples
The following example pings the hub BES1 in the default management port:

iastool -ping -hub BES1

The following example pings the partition naming service running on the hub
BES1 in the management port 24410:

iastool -ping -hub BES1 -cfg j2ee -mo standard_visinaming -mgmtport 24410

pservice

Use this tool to enable, disable, or get the state of a partition service.

Syntax

-pservice <hub <hub> | -host <host>:<listener_port>> -cfg <configname>
-partition <partitionname> -moagent <managedobjectagent>
-service <servicename> <-enable | -disable | -status> [-force_restart]
[-mgmtport <nnnnn>] [-realm <realm>] [-user <username>] [-pwd <password>]
[-file <login_file>]

Default Output
The default output returns nothing to standard output (stdout).

-pwd <password> Specifies the user's password to
authenticate against the specified realm.

-file <login_file> Specifies a login script file containing the
realm, user name , and password used
to authenticate a user. The full or relative
path to this file must be specified. See
“Executing iastool command-line tools
from a script file” on page 372 for more
information.

Option Description

Chapter 29: iastool command- l ine ut i l i ty 361

Using the iastoo l command- l ine tools

Options
The following table describes the options available when using the pservice
tool.

Example
The following example shows how to enable the partition naming service on
the standard partition.

Option Description

-hub <hub> Specifies the hub where the partition
service you are interested in is located.
There is no default.

-host <host>:<listener_port> Specifies the host name and the listener
port of the machine on which the partition
service you are interested in is running.
The option is enables the iastool utility to
locate a partition service on a different
subnet than the machine on which
iastool is running.

-partition <partitionname> Specifies the name of the partition.

-moagent <managedobjectagent> Specifies the managed object agent
name. Use this option if the specified hub
has more than one agent.

-service <servicename> Specifies the name of the service.

-enable | -disable | -status Specifies the operation you would like to
perform on the partition service.

-force_restart Restarts the specified Partition after
completing the enable, disable, or status
operation. If this option is not specified,
you will need to restart the Partition
manually to initialize the module.

-mgmtport <nnnnn> Specifies the management port number
used by the specified hub. The default is
42424.

-realm <realm> Specifies the realm used to authenticate
a user when the user and password
options are specified.

-user <username> Specifies the user to authenticate against
the specified realm.

-pwd <password> Specifies the user's password to
authenticate against the specified realm.

-file <login_file> Specifies a login script file containing the
realm, user name , and password used
to authenticate a user. The full or relative
path to this file must be specified. See
“Executing iastool command-line tools
from a script file” on page 372 for more
information.

362 BES Developer ’s Guide

Using the iastoo l command-l ine too ls

iastool -pservice -hub BES1 -cfg j2ee -partition standard
-service standard_visinaming -enable -force_restart -mgmtport 24431

removestubs

Use this tool to remove all stub files from a JAR file.

Syntax

-removestubs -jars <jar1,jar2,...> [-targetdir <dir>]

Default Output
The default output returns nothing to standard output (stdout).

Options
The following table describes the options available when using the removestubs
tool.

Example
The following example shows how to remove stub files located from the EJB
JAR files proj1.jar, proj2.jar, and proj3.jar located in the current directory
and copy them to c:\examples\proto:

iastool -removestubs -jars proj1.jar,proj2.jar,proj3.jar
-targetdir c:\examples\proto

restart

Use this tool to restart a hub or managed object. The hub must already be
running in order for the restart tool to work with a hub.

Option Description

-jars <jar1,jar2...> Specifies the JAR file(s) from which you
want to remove one or more stub files.
To specify more than one JAR file, enter
a comma(,) between each JAR file (no
spaces). The full or relative path to the
JAR file(s) must be specified. There is no
default.

-targetdir <dir> Specifies the directory in which the stub
files that were removed will be stored. A
full or relative path must be specified, if
this option is specified. There is no
default. If no target directory is specified,
the stub files will be removed, but not
saved.

Chapter 29: iastool command- l ine ut i l i ty 363

Using the iastoo l command- l ine tools

Syntax

-restart <-hub <hub> | -host <host>:<listener_port>> [-mgmtport <nnnnn>]
[-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

or

-restart <-hub <hub> | -host <host>:<listener_port>> [-cfg <configname>]
-mo <managedobjectname> -moagent <managedobjectagent> [-mgmtport <nnnnn>]
[-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

Default Output
The default output displays the hub or managed object that has been
restarted.

If the restart tool fails (for example, when a managed object cannot be
shutdown or restarted), an error is displayed with a status code which is
returned to standard error output (stderr).

Options
The following table describes the options available when using the restart
tool.

Option Description

-hub <hub> Specifies the name of the hub that you
want to restart. Also used to locate a
managed object on a particular hub.

-host <host>:<listener_port> Specifies the host name and the listener
port of the machine on which the
managed object you are interested in is
running. The option is enables the
iastool utility to locate a managed object
on a different subnet than the machine
on which iastool is running.

-cfg <configname> Specifies the name of the configuration
on which to locate managed objects.

-mo <managedobjectname> Specifies the name of the managed
object.

-moagent <managedobjectagent> Specifies the managed object agent
name. Use this option if the specified hub
has more than one agent.

-mgmtport nnnnn Specifies the management port number
used by the specified hub. The default is
42424.

-realm realm Specifies the realm used to authenticate
a user when the user and password
options are specified.

-user username Specifies the user to authenticate against
the specified realm.

364 BES Developer ’s Guide

Using the iastoo l command-l ine too ls

Examples
The following example restarts the hub BES1 on the default management port:

iastool -restart -hub BES1

The following example restarts the partition naming service running on the hub
BES1 on the management port 24410:

iastool -restart -hub BES1 -cfg j2ee -mo standard_visinaming -mgmtport
24410

setmain

Use this tool to set the main class of a standalone Client JAR or a Client JAR
in an EAR file. Once the main class is set, the java -jar jarfile command will
automatically invoke the main class that has been set for the JAR file.

Syntax

-setmain -jar <jar_or_ear> [-uri <client_jar_in_ear>] -class
<main_classname>

Default Output
The default output displays the main class that has been set for the specified
JAR file.

-pwd password Specifies the user's password to
authenticate against the specified realm.

-file <login_file> Specifies a login script file containing the
realm, user name , and password used
to authenticate a user. The full or relative
path to this file must be specified. See
“Executing iastool command-line tools
from a script file” on page 372 for more
information.

Option Description

Chapter 29: iastool command- l ine ut i l i ty 365

Using the iastoo l command- l ine tools

Options
The following table describes the options available when using the setmain
tool.

Examples
The following example sets a main class for a standalone Client JAR:

iastool -setmain -jar myclient.jar -class com.bes.myjclass

The following example sets a main class for a Client JAR contained in an EAR
file:

iastool -setmain -jar myapp.ear -uri base/myapps/myclient.jar
-class com.bes.myjclass

start

Use this tool to start a managed object on a specified hub and configuration.

Syntax

-start <-hub <hub> | -host <host>:<listener_port>> -cfg <configname>
-mo <managedobjectname> -moagent <managedobjectagent> [-mgmtport <nnnnn>]
[-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

Default Output
The default output displays the managed object that has been started.

Option Description

-jar <jar_or_ear> Specifies the name of the JAR or EAR
file on which you want to set the main
class.

-uri <client_jar_in_ear> If you are setting the main class for an
EAR file, you must use the -uri option to
identify the URI (Uniform Resource
Identifier) path of the client JAR in the
EAR.

-class <main_classname> Specifies the class name that will be set
as the main class in the specified Client
JAR. The class must exist in the client
JAR file and contain a main() method.

366 BES Developer ’s Guide

Using the iastoo l command-l ine too ls

Options
The following table describes the options available when using the start tool.

Example
The following example starts the partition naming service running on the hub
BES1 in the j2ee configuration on management port 24410:

iastool -start -hub BES1 -cfg j2ee -mo standard_visinaming -mgmtport 24410

stop

Use this tool to shut down a hub or managed object.

Option Description

-hub <hub> Specifies the name of the hub on which
the managed object you want to start is
located.

-host <host>:<listener_port> Specifies the host name and the listener
port of the machine on which the
managed object you are interested in is
running. The option is enables the
iastool utility to locate a hub on a
different subnet than the machine on
which iastool is running.

-cfg <configname> Specifies the name of the configuration
containing the managed object you are
interested in.

-mo <managedobjectname> Specifies the name of the managed
object you are interested in.

-moagent <managedobjectagent> Specifies the managed object agent
name. Use this option if the specified hub
has more than one agent.

-mgmtport <nnnnn> Specifies the management port number
used by the specified hub. If not
specified, the default is 42424.

-realm <realm> Specifies the realm used to authenticate
a user when the user and password
options are specified.

-user <username> Specifies the user to authenticate against
the specified realm.

-pwd <password> Specifies the user's password to
authenticate against the specified realm.

-file <login_file> Specifies a login script file containing the
realm, user name , and password used
to authenticate a user. The full or relative
path to this file must be specified. See
“Executing iastool command-line tools
from a script file” on page 372 for more
information.

Chapter 29: iastool command- l ine ut i l i ty 367

Using the iastoo l command- l ine tools

Syntax

-stop <-hub <hub> | -host <host>:<listener_port>> [-mgmtport <nnnnn>]
[-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

or

-stop <-hub <hub> | -host <host>:<listener_port>> [-mgmtport <nnnnn>]
-cfg <configname> -mo <managedobjectname> -moagent <managedobjectagent>
[-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

Default Output
The default output displays the process or processes that have been shut
down.

If the stop tool fails (for example when a managed object cannot be shutdown),
an error is displayed with a status code, which is returned to standard error
output (stderr).

Options
The following table describes the options available when using the stop tool.

Option Description

-hub <hub> Specifies the name of the hub that you
want to shut down, or the hub on which
resides the managed object you want to
shut down.

-host <host>:<listener_port> Specifies the host name and the listener
port of the machine on which the hub or
managed object you are interested in is
running. The option is enables the
iastool utility to locate a hub on a
different subnet than the machine on
which iastool is running.

-cfg <configname> Specifies the name of the configuration
containing the managed object you are
interested in.

-mo <managedobjectname> Specifies the name of the managed
object you are interested in.

-moagent <managedobjectagent> Specifies the managed object agent
name. Use this option if the specified hub
has more than one agent.

-mgmtport <nnnnn> Specifies the management port number
used by the specified hub. The default is
42424.

-realm <realm> Specifies the realm used to authenticate
a user when the user and password
options are specified.

-user <username> Specifies the user to authenticate against
the specified realm.

368 BES Developer ’s Guide

Using the iastoo l command-l ine too ls

Example
The following example stops the partition naming service running on the hub
BES1 in the j2ee configuration on the management port 24410:

iastool -stop -hub BES1 -cfg j2ee -mo standard_visinaming -mgmtport 24410

uncompress

Use this tool to uncompress a JAR file.

Syntax

-uncompress -src <srcjar> -target <targetjar>

Default Output
By default, uncompress reports if the operation was successful or not.

Options
The following table describes the options available when using the uncompress
tool.

Examples
The following example converts the compressed JAR file called small.jar
located in the current directory into an uncompressed file called big.jar in the
same location:

iastool -uncompress -src small.jar -target big.jar

-pwd <password> Specifies the user's password to
authenticate against the specified realm.

-file <login_file> Specifies a login script file containing the
realm, user name , and password used
to authenticate a user. The full or relative
path to this file must be specified. See
“Executing iastool command-line tools
from a script file” on page 372 for more
information.

Option Description

-src <srcjar> Specifies the JAR file that you want to
uncompress. The full or relative path to
the file must be specified. There is no
default.

-target <targetjar> Specifies the name of the uncompressed
JAR file to be generated. The full or
relative path to the file must be specified.
There is no default.

Option Description

Chapter 29: iastool command- l ine ut i l i ty 369

Using the iastoo l command- l ine tools

The following example uncompresses a JAR file named small.jar located in
the directory c:\myprojects\ into a file named big.jar in the same location:

iastool -uncompress -src c:\myprojects\small.jar -target c:\myprojects\
big.jar

undeploy

Use this tool to undeploy a J2EE module from a specified Partition on a
specified hub and configuration.

Syntax

-undeploy -jar <jar> <-hub <hub> | -host <host>:<listener_port>>
-cfg <config_name> -partition <partitionname> [-mgmtport <nnnnn>]
[-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

Default Output
By default, the undeploy tool reports if the operation was successful or not.

Options
The following table describes the options available when using the undeploy
tool.

Option Description

-jar <jar> Specifies the name of the JAR file to be
undeployed. The full or relative path to
the file must be specified. There is no
default.

-hub <hub> Specifies the name of the hub from which
to undeploy the JAR file.

-host <host>:<listener_port> Specifies the host name and the listener
port of the machine on which the
deployed module you are interested in is
located. The option is enables the iastool
utility to locate a module on a different
subnet than the machine on which
iastool is running.

-cfg <configname> Specifies the configuration name under
which the partition is configured.

-partition <partitionname> Specifies the name of the Partition that
contains the JAR file.

-mgmtport <nnnnn> Specifies the management port number
used by the specified hub. If not
specified, the default is 42424.

-realm <realm> Specifies the realm used to authenticate
a user when the user and password
options are specified.

370 BES Developer ’s Guide

Using the iastoo l command-l ine too ls

usage

When invoked without arguments usage displays a list of recognized
command-line options and a brief description of each. Invoking usage with one
or more arguments provides a more detailed description of the specified
commands and their arguments.

Syntax

-usage
-usage <tool>
-usage <tool1 tool2 tool3>

Note Arguments to the usage command do not require a leading hyphen.

Default Output
By default, the usage tool displays a list with a brief description of each
command-line tool.

Examples
The following example displays a list and a brief description of each the
command-line tools:

iastool -usage

The following example displays detailed information on the compress tool:

iastool -usage compress

The following example displays detailed information on the -start, -stop, and -
restart tools:

iastool -usage start stop restart

verify

Use this tool to check an archive file for correctness and consistency, and to
check if all of the elements required for deploying your application are in place.

-user <username> Specifies the user to authenticate against
the specified realm.

-pwd <password> Specifies the user's password to
authenticate against the specified realm.

-file <login_file> Specifies a login script file containing the
realm, user name , and password used
to authenticate a user. The full or relative
path to this file must be specified. See
“Executing iastool command-line tools
from a script file” on page 372 for more
information.

Option Description

Chapter 29: iastool command- l ine ut i l i ty 371

Using the iastoo l command- l ine tools

The verification process supports the following roles that correspond to a
phase in the application's life cycle and the appropriate level of verification
(similar to the J2EE role definitions):
� Developer: This is the lowest verification level. All xml is checked for

syntax as well as standard and proprietary keywords relevant to the current
archive type. Consistency across the archive is checked, but no external
resources are verified at this level.

� Assembler: Once the archives are individually verified and are correct,
other resources built into an application will start to be verified. For
example, this level will verify the existence and correctness of URIs
(Uniform Resource Identifiers), but not EJB or JNDI links.

� Deployer: (the default) All checks are turned on. EJB and JNDI links are
checked at this level as well as the operational environment in which the
application is to be deployed.

Supported archive types are EAR, EJB, WAR, JNDI, and Client JARs. The
typical archive verification process includes the following checks:
� A pass over the XML, checking for correct XML syntax.
� Verification of the semantics of the standard and proprietary XML

descriptors, and the compliance with their required descriptors for each
supported archive type.

Verification always occurs in a hierarchical fashion, starting with the top
module, then recursively working through its submodules, and finally checking
for inter-archive links.

Syntax

-verify -src <srcjar> [-role <DEVELOPER|ASSEMBLER|DEPLOYER>] [-nowarn]
[-strict] [-classpath <classpath>]

Default Output
By default, verify reports nothing (for example, if no errors are found in the
specified module).

372 BES Developer ’s Guide

Execut ing iastool command-l ine too ls f rom a scr ipt f i le

Options
The following table describes the options available when using the verify tool.

Example
The following example performs a developer level verification of the JAR file
soap-client.jar located in the c:\examples\soap directory:

-verify -src c:\examples\soap\soap-client.jar -role DEVELOPER

Executing iastool command-line tools from a script file
Several iastool utility tools require that you supply login information (realm,
username, and password). You may, however, want to run iastool commands
from a script file, but doing so would expose the realm, username, password
information to anyone who has access to the script file. There are two
methods you can use to protect this information:
� “Piping a file to the iastool utility” on page 373
� “Passing a file to the iastool utility” on page 373

Option Description

-src <srcjar> Specifies the JAR file that you want to
verify. The full or relative path to the file
must be specified. There is no default.

-role <DEVELOPER|ASSEMBLER|DEPLOYER> Specifies the level of error checking to
perform:

� DEVELOPER

� ASSEMBLER

� DEPLOYER (default)

For details, see the role descriptions
above.

-nowarn Specifies that the tool should only report
errors that preclude deployment and not
report warnings.

-strict Specifies that the tool should report the
most minute inconsistencies, many of
which do not affect the overall integrity of
the application.

-classpath <classpath> Specifies the search path for application
classes and resources. To enter more
than one directory, ZIP, or JAR file entry,
separate each entry with a semicolon (;).

Chapter 29: iastool command- l ine ut i l i ty 373

Execut ing iastool command-l ine too ls f rom a scr ipt f i le

Piping a file to the iastool utility

The following example shows how to ping a hub named east1 by piping the file
mylogin.txt (located in the default Borland Deployment Platform installation
directory) to the iastool utility:

iastool -ping -hub east1 < c:\BES\mylogin.txt

where the file mylogin.txt contains three lines that correspond to what you
would enter for the realm, username, and password:

2
username
password

Note The contents of the file are exactly what you would enter on the command-
line. The first entry in the file is the realm option - not the realm name, but the
number you would choose from the list presented to you if you run the ping tool
without the realm option. The second line is the username and the third line is the
password. This file can then be secured in such a way that it is readable by the
iastool utility, but not by unauthorized users.

Passing a file to the iastool utility

The following command shows how to ping a hub named east1 by passing a
file to the iastool utility using the -file option:

iastool -ping -hub east1 -file c:\BES\mylogin.txt

where mylogin.txt has the following format:

Default Login
Smart Agent port number
username
password
false
ServerRealm

The -file option requires that you supply a fully qualified file name (the file
name plus a relative or absolute path). When passing a file to the iastool
utility, only the third, fourth, and sixth lines are used, which are the username,
password, and realm name, respectively. The other lines must be present, but the
information they contain is ignored by the iastool utility. For example:

Default Login
12448
myusername
mypassword
false
ServerRealm

374 BES Developer ’s Guide

Chapter 30: Par t i t ion XML reference 375

C h a p t e r

30
Chapter30Partition XML reference

This section describes the XML definition of a Partition's partition.xml
configuration file that contains the core meta-data for a Partition's
configuration.

Important For documentation updates, go to www.borland.com/techpubs/bes.

<partition> element
The partition element is the root node of the schema which contains the
attributes and sub-elements that define the settings that control the
configuration of a Borland Enterprise Server Partition.

Syntax

<partition version="version number" name="partition name"
description="description">
 .
 .
 .
</partition>

Attribute Description

version Product version of the Partition.

name The name of the Partition.

description A description of the Partition.

376 BES Developer ’s Guide

<part i t ion> element

The partition element contains the following sub-elements:
� <statistics.agent>

� <security>

� <container>

� <user.orb>

� <management.orb>

� <shutdown>

� <services>

� <archives>

<statistics.agent> element

The statistics.agent element configures the Partition's statistics agent. The
Partition statistics agent consists of two components:
� A statistics collector that periodically collects statistics data on the Partition

and saves that data onto disk. These periodic data samples build up on
disk enabling the product tools to provide current, and historical current
statistical data on a Partition.

� A statistics reaper that periodically reaps (cleans up) the historical data
from disk.

The Partition statistics agent is intended for collecting short term statistical
data. However, it is only physically limited by the amount of disk space it is
allowed to consume.

Attribute Description

enable Enables or disables the statistics agent.
A disabled statistics agent will not collect
or reap statistics data. Valid values are
true (default) or false.

level Sets the level of detail of statistics
collected from a Partition. Valid values
are: none, minimum (default), and maximum.

snapshot.period_secs Specifies how often (in seconds)
Partition statistics are collected and
written to the disk. The default is 10
seconds.

reap.enable Enables or disables the reaping (clean
up) of Partition statistics data on disk.
Valid values are true (default) or false.

Chapter 30: Par t i t ion XML reference 377

<part i t ion> e lement

<security> element

The security element lets you configure the security settings for a given
Partition. This empty element contains the attributes described in the following
table.

<container> element

The container element specifies how the Partition works with classloading.

reap.older_than_secs If reap_enable is true, sets the threshold
for the age (in seconds) of statistics data
kept on disk before being deleted. The
default is 600 seconds (10 minutes).

reap.period_secs If reap_enable is true, sets the time period
(in seconds) between sweeps to clean up
statistics data older than
reap.older_than_secs from disk. The
default is 60 seconds (1 minute).

Attribute Description

enable Enables or disables security for a
Partition. Valid values are true (default)
or false.

manager Specifies the name of the security
manager used by a Partition. Valid
values are any available security
provider names, for example
com.borland.security.provider.Certificate
Wallet.

policy Specifies the name of the security policy
file that defines the security rules of a
Partition. Valid values are any fully
qualified security policy file names, for
example
<install_dir>/va/\security/profile/\
management/java_security.policy

Attribute Description

system.classload.prefixes This is a comma seperated list of
resource prefixes that the custom
classloader will delegate to the system
classloader prior to attempting to load
itself.

verify.on.load When true runs verify on JARs as they
are loaded. Default is true.

Attribute Description

378 BES Developer ’s Guide

<part i t ion> element

<user.orb> element

The user.orb element controls the VisiBroker configuration used for the
Partition's user domain ORB.

<management.orb> element

The management.orb element controls the VisiBroker configuration for the
Partition's management domain ORB.

classloader.policy Determines the type of classloader to be
used by the Partition. Valid values are
per_module or container. The per_module
classloader policy will create a seperate
application classloader for each
deployed module. This policy is required
if you want to be able to hot deploy. The
container policy will load all deployed
modules in the shared classloader. You
cannot hot deploy if this policy is
selected.

classloader.classpath Contains a semicolon (;) seperated list of
JAR files to be loaded by each instance
of the application classloader. This has
the same logical effect as bundling these
jars in every module.

Attribute Description

orb.propstorage Path to the Partition's user ORB
properties file. Relative paths are relative
to the Partition's properties directory (the
directory partition.xml is in).

use.default.smartagent.port This property defines whether the
Partition will use the SCU Smart Agent
configuration to determine the Smart
Agent port value.

use.default.smartagent.addr This property defines whether the
Partition will use the SCU Smart Agent
configuration to determine the Smart
Agent host address value.

Attribute Description

orb.propstorage Path to the Partition's management
domain ORB properties file.

Attribute Description

Chapter 30: Par t i t ion XML reference 379

<part i t ion> e lement

All the paths are relative to the Partition's properties directory (the directory
partition.xml is in).

<shutdown> element

The shutdown element determines the actions taken when a Partition stops.
This empty element has no attributes.

required_roles.propstorage Path to the Partition's management
domain ORB required roles configuration
file.

runas.propstorage Path to the Partition's management
domain ORB runas configuration file.

Attribute Description

dump_threads Flag that causes the Partition to dump
diagnostic information on threads still
running late in Partition shutdown.

dump_threads.count If defined, the value indicates the number
of times to dump the thread states during
shutdown. It is useful if you are trying to
see if some threads are simply taking a
long time to quit, but do quit eventually.

delay.1 Reserved for support use.

garbage_collection.1 Reserved for support use.

delay.2 Reserved for support use.

runfinalizersonexit Reserved for support use.

delay.3 Reserved for support use.

garbage_collection.2 Reserved for support use.

delay.4 Reserved for support use.

runfinalization Reserved for support use.

Attribute Description

380 BES Developer ’s Guide

<part i t ion> element

<services> element

The services element lets you configure the Partition's services. Each Partition
service has a service sub-element with its specific configuration, the services
element itself has the following attributes:

The <services> element contains the following sub-element:
� service

<service> element
The <service> element provides the configuration for a Partition service. It
contains attributes that govern the Partition's management of the service and
a properties sub-element that contains the service's configuration metadata.

Attribute Description

autostart List of Partition's services to be started at
Partition startup.

The value is a space separated list of
Partition service names.

startorder The startup order to be imposed on the
Partition services configured to be
started by the autostart attribute.
Partition services that are not specified
are started after those specified.

A valid value is a space separated list of
Partition service names in their start
order (left to right).

shutdownorder The shutdown order to be imposed on
the Partition services that are running at
Partition shutdown. Partition services
that are not specified are stopped before
those specified.

A valid value is a space separated list of
Partition service names in their shutdown
order (left to right).

administer List of Partition services that are visible
to the user. They appear in the tools
when Partition services are listed.

Attribute Description

name The Partition service's name.

version The version of the Partition service.

description The description for the Partition service.

vendor The description of the vendor for the Partition service.

class The class that implements the Partition's service plugin
architecture and provides the management and control
interface for the service.

Chapter 30: Par t i t ion XML reference 381

<part i t ion> e lement

<properties> element
The properties element lets you supply the specific service's configuration
metadata.

in.management.domain Flag that indicates if the service runs in the Partition's
management domain or in the Partition's user domain.

startup.synchronization The type of synchronization to be performed when the
service is started. Valid values are:

� service_ready—wait for the service to be ready for up
to startup.service_ready.max_wait milliseconds.

� delay—always wait for startup.delay milliseconds, do
not monitor the service for it to become ready.

Default is no synchronization.

startup.service_ready.max
_wait

Limits the maximum time, in milliseconds, that the
Partition waits for the service to start when the
startup.synchronization value is service_ready. A value of 0
(zero) means no time limit is imposed. The default value
is 0 (zero).

startup.delay Defines the time, in milliseconds, that the Partition waits
in order to give the service a chance to start when the
startup.synchronization value is delay. A value of 0 (zero)
means wait forever. Default is 0 (zero) .

shutdown.synchronization The type of synchronization to be performed when the
service is shutdown. Valid values are:

� service_shutdown—wait for the service to stop for up to
shutdown.service_shutdown.max_wait milliseconds.

� delay—always wait for shutdown.delay milliseconds, do
not monitor the service for it to stop.

Default is no synchronization.

shutdown.service_shutdown
.max_wait

Limits the maximum time, in milliseconds, that the
Partition waits for the service to stop when the
shutdown.synchronization value is service_shutdown. A
value of 0 (zero) means no time limit is imposed. Default
value is 0 (zero).

shutdown.delay Defines the time, in milliseconds, that the Partition waits
in order to give the service a chance to stop when the
shutdown.synchronization value is delay. A value of 0 (zero)
means wait forever. Default is 0 (zero).

shutdown.phase This property governs which Partition shutdown phase
the service is shutdown in. A Partition shuts down in 2
phases. In the first phase all services and components
providing user facility are shutdown, and in the second
phase the Partition's own infrastructure is shutdown. Valid
values are 1 (default) and 2.

It is not typical for any Partition service to be shutdown in
phase 2.

Attribute Description

382 BES Developer ’s Guide

<part i t ion> element

<archives> element
The archives element contains configuration metadata for the archives that the
Partition can host. A specific archive can have an archive sub-element with
attributes specific to that archive. An archive does not have to have an archive
sub-element.

All the paths are relative to the Partition's root directory.

<archive> element
The archive element contains configuration metadata specific to an archive.
Archives that are found in the Partition's archive repository directories do not
need an archive element unless there is non-default configuration that need to
be applied to them.

Attribute Description

ear.repository.path Path to the Partition's EARs directory. All EARs
found in that directory are loaded by the Partition
on startup, unless specifically disabled with an
archive element.

war.repository.path Path to the Partition's WARs directory. All WARs
found in that directory are loaded by the Partition
on startup, unless specifically disabled with an
archive element.

ejbjar.repository.path Path to the Partition's EJB jars directory. All EJB
jars found in that directory are loaded by the
Partition on startup, unless specifically disabled
with an archive element.

rar.repository.path Path to the Partition's RARs directory. All RARs
found in that directory are loaded by the Partition
on startup, unless specifically disabled with an
archive element.

dar.repository.path Path to the Partition's DARs directory. All DARs
found in that directory are loaded by the Partition
on startup, unless specifically disabled with an
archive element.

lib.repository.path Path to the Partition's lib directory. All JAR files
found in that directory are placed on the
Partition's system classpath.

classes.repository.path Path to the Partition's classes directory. All
classes found in that directory are placed on the
Partition's system classpath.

Attribute Description

name Name of the archive to which this
element pertains. Is the filename of the
archive.

Chapter 30: Par t i t ion XML reference 383

<part i t ion> e lement

All the paths are relative to the Partition's root directory.

disable Flag for disabling the hosting of that
archive in the Partition at startup. Valid
values are true or false (default).

path Path to an archive that exists outside of
the Partition repositories. Use to get the
Partition to host an archive from a
specified path.

Attribute Description

384 BES Developer ’s Guide

Chapter 31: EJB, JSS, and JTS Proper t ies 385

C h a p t e r

31
Chapter31EJB, JSS, and JTS Properties

EJB Container-level Properties
Set EJB container properties in partition.xml (each Partition has its own
properties file). This file is located in the following directory:

<install_dir>/var/domains/base/configurations/configuration_name/mos/
partition_name/adm/properties

Property Description Default

ejb.copy_arguments=true|false This flag causes arguments to be copied
in intra-bean in-process calls. By default,
intra-bean calls use pass-by-reference
semantics. Enable this flag to cause intra-
bean calls to use pass-by-value
semantics. Note: A number of EJBs will
run significantly slower using pass-by-
value semantics.

false

ejb.use_java_serialization=tru
e|false

If set it overrides use of IIOP serialization
with Java serialization for things like
session passivation, and so forth.

false

386 BES Developer ’s Guide

EJB Conta iner- level Proper t ies

ejb.useDynamicStubs=true|false This property is only relevant for CMP 2.0
entity beans that provide local interfaces.
If set, the Container, which otherwise
uses CORBA to dispatch calls, uses a
dynamic proxy-based scheme to dispatch
calls (creating custom lightweight, non-
CORBA references). These local dynamic
stubs provide many optimizations,
especially due to the callers and callees
being in the same VM, making a direct
dispatch to the beans without going
through the CORBA layer. Also, since the
dynamic stubs are aware of the EJB
container data structures, they access the
target beans more quickly. Note that
currently the stub generator, java2iiop
(called using the iastool or directly) still
generates the stubs for all the interfaces
in the archive. When ejb.useDynamicStubs
is active, the subset of stubs that
correspond to the selected CMP 2.0
beans are ignored.
This feature, when used, makes the
whole dispatch mechanism dynamic,
providing dynamic stubs for the client side
as well as dynamic skeletons on the
server side. Any statically generated stub
and skeleton classes in the archive are
ignored.
You set the property in the bean.
However, if there isn't an issue with using
the property in all the entity beans, the
easiest way is to set it at the EAR level in
the deployment descriptor. Important:
You must use this property in conjunction
with ejb.usePKHashCodeAndEquals.>

true

Property Description Default

Chapter 31: EJB, JSS, and JTS Proper t ies 387

EJB Conta iner- leve l Propert ies

ejb.usePKHashCodeAndEquals=tru
e|false

Data structures that support Active Cache
(TxReady cache) and Associated Cache
(Ready beans cache) use
java.util.Hashtable, and
java.util.HashMap. The values (entity bean
instances) pooled in these data strucutres
are keyed on the primary key values of
the cached entity beans. As we know, the
implementation of Hashtable relies on
computing hashCode() and calling
equals() methods of the keys to place and
locate the values. These data structures
are in the critical code path and are
accessed frequently by the container
while dispatching calls to methods in
entity beans The default in BES is a
reflection-based computation. When this
property is set, the container uses a user
supplied implementation of the equals()
and hashCode() methods.

true

ejb.no_sleep=true|false Typically set from a main program that
embeds a Container. Setting this property
prevents the EJB container from blocking
the current thread, thereby returning the
control back to user code.

false

ejb.trace_container=true|false Turns on useful debugging information
that tells the user what the Container is
doing. Installs debugging message
interceptors.

false

ejb.xml_validation=true|false If set, the XML descriptors are validated
against its DTD at deployment time.

true

ejb.xml_verification=true|
false

If set, J2EE archive is verified at
deployment time.

false

ejb.classload_policy=per_modul
e|container|none

Defines class loading behavior of
standalone EJB container. Not applicable
to the Partition. If set to per_module, the
container uses a new instance of custom
class loader with each J2EE archive
deployed. If set to none, the container
uses the system class loader. Hot-
deployment and deployment of EARs
does not work in this mode. If set to
container, container uses single custom
class loader. This enables deployment of
EARs, but disables hot-deployment
feature.

per_mod
ule

ejb.module_preload=true|false Loads the entire J2EE archive into
memory at deployment time, so the
archive can be overwritten or rebuilt. This
option is required by JBuilder running a
standalone ejb container.

false

Property Description Default

388 BES Developer ’s Guide

EJB Conta iner- level Proper t ies

ejb.system_classpath_first=tru
e|false

If set to true, the custom classloader will
look at the system classpath first.

false

ejb.sfsb.keep_alive_timeout=<n
um>

Defines the default value of the <timeout>
element used in the ejb-borland.xml
descriptor. This property affects an EJB
whose <timeout> element is skipped or set
to 0. The purpose of this property is to
define a time interval in seconds how long
to keep an inactive stateful session bean
alive in the persistent storage (JSS) after
it was passivated. After the time interval
ends, JSS deletes the session's state
from the persistent storage, so it becomes
impossible to activate it later.

86400
(=24
hours)

ejb.cacheTimeout=<integer> This property hints the container to
invalidate the data fields of entity beans
after a specified time-out period. Use the
property by specifying the interval for
which the container will not load a bean's
state from the database, but uses the
cached state instead. At the end of the
expire period specified, the container
marks the bean as dirty (but keeps its
association with the primary key), forcing
the instance to load its state from the
database (not the cache) before it can be
used in any new transactions. The
property is expected to be used by entity
beans that are not frequently modified.
The property is a positive integer
representing cache intervals in seconds.
This is only valid for commit mode A. It is
ignored if specified for any other commit
mode.>

0 (no
timeout
).

ejb.sfsb.aggressive_passivatio
n=true|false

If set to true, stateful session bean is
passivated no matter when it was used
last time. This enables fail-over support,
so if an EJB container fails, the session
can be restored from the last saved state
by one of EJB containers in the cluster. If
set to false, only the beans which were
not used since the last passivation
attempt, are passivated to JSS. This
makes the fail-over support less
deterministic, but speeds things up. Use
this setting, to trade performance for high-
availability.

true

ejb.sfsb.factory_name=<string> If set, makes the stateful session beans
use a different JSS from the one that is
running within the same EJB container or
Partition. Specify the factory name of JSS
to use. This is the name under which JSS
is registered with Smart Agent (osagent).

none

Property Description Default

Chapter 31: EJB, JSS, and JTS Proper t ies 389

EJB Conta iner- leve l Propert ies

ejb.logging.verbose=true|false If set to true, the EJB container logs
messages about unexpected situations
which potentially could require user's
attention. The messages are marked with
>>>> EJB LOG <<<< header. Set it to false, to
suppress these messages.

true

ejb.logging.doFullExceptionLog
ging=true|false

If set, the container logs all unexpected
exceptions thrown in an EJB
implementation.

false

ejb.jss.pstore_location=<path> Use this to override the default name and
location of the file used as a JSS backend
storage. Applicable only for standalone
ejb containers. This option is deprecated,
use jss.pstore and jss.workingDir instead.

none

ejb.jdb.pstore_location=<path> Use this to override the default name and
location of the file used by the database
service. Applicable only for standalone
ejb containers.

none

ejb.interop.marshal_handle_as_
ior=true|false

If set to true, each instance of
javax.ejb.Handle is marshaled as a
CORBA IOR. Otherwise, it is marshaled
as a CORBA abstract interface. See
CORBA IIOP spec for details.

false

ejb.finder.no_custom_marshal=t
rue|false

When a multi-object finder returns a
collection of objects, by default the EJB
container does the following:

� creates and returns a custom Vector
implementation to the caller.

� creates IORs (from the primary keys)
lazily as the caller of the finder
browses/iterates over the Vector
returned.

� compute IORs for the whole Vector,
when result is to leave the JVM where
it was created.

If this property is set to true, the EJB
container does not do any of the above.

false

ejb.collect.stats_gather_frequ
ency=<num>

The time interval in seconds between
printouts of container statistics. If set to
zero, this disables stats gathering and no
stats are displayed (since they are not
collected). This means that a zero setting
overrides whatever may be the value of
ejb.collect.display_statistics,
ejb.collect.statistics or
ejb.collect.display_detail_statistics
properties.

5

ejb.collect.display_statistics
=true|false

This flag turns on timer diagnostics, which
allow the user to see how the Container is
using the CPU.

false

Property Description Default

390 BES Developer ’s Guide

EJB Customizat ion Proper t ies: Deployment Descr ip tor level

EJB Customization Properties: Deployment Descriptor level
These properties customize the behavior of a particular EJB. Some of them
are applicable only to a particular type of EJB (such as session or entity),
others are applicable to any kind of bean. There are several places where
these properties can be set. Below are these places in the order of
precedence:

1 Property element defined on the EJB level in the ejb-borland.xml
deployment descriptor of a JAR file. This setting affects this particular EJB
only. For example, the following XML sets the ejb.maxBeansInPool property to
99 for the EJB named data:

<ejb-jar>
 . . .
 <enterprise-beans>
 <entity>
 <ejb-name>data</ejb-name>
 <bean-home-name>data</bean-home-name>
 <property>
 <prop-name>ejb.maxBeansInPool</prop-name>
 <prop-type>Integer</prop-type>
 <prop-value>99</prop-value>

ejb.collect.statistics=true|
false

Same as the
ejb.collect.display_statistics property,
except this property does not write the
timer value to the log.

false

ejb.collect.display_detail_sta
tistics=true|false

This flag turns on the timer diagnostics,
as ejb.collect.display_statistics option
does. In addition, it prints out method
level timing information. This allows the
developer to see how different methods of
the bean are using CPU. Please note,
that the console output of this flag will
require you to widen your terminal to
avoid wrapping of long lines.

false

ejb.mdb.threadMaxIdle=<num> There is a VM wide thread pool
maintained by the EJB container for
message-driven bean execution. This
pool has the same configurability as the
ORB dispatcher pool for handling RMI
invocations. This particular property
controls the maximum duration in
seconds a thread can idle before being
reaped out.

300

ejb.mdb.threadMax=<num> Maximum number of threads allowed in
the MDB thread pool.

no limit

ejb.mdb.threadMin=<num> Minimum number of threads allowed in
the MDB thread pool.

0

Property Description Default

Chapter 31: EJB, JSS, and JTS Proper t ies 391

EJB Customizat ion Proper t ies: Deployment Descr ip tor level

 </property>
 </entity>
 </enterprise-beans>
 . . .
</ejb-jar>

2 Property element defined on the <ejb-jar> level in the ejb-borland.xml
deployment descriptor of a JAR file. This setting affects all EJBs defined in
this JAR. For example, the following XML sets the ejb.maxBeansInPool
property to 99 for all EJBs in the particular JAR file:

<ejb-jar>
 . . .
 <property>
 <prop-name>ejb.maxBeansInPool</prop-name>
 <prop-type>Integer</prop-type>
 <prop-value>99</prop-value>
 </property>
 . . .
</ejb-jar>

3 Property element defined at the <application> level in the application-
borland.xml deployment descriptor of an EAR file. This setting affects all
EJBs defined in the all JARs located in this EAR file. For example, the
following XML sets the ejb.maxBeansInPool property to 99 on the EAR level:

<application>
 . . .
 <property>
 <prop-name>ejb.maxBeansInPool</prop-name>
 <prop-type>Integer</prop-type>
 <prop-value>99</prop-value>
 </property>
 . . .
</application>

4 EJB property defined as an EJB container level property. This affects all
EJBs deployed in this EJB container. For example, the following command
sets the ejb.maxBeansInPool property to 99 for all beans deployed in the EJB
container started standalone:

vbj -Dejb.maxBeansInPool=99 com.inprsie.ejb.Container ejbcontainer
hello.ear -jns -jss -jts

392 BES Developer ’s Guide

Complete Index of EJB Proper t ies

Complete Index of EJB Properties

Properties common for any kind of EJB

Entity Bean Properties (applicable to all types of entities -
BMP, CMP 1.1 and CMP 2)

Property Type Description Default

ejb.default_transac
tion_attribute

Enumeration
(NotSupported,
Supports, Required,
RequiresNew,
Mandatory, Never)

This property specifies a
transaction attribute value
for the methods which
have no trans-attribute
defined in the standard
deployment descriptor.
Note, that if this property is
not specified, the EJB
container does not assume
any default transaction
attribute. Thus, specifying
this property, may simplify
porting J2EE applications
created with other
appservers which assume
some default transaction
attribute.

None

Property Type Description Default

ejb.maxBeansInPo
ol

Integer This option specifies the maximum
number of beans in the ready pool. If
the ready pool exceeds this limit,
entities will be removed from the
container by calling
unsetEntityContext.

1000

ejb.maxBeansInCa
che

Integer This option specifies the maximum
number of beans in the cache that
holds on to beans associated with
primary keys, but not transactions. This
is relevant for Option "A" and "B" (see
ejb.transactionCommitMode below). If the
cache exceeds this limit, entities will be
moved to the ready pool by calling
ejbPassivate.

1000

Chapter 31: EJB, JSS, and JTS Proper t ies 393

Complete Index of EJB Propert ies

ejb.maxBeansInTr
ansactions

Integer A transaction can access any/large
number of entities. This property sets
an upper limit on the number of
physical bean instances that EJB
container will create. Irrespective of the
number of database entities/rows
accessed, the container will manage to
complete the transaction with a smaller
number of entity objects (dispatchers).
The default for this is calculated as
ejb.maxBeansInCache/2. If the
ejb.maxBeansInCache property is not set,
this translates to 500.

Calculated

ejb.transactionC
ommitMode

Enumeration
(A|
Exclusive,
B|Shared,
C|None)

This flag indicates the disposition of an
entity bean with respect to a
transaction. The values are:
A or Exclusive: This entity has exclusive
access to the particular table in the DB.
Thus, the state of the bean at the end
of the last committed transaction can
be assumed to be the state of the bean
at the beginning of the next transaction.
For example, to cache the beans
across transactions.
B or Shared: This entity shares access to
the particular table in the DB. However,
for performance reasons, a particular
bean remains associated with a
particular primary key between
transactions, to avoid extraneous calls
to ejbActivate and ejbPassivate
between transactions. This means the
bean stays in the active pool. This
setting is the default.
C or None: This entity shares access to
the particular table in the DB. A
particular bean does not remain
associated with a particular primary key
between transactions, but goes back to
ready pool after every transaction. This
is generally not a useful setting.

Shared

ejb.transactionM
anagerInstanceNa
me

String Use this property to specify by name a
particular transaction manager for
driving the transaction started for the
onMessage() call. This option is useful
in cases where you need 2PC
completion of this particular transaction
but desire to avoid the RPC overhead
of using the 2PC transaction manager
for all other transactions in the system
e.g. in entity beans. This is also
supported for MDBs.

None

Property Type Description Default

394 BES Developer ’s Guide

Complete Index of EJB Proper t ies

ejb.findByPrimar
yKeyBehavior

Enumeration
(Verify,
Load, None)

This flag indicates the desired behavior
of the findByPrimaryKey method. The
values are:
Verify: This is the standard behavior,
for findByPrimaryKey to simply verify
that the specified primary key exists in
the database.
Load: This behavior causes the bean's
state to be loaded into the container
when findByPrimaryKey is invoked, if
the finder call is running in an active
transaction. The assumption is that
found objects will typically be used, and
it is optimal to go ahead and load the
object's state at find time. This setting
is the default.
None: This behavior indicates that
findByPrimaryKey should be a no-op.
Basically, this causes the verification of
the bean to be deferred until the object
is actually used. Since it is always the
case that an object could be removed
between calling find and actually using
the object, for most programs this
optimization will not cause a change in
client logic.

ejb.checkE
xistenceBe
foreCreate

ejb.checkExisten
ceBeforeCreate

Boolean Most tables to which entity beans are
mapped have a Primary Key
Constraint. If the CMP engine attempts
to create a bean that already exists,
this constraint is violated and a
DuplicateKeyException is thrown.
Some tables, however, do not define
Primary Key Constraints. In these
cases, the checkExistanceBeforeCreate
property can be used to avoid duplicate
entities. When set to True, the CMP
engine checks the database to see if
the entity exists before attempting the
insert operation. If the entity exists then
the DuplicateKeyException is thrown.

False

Property Type Description Default

Chapter 31: EJB, JSS, and JTS Proper t ies 395

Complete Index of EJB Propert ies

Message Driven Bean Properties

Property Type Description Default

ejb.mdb.use_jms_threads Boolean Option to switch to using
the JMS providers
dispatch thread rather than
the Container managed
thread to execute the
onMessage() method.
Rarely useful.

false

ejb.mdb.local_transaction_optimizat
ion

Boolean Not yet implemented false

ejb.mdb.maxMessagesPerServerSession Integer For JMS providers that
support the option to batch
load a ServerSession with
multiple messages, use
this property to tune
performance.

5

ejb.mdb.max-size Integer This is the maximum
number of connections in
the pool.

None

ejb.mdb.init-size Integer When the pool is initially
created, this is the number
of connections BES
populates the pool with.

None

ejb.mdb.wait_timeout Integer The number of seconds to
wait for a free connection
when maxPoolSize
connections are already
opened. When using the
maxPoolSize property and
the pool is at its max and
can't serve any more
connections, the threads
looking for JDBC
connections end up
waiting for the
connection(s) to become
available for a long time if
the wait time is unbounded
(set to 0 seconds). You
can set the waitTimeout
period to suit your needs.

30

396 BES Developer ’s Guide

Complete Index of EJB Proper t ies

ejb.mdb.rebindAttemptCount Integer This is the number of times
the EJB Container
attempts to re-establish a
failed JMS connection or a
connection that was never
established for the MDB.
To make the Container
attempt to rebind infinitely
you need to explicitly
specify
ejb.mdb.rebindAttemptCount=
0.

5

ejb.mdb.rebindAttemptInterval Integer The time in seconds
between successive retry
attempts (see above
property) for a failed JMS
connection or a connection
that was never
established.

60

ejb.mdb.maxRedeliverAttemptCount Integer This is the number of times
a message will be re-
delivered by the JMS
service provider should the
MDB fail to consume a
message for any reason.
The message will only be
re-delivered five times.
After five attempts, the
message will be delivered
to a dead queue (if one is
configured).

5

ejb.mdb.unDeliverableQueueConnectio
nFactory

String Should an MDB fail to
consume a message for
any reason, the message
will be re-delivered by the
JMS service. The
message will only be re-
delivered five times. After
five attempts, the message
will be delivered to a dead
queue (if one is
configured). This property
looks up the JNDI name
for the connection factory
to create a connection to
the JMS service. This
property is used in
conjunction with
ejb.mdb.unDeliverableQueue.

None

Property Type Description Default

Chapter 31: EJB, JSS, and JTS Proper t ies 397

Complete Index of EJB Propert ies

ejb.mdb.unDeliverableQueue String Should an MDB fail to
consume a message for
any reason, the message
will be re-delivered by the
JMS service. The
message will only be re-
delivered five times. After
five attempts, the message
will be delivered to a dead
queue (if one is
configured). This property
looks up the JNDI name of
the queue. This property is
used in conjunction with
ejb.mdb.unDeliverableQueueC
onnectionFactory.

None

ejb.transactionManagerInstanceName String This property is currently
supported only for MDBs
that have the "Required"
transaction attribute. Use
this property to specify by
name a particular
transaction manager for
driving the transaction
started for the
onMessage() call. This
option is useful in cases
where you need 2PC
completion of this
particular transaction but
desire to avoid the RPC
overhead of using the 2PC
transaction manager for all
other transactions in the
system e.g. in entity
beans. Please refer to the
MDB chapter for more
details.

None

Property Type Description Default

398 BES Developer ’s Guide

Complete Index of EJB Proper t ies

Stateful Session Bean Properties

Property Type Description Default

ejb.sfsb.passivation_timeout Integer Defines the time interval (in
seconds) when to passivate
inactive stateful session beans
into the persistent storage (JSS).

5

ejb.sfsb.instance_max Integer Defines the maximum number of
instances of a particular stateful
session bean allowed to exist in
the EJB container memory at the
same time. If this number is
reached and a new instance of a
stateful session needs to be
allocated, the EJB container
throws an exception indicating
lack of resources. 0 is a special
value. It means no maximum
set. Note, that this property is
applicable only if the
ejb.sfsb.passivation_timeout
property is set to non-zero value.

0

ejb.sfsb.instance_max_timeout Integer If the max number of stateful
sessions defined by the
ejb.sfsb.instance_max property
is reached, the EJB container
blocks a request for an allocation
of a new bean for the time
defined by this property waiting if
the number goes lower before
throwing an exception indicating
lack of resources. This property
is defined in ms (1/1000th of
second). 0 is a special value. It
means not to wait and throw an
exception indicating lack of
resources immediately.

0

ejb.jsec.doInstanceBasedAC Boolean If set to true, the EJB container
checks if the principal invoking
an EJB's method is the same
principal that created this bean.
If this check fails, the method
throws a
java.rmi.AccessException (or
javax.ejb.AccessLocalException)
exception. This is applicable to
stateful session beans only.

True

Chapter 31: EJB, JSS, and JTS Proper t ies 399

Session Serv ice (JSS) Propert ies

EJB Security Properties

Session Service (JSS) Properties
The Session Service can run as part of standalone EJB container (-jss option)
or as part of the Partition.

As a "Partition service", JSS configuration information is located in each
Partition's data directory in the partition.xml file. By default, this file is located
in the following directory:

<install_dir>/var/domains/<domain_name>/configurations/
<configuration_name>/<partition_name>/adm/properties/

Property Type Description Default

ejb.security.transportType Enumeration
(CLEAR_ONLY,
SECURE_ONLY,
ALL)

This property configures the
Quality of Protection of a
particular EJB.
If set to CLEAR_ONLY, only non-
secure connections are
accepted from the client to this
EJB. This is the default setting,
if the EJB does not have any
method permissions.
If set to SECURE_ONLY, only secure
connections are accepted form
the client to this EJB. This is the
default setting, if the EJB has at
least one method permission
set.
If set to ALL, both secure and
non-secure connections are
accepted from the client.
Setting this property controls a
transport value of the
ServerQoPConfig policy.

None

ejb.security.trustInClient Boolean This property configures the
Quality of Protection of a
particular EJB. If set to true, the
EJB container requires the
client to provide an
authenticated identity. By
default, the property is set to
false, if there is at least one
method with no method
permissions set. Otherwise, it is
set to true. Setting this property
controls a transport value of the
ServerQoPConfig policy.

False

400 BES Developer ’s Guide

Session Serv ice (JSS) Propert ies

For example, for a Partition named "standard", by default the JSS
configuration information is located in:

<install_dir>/var/domains/<domain_name>/configurations/
<configuration_name>/standard/adm/properties/partition.xml

For more information, go to the partition.xml reference, “<service> element” on
page 380.

Otherwise, for the location of a Partition data directory, go to the
configuration.xml file located in:

<install_dir>/var/domains/<domain_name>/configurations/
<configuration_name>/

and search for the Partition managed object (mo) directory attribute:

<partition-process directory=

For more information about the configuration.xml, go to the Deployment
Operations Center (BDOC) Developer's Guide, configuration.xml reference.

Chapter 31: EJB, JSS, and JTS Proper t ies 401

Session Serv ice (JSS) Propert ies

The JSS supports two kinds of backend storage: JDataStore or a JDBC
datasource. For more information, go to Chapter 6, “Java Session Service
(JSS) configuration”.

Property

Console
Property
Name Description Default

jss.factoryName=<c
har_string>

Factory
name

Name given to the JSS
factory created by this
service. The service gets
registered with this name in
the Smart Agent (osagent).

If not specified and
the JSS runs in the
Partition, the default
value is:
<server_name>/
<partition_name>.
If not specified and
the JSS runs in a
standalone EJB
container, the default
value is EJB/
JSS[<container_name>]
.

jss.workingDir=<pa
th>

Working
directory

The directory where the
backend database
(JDataStore) file is located.
Note: this property is
applicable only if the
jss.pstore property is
configured to use a
JDataStore file as backend
storage.

If not specified and
the JSS runs in the
Partition, then the
Partition's working
directory
<install_dir>/var/
domains/
<domain_name>/
configurations/
<configuration_name>/
<partition_name> is
used.

If not specified and
the JSS runs as part
of a standalone EJB
container, then the
current directory
where the container
started is used.

402 BES Developer ’s Guide

Session Serv ice (JSS) Propert ies

jss.pstore=<char_s
tring>

Persistent
store

Specifies the JDatastore
file to use for backend
storage. If the file does not
exist, JSS creates the file
with the .jds extention, for
example jss_factory.jds.
For any compatible
database supporting
JDBC, specifies the JNDI
name with the serial:
prefix, for example serial:/
/datasources/OracleDB to
use for backend storage. In
this case, JSS uses a
datasource that is
deployed in the Naming
Service under the JNDI
name specified.

If the JSS runs in the
Partition, the
JDataStore file
named is used, such
as jss_factory.jds.
If the JSS runs in a
standalone ejb
container, the
<container_name>_jss.
jds is used.

jss.userName=<char
_string>

User name User name JSS uses to
open a connection with the
JDataStore backend
database. Note: this
property is applicable only
if the jss.pstore property is
configured to use a
JDataStore file as backend
storage.

<default-user-name>

jss.maxIdle=<numer
ic value>

Max idle The time interval in
seconds between runs of
JSS garbage collection job.
The JSS garbage
collection job is responsible
for removing the state of
expired sessions from the
backend database. If set to
0, the garbage collection
job never starts.

1800 (=30min)

Property

Console
Property
Name Description Default

Chapter 31: EJB, JSS, and JTS Proper t ies 403

Session Serv ice (JSS) Propert ies

Old style EJB Container and JSS Properties

Some properties can also be specified as they were named in IAS 4.x. The
table below defines the correspondence between new and old style
properties. Note, that this works only with an EJB container started
standalone.

jss.softCommit=tru
e|false

Soft
commit

If true, the JSS uses the
JDataStore backend
database with the Soft
Commit mode enabled.
Setting this property
improves the performance
of the Session Service, but
can cause recently
committed transactions to
be rolled back after a
system crash. Note: this
property is applicable only
if the jss.pstore property is
configured to use a
JDataStore file as backend
storage. For more details,
see the JDataStore
documentation at: http://
info.borland.com/techpubs/
jdatastore.

true

jss.debug=true|
false

Debug Print debug information. If
set to true, the JSS prints
out debug traces.

false

Old Style (IAS 4.x> New style (BES 5.x)

EJBCopyArgs ejb.copy_arguments=true

EJBUseJavaSerialization ejb.use_java_serialization=true

EJBNoSleep ejb.no_sleep=true

EJBNoClassLoader ejb.classload_policy=none

EJBOneClassLoader ejb.classload_policy=container

EJBPassivationTimeout=<num> ejb.sfsb.passivation_timeout=<num>

EJBDiagnosticPeriod=<num> ejb.collect.stats_gather_frequency=<num>

EJBQuietTimers ejb.collect.statistics=true

EJBTimers ejb.collect.display_statistics=true

EJBDetailTimers ejb.collect.display_detail_statistics=tru
e

EJBDebug ejb.trace_container=true

EJBDefaultStorageTimeout=<num> jss.maxIdle=<num>

Property

Console
Property
Name Description Default

404 BES Developer ’s Guide

Part i t ion Transact ion Serv ice (Transact ion Manager)

Partition Transaction Service (Transaction Manager)
Listed below are properties that influence the behavior of the Partition
Transaction Service (Transaction Manager). The properties can be specified
when hosted by either a standalone EJB container or a Partition.

When configuring the Partition Transaction Service for a Partition, set the
properties in the partition.xml file which is located in the <install_dir>/var/
domains/base/configurations/<configuration_name>/mos/<partition_name>/adm/
properties.

If running an EJB container standalone, they must be specified using system
property names described below in section titled JTS System Properties. For
example, when JTS is hosted by a standalone EJB Container property
jts.allow_unrecoverable_completion must be specified using its system property
equivalent:

prompt% vbj -DEJBAllowUnrecoverableCompletion com.inprise.ejb.Container
ejbcontainer beans.jar -jns -jts

Property Description Default

jts.allow_unrecoverable_co
mpletion=true|false

If set to true, this instructs the Container
built-in JTS implementation to do a non-
recoverable (that is, non two-phase)
completion when there are multiple
Resource registrations. Use at your own risk.
It is provided only as a developer friendly
feature.

False

jts.no_global_tids=true|
false

By default, JTS generates X/Open XA
compatible transaction identifiers. By setting
this property to true, the transaction key
generation behavior changes to generate
non-XA compliant tids. By generating XA
compliant properties out of the box, the EJB
container can work with JDBC2/XA drivers
seamlessly.

False

jts.no_local_tids=true|
false

There is an optimization where the EJB
container detects that a transaction was
started in the transaction service that lives in
the same VM, and make the transaction
comparision faster. Setting this property to
true turns that off. This local transaction
identifier (local tid) is a subset of the global
transaction id hence makes the transaction
comparisons faster.

False

jts.timeout_enable=true|
false

By default, JTS transaction timeout facility is
disabled. When enabled, each new
transaction created by JTS will registered
with a timeout in the JTS Timeout Manager.
If the timeout expires before completion of
the transaction, JTS will automatically
rollback the transaciton.

False

Chapter 31: EJB, JSS, and JTS Proper t ies 405

Part i t ion Transact ion Serv ice (Transact ion Manager)

JTS System Properties

JTS properties can also be specified as system properties as used in IAS 4.x
and BAS 4.5. The table below defines the correspondence between new and
old style properties. Note, that this works only with an EJB container started
standalone.

jts.timeout_interval=<num> The JTS Timeout Manager examines
registered transactions for timeout expiration
at intervals in seconds controlled by the
value of this property. Setting it to a value of
0 causes the interval to occur every 9999
seconds.

5

jts.default_timeout=<num> The timeout period for a Bean Managed
transaction can be configured using JTA
UserTransaction setTransactionTimeout()
method. If not used or if transaction is a
Container Managed transaction, the default
transaction timeout value is applied. This can
be configured upon JTS startup using the
jts.default_timeout property value. The
granularity of this property is 1 second.

600

jts.default_max_timeout=<n
um>

To prevent specification of an excessive
timeout value for the jts.default_timeout
property, the jts.default_max_timeout property
controls the maximum time a transaction can
be active before its expired. The granularity
of this property is 1 second.

3600

jts.trace=true|false Set this property to generate JTS debug
messages.

False

jts.transaction_debug_time
out=<num>

If set, this property displays a list of active
transactions maintained by JTS. Its value
dictates the interval in seconds at which
transactions are displayed.

None

Old Style (IAS 4.x> New style (BES 5.x)

EJBAllowUnrecoverableCompletion jts.allow_unrecoverable_completion=true

EJBNoGtids jts.no_global_tids=true

EJBNoLtids jts.no_local_tids=true

EJBTxTimeoutEnable jts.timeout_enable=true

EJBTxTimeoutInterval=<num> jts.timeout_interval=<num>

EJBTxDefaultTimeout=<num> jts.default_timeout=<num>

EJBTxDefaultMaxTimeout=<num> jts.default_max_timeout=<num>

EJBTxDebug jts.trace=true

EJBTxTransactionDebugTimeout=<num> jts.transaction_debug_timeout=<num>

Property Description Default

406 BES Developer ’s Guide

Chapter 32: ejb-bor land.xml 407

C h a p t e r

32
Chapter 32ejb-borland.xml

Important For documentation updates, go to www.borland.com/techpubs/bes.

DTD
 <!ELEMENT ejb-jar (enterprise-beans, datasource-definitions?,
 table-properties*, relationships?, authorization-domain?,
 property*, assembly-descriptor?)>

<!ELEMENT enterprise-beans (session | entity | message-driven)+>

<!ELEMENT session (ejb-name, bean-home-name?, bean-local-home-name?,
 timeout?, ejb-ref*, ejb-local-ref*, resource-ref*,resource-env-ref*,
property*)>

<!ELEMENT entity (ejb-name, bean-home-name?, bean-local-home-name?,
 ejb-ref*, ejb-local-ref*, resource-ref*, resource-env-ref*,
 (cmp-info | cmp2-info)?, property*)>

<!ELEMENT message-driven (ejb-name, message-driven-destination-name,
 connection-factory-name, pool?, ejb-ref*, ejb-local-ref*,
 resource-ref*, resource-env-ref*, property*)>

 <!ELEMENT pool (max-size?, init-size?, wait-timeout?)>
 <!ELEMENT ejb-ref (ejb-ref-name, jndi-name?)>
 <!ELEMENT ejb-local-ref (ejb-ref-name, jndi-name?)>
 <!ELEMENT resource-ref (res-ref-name, jndi-name, cmp-resource?)

408 BES Developer ’s Guide

DTD

 <!ELEMENT resource-env-ref (resource-env-ref-name, jndi-name)
 <!ELEMENT datasource-definitions (datasource*)>
 <!ELEMENT datasource (jndi-name, url, username?, password?,
 isolation-level?, driver-class-name?, jdbc-property*, property*)>
 <!ELEMENT jdbc-property (prop-name, prop-value)>
 <!ELEMENT property (prop-name, prop-type, prop-value)>
 <!ELEMENT cmp-info (description?, database-map?, finder*)>
 <!ELEMENT database-map (table?, column-map*)>
 <!ELEMENT finder (method-signature, where-clause, load-state?)>
 <!ELEMENT column-map (field-name, column-name?, column-type?, ejb-ref-
name?)>
 <!ELEMENT connection-factory-name (#PCDATA)>
 <!ELEMENT message-driven-destination-name (#PCDATA)>
 <!ELEMENT max-size (#PCDATA)>
 <!ELEMENT init-size (#PCDATA)>
 <!ELEMENT wait-timeout (#PCDATA)>
 <!ELEMENT cmp-resource (#PCDATA)>
 <!ELEMENT method-signature (#PCDATA)>
 <!ELEMENT where-clause (#PCDATA)>
 <!ELEMENT load-state (#PCDATA)>
 <!ELEMENT prop-name (#PCDATA)>
 <!ELEMENT prop-type (#PCDATA)>
 <!ELEMENT prop-value (#PCDATA)>
 <!ELEMENT field-name (#PCDATA)>
 <!ELEMENT column-name (#PCDATA)>
 <!ELEMENT column-type (#PCDATA)>
 <!ELEMENT table (#PCDATA)>
 <!ELEMENT description (#PCDATA)>
 <!ELEMENT ejb-name (#PCDATA)>
 <!ELEMENT bean-home-name (#PCDATA)>
 <!ELEMENT bean-local-home-name (#PCDATA)>
 <!ELEMENT timeout (#PCDATA)>
 <!ELEMENT ejb-ref-name (#PCDATA)>
 <!ELEMENT jndi-name (#PCDATA)>
 <!ELEMENT res-ref-name (#PCDATA)>
 <!ELEMENT resource-env-ref-name (#PCDATA)>
 <!ELEMENT url (#PCDATA)>
 <!ELEMENT username (#PCDATA)>
 <!ELEMENT password (#PCDATA)>
 <!ELEMENT isolation-level (#PCDATA)>
 <!ELEMENT driver-class-name (#PCDATA)>
 <!ELEMENT authorization-domain (#PCDATA)>
 <!ELEMENT table-properties (table-name, column-properties*, property*)>
 <!ELEMENT column-properties (column-name, property*)>
 <!ELEMENT table-name (#PCDATA)>
 <!ELEMENT cmp2-info (cmp-field*, table-name, table-ref*)>
 <!ELEMENT relationships (ejb-relation+)>
 <!ELEMENT ejb-relation (ejb-relationship-role, ejb-relationship-role)>
 <!ELEMENT ejb-relationship-role (relationship-role-source, cmr-field?)>
 <!ELEMENT relationship-role-source (ejb-name)>
 <!ELEMENT cmr-field (cmr-field-name, table-ref, property*)>
 <!ELEMENT cmr-field-name (#PCDATA)>

Chapter 32: ejb-bor land.xml 409

DTD

 <!ELEMENT table-ref (left-table, cross-table*, right-table)>
 <!ELEMENT left-table (table-name, column-list)>
 <!ELEMENT right-table (table-name, column-list)>
 <!ELEMENT cross-table (table-name, column-list, column-list)>
 <!ELEMENT column-list (column-name+)>
 <!ELEMENT cmp-field (field-name, (cmp-field-map* | column-
name),property*)>
 <!ELEMENT cmp-field-map (field-name, column-name)>
 <!ELEMENT assembly-descriptor (security-role*)>
 <!ELEMENT security-role (role-name, deployment-role?)>
 <!ELEMENT role-name (#PCDATA)>
 <!ELEMENT deployment-role (#PCDATA)>

410 BES Developer ’s Guide

Chapter 33: appl icat ion-c l ient -bor land.xml 411

C h a p t e r

33
Chapter33application-client-borland.xml

Important For documentation updates, go to www.borland.com/techpubs/bes.

DTD
 <!ELEMENT application-client (ejb-ref*, resource-ref*,
 resource-env-ref*, property*)>
 <!ELEMENT ejb-ref (ejb-ref-name, jndi-name?)>
 <!ELEMENT resource-ref (res-ref-name, jndi-name)>
 <!ELEMENT resource-env-ref (resource-env-ref-name, jndi-name)>
 <!ELEMENT property (prop-name, prop-type, prop-value)>
 <!ELEMENT prop-name (#PCDATA)>
 <!ELEMENT prop-type (#PCDATA)>
 <!ELEMENT prop-value (#PCDATA)>
 <!ELEMENT ejb-ref-name (#PCDATA)>
 <!ELEMENT jndi-name (#PCDATA)>
 <!ELEMENT res-ref-name (#PCDATA)>
 <!ELEMENT resource-env-ref-name (#PCDATA)>

412 BES Developer ’s Guide

Chapter 34: ra-bor land.xml 413

C h a p t e r

34
Chapter34ra-borland.xml

Important For documentation updates, go to www.borland.com/techpubs/bes.

DTD
<!--
This DTD defines the Borland specific deployment information for defining
a deployable Resource Adapter Connection Factory. It provides for complete
specification of all configurable Connection Factory parameters including
Connection Pool parameters, Security parameters for Resource Role Mapping
and the ability to define values for configuration parameters which exist
in
the ra.xml deployment descriptor.
-->

<!ELEMENT connector (connection-factory)>

<!--
The connection-factory element is the root element of the
Borland specific deployment descriptor for the deployed
resource adapter.
-->

<!ELEMENT connection-factory (factory-name, factory-description?, jndi-
name,
ra-link-ref?, ra-libraries?, pool-parameters?), (logging-enabled, log-file-
name?),
property*, security-map*, authorization-domain?)>

414 BES Developer ’s Guide

DTD

<!--
The factory-name element defines that logical name that
will be associated with this specific deployment of the
Resource Adapter and its corresponding Connection Factory.

The value of factory-name can be used in other deployed
Resource Adapters via the ra-link-ref element. This will
allow multiple deployed Connection Factories to utilize a
common deployed Resource Adapter, as well as share
configuration specifications.

This is a required element.
-->

<!ELEMENT factory-name (#PCDATA)>

<!--
The factory-description element is used to provide text
describing the parent element. The factory-description
element should include any information that the deployer
wants to describe about the deployed Connection Factory.

This is an optional element.
-->

<!ELEMENT factory-description (#PCDATA)>

<!--
The jndi-name element defines the name that will be used to bind the
Connection Factory Object into the JNDI Namespace. Client EJBs and
Servlets will use this same JNDI in their defined Reference Desciptor
elements of the Borland specific deployment descriptors.

This is a required element.
-->

<!ELEMENT jndi-name (#PCDATA)>

<!--
The ra-link-ref element allows for the logical association of
multiple deployed Connection Factories with a single deployed Resource
Adapter. The specification of the optional ra-link-ref element with
a value identifying a separately deployed Connection Factory will
result in this newly deployed Connection Factory sharing the
Resource Adapter which had been deployed with the referenced
Connection Factory.

In addition, any values defined in the referred Connection Factories
deployment will be inherited by this newly deployed Connection Factory
unless specified.

This is an optional element.
-->

Chapter 34: ra-bor land.xml 415

DTD

<!ELEMENT ra-link-ref (#PCDATA)>

<!--
The ra-libraries element identifies the directory location to be
used for all native libraries present in this resource adapter
deployment. As part of deployment processing, all encountered
native libraries will be copied to the location specified.

It is the responsibility of the Administrator to perform the necessary
platform actions such that these libraries will be found at runtime.

This is a required element IF native libraries are present.
-->

<!ELEMENT ra-libraries (#PCDATA)>

<!--
The pool-parameters element is the root element for providing Connection
Pool specific parameters for this Connection Factory.

VisiConnect will use these specifications in controlling the behavior
of the maintained pool of Managed Connections.

This is an optional element.Failure to specify this element or any
of its specific element items will result in default values being
assigned. Refer to the description of each individual element for
the designated default value.
-->

<!ELEMENT pool-parameters (initial-capacity?, maximum-capacity?,
capacity-delta?, cleanup-enabled?, cleanup-delta?)>

<!--
The initial-capacity element identifies the initial number of managed
connections which VisiConnect will attempt to obtain during deployment.

This is an optional element.

Failure to specify this value will result in VisiConnect using its
defined default value.

Default Value: 1
-->

<!ELEMENT initial-capacity (#PCDATA)>

<!--
The maximum-capacity element identifies the maximum number of
managed connections which VisiConnect will allow.Requests for newly
allocated managed connections beyond this limit will result in a
ResourceAllocationException being returned to the caller.

This is an optional element.

416 BES Developer ’s Guide

DTD

Failure to specify this value will result in VisiConnect using its
defined default value.

Default Value: 10
-->

<!ELEMENT maximum-capacity (#PCDATA)>

<!--
The capacity-delta element identifies the number of additional
managed connections which the VisiConnect will attempt to obtain
during resizing of the maintained connection pool.

This is an optional element.

Failure to specify this value will result in VisiConnect using its
defined default value.

Default Value: 1
-->

<!ELEMENT capacity-delta (#PCDATA)>

<!--
The cleanup-enabled element indicates whether or not the
Connection Pool should have unused Managed Connections reclaimed
as a means to control system resources.

This is an optional element.

Failure to specify this value will result in VisiConnect using its
defined default value.

Value Range: true|false

Default Value: true
-->

<!ELEMENT cleanup-enabled (#PCDATA)>

<!--
The cleanup-delta element identifies the amount of time the
Connection Pool Management will wait between attempts to reclaim
unused Managed Connections.

This is an optional element.

Failure to specify this value will result in VisiConnect using its
defined default value.

Default Value: 1
-->

Chapter 34: ra-bor land.xml 417

DTD

<!ELEMENT cleanup-delta (#PCDATA)>

<!--
The logging-enabled element indicates whether or not the log writer
is set for either the ManagedConnectionFactory or ManagedConnection.
If this element is set to true, output generated from either the
ManagedConnectionFactory or ManagedConnection will be sent to the file
specified by the log-filename element.

This is an optional element.

Failure to specify this value will result in VisiConnect using its
defined default value.

Value Range: true|false

Default Value: false
-->

<!ELEMENT logging-enabled (#PCDATA)>

<!--
The log-file-name element specifies the name of the log file which output
generated from either the ManagedConnectionFactory or a ManagedConnection
are sent.

The full address of the file name is required.

This is an optional element.
-->

<!ELEMENT log-file-name (#PCDATA)>

<!--
Each property element identifies a configuration property
name, type and value that corresponds to an ra.xml entry
element with the corresponding property-name.

At deployment time, all values present in a property
specification will be set on the ManagedConnectionFactory.

Values specified via a property will supersede any default
value that may have been specified in the corresponding ra.xml
config-property element.

This is an optional element.
-->

<!ELEMENT property (prop-name, prop-type, prop-value)>
<!ELEMENT prop-name (#PCDATA)>
<!ELEMENT prop-type (#PCDATA)>
<!ELEMENT prop-value (#PCDATA)>

418 BES Developer ’s Guide

DTD

<!--
The security-map element specifies whether the caller's security identity
is to be used for the execution of the methods of the enterprise bean
or whether a specific run-as identity is to be used. It contains an
optional description and a specification of the security identity to
be used.

Each security-map element provides a mechanism to define appropriate
Resource Role values for Resource Adapter/EIS authorization processing,
through the use of the run-as element.

This element allows for the specification of a defined set of
user roles and the corresponding run-as roles (representing
EIS identities) that should be used when allocating
Managed Connections and Connection Handles.

A default Resource run-as role can be defined for the Connection
Factory via the map. By specifying a user-role value of '*'
and a corresponding run-as role, the defined run-as will be utilized
whenever the current role is NOT matched elsewhere in
the map.

This is an optional element, however, it must be specified in some
form if Container Managed Sign-on is supported by the Resource Adapter
and used by ANY client.

In addition, the deployment-time population of the Connection Pool
with Managed Connections will be attempted using the defined
'default' run-as if one is specified.
-->

<!ELEMENT security-map (description?, user-role+, (use-caller-identity|run-
as))>

<!--
The user-role element contains one or more role names, defined for
use as the security identity, or mapped to a appropriate Resource
Role run-as identity, for interactions with the resource.
-->
<!ELEMENT user-role (#PCDATA)>

<!--
The use-caller-identity element specifies that the caller's security
identity be used as the security identity for the execution of the
Resource Adapter's methods.

Used in: security-map
-->
<!ELEMENT use-caller-identity EMPTY>

<!--
The run-as element specifies the run-as identity to be used for the
execution of the enterprise bean.It contains an optional description, and

Chapter 34: ra-bor land.xml 419

DTD

the name of a security role.

Used in: security-map
-->
<!ELEMENT run-as (description?, role-name)>

<!--
The role-name element contains the name of a security role.

The name must conform to the lexical rules for an NMTOKEN.

Used in: run-as
-->

<!ELEMENT role-name (#PCDATA)>

<!--
The authorization-domain element specifies the authorization domain to
be used for determining the definable set of valid user roles.
-->

<!ELEMENT authorization-domain (#PCDATA)>

<!ELEMENT description (#PCDATA)>

420 BES Developer ’s Guide

Chapter 35: jnd i-def in i t ions.xml 421

C h a p t e r

35
Chapter35jndi-definitions.xml

Important For documentation updates, go to www.borland.com/techpubs/bes.

DTD
<!ELEMENT jndi-definitions (visitransact-datasource*, driver-datasource*,
jndi-object*)>

 <!ELEMENT visitransact-datasource (jndi-name, driver-datasource-
jndiname,
 property*)>

 <!ELEMENT driver-datasource (jndi-name, datasource-class-name,
 log-writer?, property*)>

 <!ELEMENT jndi-object (jndi-name, class-name, property*)>

 <!ELEMENT property (prop-name, prop-type, prop-value)>
 <!ELEMENT prop-name (#PCDATA)>
 <!ELEMENT prop-type (#PCDATA)>
 <!ELEMENT prop-value (#PCDATA)>
 <!ELEMENT jndi-name (#PCDATA)>
 <!ELEMENT driver-datasource-jndiname (#PCDATA)>
 <!ELEMENT datasource-class-name (#PCDATA)>
 <!ELEMENT log-writer (#PCDATA)>
 <!ELEMENT class-name (#PCDATA)>

422 BES Developer ’s Guide

Chapter 36: web.xml 423

C h a p t e r

36
Chapter36web.xml

Important For documentation updates, go to www.borland.com/techpubs/bes.

DTD
<!ELEMENT web-app(context-root?, resource-env-ref*, resource-ref*,
 ejb-ref*, ejb-local-ref*, property*, web-deploy-path*,
 authorization-domain?, security-role*)>
<!ELEMENT ejb-ref (ejb-ref-name, jndi-name)>
<!ELEMENT ejb-local-ref (ejb-ref-name, jndi-name?)>
<!ELEMENT resource-ref (res-ref-name, jndi-name)>
<!ELEMENT resource-env-ref (resource-env-ref-name, jndi-name)>
<!ELEMENT web-deploy-path (service, engine, host)>
<!ELEMENT context-root (#PCDATA)>
<!ELEMENT prop-name (#PCDATA)>
<!ELEMENT prop-type (#PCDATA)>
<!ELEMENT prop-value (#PCDATA)>
<!ELEMENT ejb-ref-name (#PCDATA)>
<!ELEMENT jndi-name (#PCDATA)>
<!ELEMENT res-ref-name (#PCDATA)>
<!ELEMENT resource-env-ref-name (#PCDATA)>
<!ELEMENT service (#PCDATA)>
<!ELEMENT engine (#PCDATA)>
<!ELEMENT host (#PCDATA)>
<!ELEMENT authorization-domain (#PCDATA)>
<!ELEMENT security-role (role-name, deployment-role?)>

424 BES Developer ’s Guide

DTD

<!ELEMENT role-name (#PCDATA)>
<!ELEMENT deployment-role (#PCDATA)>

Index 425

Symbols
... ellipsis 6
.httaccess files 28
| vertical bar 6

A
Ant 333

building BES examples 336
customized tasks 333
deploying BES examples 337
running BES examples 337
troubleshooting BES examples 337
undeploying BES examples 337

Ant tasks
and BES commands 335
ommitting attributes 335
syntax 334
usage 334

Apache
httpd.conf configuration 28

Apache Ant 333
building BES examples 336
deploying BES examples 337
running BES examples 337
troubleshooting BES examples 337
undeploying BES examples 337
web services 96

Apache Axis
Axis Toolkit libraries 94
web service samples 96
web services 86, 88
web services Admin tool 97

Apache web server 10, 27
.httaccess files 28
clustering 69, 73
configuration 27
configuration syntax 27
connecting to CORBA 77
connecting to web container 37
CORBA server 80
directory structure 29
HTTP sessions 74
httpd.conf file 27, 43
IIOP configuraion 47
IIOP connector 41
IIOP connector configuration 43
IIOP module 41

applications
bundled with BES 99

managed 279
non-managed 279

archive deployment
Partitions 22

authentication
VisiConnect 277

Axis Toolkit libraries
web services 94

B
BES

Editions 1
products 1

BES commands
and Ant tasks 335

BES examples
building 336
deploying 337
running 333, 337
troubleshooting 337
undeploying 337

BES web components 27
BES web server 27

directory structure 29
BLOB 188
Borland Developer Support

contacting 7
Borland Enterprise Server

architecture 9
Connector service 13
Editions 1
EJB container 13
J2EE APIs 14
JDataStore 13
JMS services 11
Management Agent 12
Management Hub 12
Naming service 13
Partition Services 12
Partitions 12
services 10
session service 14
Smart Agent 11
Team Edition 1
transaction manager 14
Transaction Service 12
web container 14
web server 10
Web Services Edition 1

Borland Technical Support

Index

426 BES Developer ’s Guide

contacting 7
borland virtual directory

IIS/IIOP redirector 55
Borland web container 29

adding environment variables 36
clustering 69, 73
Cocoon 99
configuration files 29
connecting to JSS 37
ENV variables 36
IIOP configuration 41
IIOP connector 41
JavaServer Pages 30
JSS and failover 72
server.xml 29, 41
servlets 30

Borland Web site 7, 8
Borland-specific web DTD 31, 35
brackets 6

C
cascade delete 164

database 164
cascade delete database 164
CGI-bin Apache directory 29
classloading

support 284
VisiConnect 284

classloading policies
in Partitions 24

client
definition of 101
get bean information 109
initialization of 102
invoke enterprise bean methods 105
locate home interface 102
manage transaction 108
obtain remote interface 103
use bean handle 106

client j2ee
running 121

client-side stub file
generating 348

CLOB 188
cluster

JMS service 260
Tibco 260

clustering
Apache web server 69
Borland web container 69
Java Session Service 73
JSS 73
message-driven beans 217

Session Service 73
web components 69

clusters
deploying JAR files 343
IIOP connector 47
IIOP redirector 59
JMS services 263
undeploying JAR files 369

CMP 2.0 149, 152
and entity beans 149
Borland implementation 153
CMP mapping 158
coarse-grained fields 158
configuring database tables 156
configuring datasources 156
container-managed relationships 150
many-to-many 163
mapping fields to multiple tables 159
one-to-many 162
one-to-one 161
optimistic concurrency 153
persistence manager 150, 152
schema 156
See CMP 2.0 149
specifying relationships 160

Cocoon 99
Tomcat web container 99

column properties
XML representation DTD 407

command line tools
compilejsp 341
compress 342
deploy 343
dumpstack 345
genclient 346
gendeployable 347
genstubs 348
info 349
kill 350
listhubs 353
listpartitions 352
listservices 354
merge 355
migrate 357
patch 357
ping 358
pservice 360
removestubs 362
restart 362
start 364, 365
stop 366
uncompress 368
undeploy 369
usage 370

Index 427

verify 370
commands

conventions 6
compilejsp

iastool command 341
component managed sign-on 277
compress

iastool command 342
conf Apache directory 29
conf IIS directory 37
connection

leak detection 285
connection management 274
connection recovery

JMS 218
connector

IIOP 41
Connector service 13
connectors

connection management 274
container

VisiConnect 287
container-managed persistence

XML DTD 407
Container-Managed Persistence 2.0

automatic table creation 188
CMP engine properties 169
column properties 170, 177, 178
data access support 187
entity bean properties 167
entity properties 169, 172
fetching special data types 187
Oracle Large Objects (LOBs) 188
table properties 170, 175

CORBA
connecting to web server 77
distribution mapping 110
IIOP connector 77
mapping to EJB 110
naming mapping 111
security mapping 113
transaction mapping 112
web server connection 77

CORBA methods
urls 78

CORBA object instances
and IIOP connector 80

CORBA servant
implemeting ReqProcessor IDL 78

CORBA server
implementing ReqProcessor IDL 78
ReqProcessor IDL 77, 78
web-enabling 77

corbaloc load balancing 70

creating queues 247

D
DAR

XML DTD 421
Data Archive (DAR) 222

creating and deploying 223
jndi-definitions module 222
migrating to 223
packaging 224
using the serial context provider 224

databases
connecting 221

DataExpress 63
datasources

see Data Archive (DAR) 221
deploy

iastool command 343
deploy.wssd file 89
deployment

to Partitions 22
deployment descriptor

customization properties 390
ejb-borland.xml DTD 407
web application DTD 423

Developer Support
contacting 7

diagnostic tools
dumpstack (iastool) 345

distributed transaction
two-phase commit 197

DOCTYPE declaration 117
documentation 4

.pdf format 5
accessing Help Topics 5
BES Developer's Guide 4
BES Installation Guide 4
Management Console User's Guide 5
on the web 8
platform conventions used in 6
type conventions used in 6
updates on the web 5
VisiBroker for C++ API Reference 5
VisiBroker for C++ Developer's Guide 5
VisiBroker for Java Developer's Guide 5
VisiBroker GateKeeper Guide 5
VisiBroker VisiNotify Guide 5
VisiBroker VisiTransact Guide 5

DTD
connecting to resources 407
database connections 421
EJB JAR Borland-specific descriptor 407
ejb-borland.xml 407

428 BES Developer ’s Guide

JMS connections 421
jndi-definitions.xml 421
resource connection factory 421
web application archive 423
web.xml 423
XML 117, 118

dump
generating 345

dumpstack
iastool command 345

dynamic queries
EJB-QL 184

E
Editions 1
EIS

integration 271
EJB

mapping to CORBA 110
web services 87

EJB Container
ejb.classload_policy property 387
ejb.collect.display_detail_statistics

property 390
ejb.collect.display_statistics property 389
ejb.collect.statistics property 390
ejb.collect.stats_gather_frequency

property 389
ejb.copy_arguments property 385
ejb.finder.no_custom_marshal property 389
ejb.interop.marshal_handle_as_ior

property 389
ejb.jdb.pstore_location property 389
ejb.jss.pstore_location property 389
ejb.logging.doFullExceptionLogging

property 389
ejb.logging.verbose property 389
ejb.mdb.threadMax property 390
ejb.mdb.threadMaxIdle property 390
ejb.mdb.threadMin property 390
ejb.module_preload property 387
ejb.no_sleep property 387
ejb.sfsb.aggressive_passivation property 388
ejb.sfsb.factory_name property 388
ejb.sfsb.keep_alive_timeout property 388
ejb.system_classpath_first property 388
ejb.trace_container property 387
ejb.use_java_serialization property 385
ejb.useDynamicStubs property 386
ejb.usePKHashCodeAndEquals property 387
ejb.xml_validation property 387
ejb.xml_verification property 387

EJB container 13

properties 385
properties migration 403

ejb.classload_policy for EJB Container 387
ejb.collect.display_detail_statistics for EJB

Container 390
ejb.collect.display_statistics for EJB Container 389
ejb.collect.statistics for EJB Container 390
ejb.collect.stats_gather_frequency for EJB

Container 389
ejb.copy_arguments for EJB Container 385
ejb.default_transaction_attribute for EJBs 392
ejb.findByPrimaryKeyBehavior

for Entity Beans 394
ejb.finder.no_custom_marshal for EJB

Container 389
ejb.interop.marshal_handle_as_ior for EJB

Container 389
ejb.jdb.pstore_location for EJB Container 389
ejb.jsec.doInstanceBasedAC

for Stateful Session Beans 398
ejb.jss.pstore_location for EJB Container 389
ejb.logging.doFullExceptionLogging for EJB

Container 389
ejb.logging.verbose for EJB Container 389
ejb.maxBeansInCache for Entity Beans 392
ejb.maxBeansInPool for Entity Beans 392
ejb.maxBeansInTransactions for Entity Beans 393
ejb.mdb.init-size

Message Driven Beans 395
ejb.mdb.local_transaction_optimization

for Message Driven Beans 395
ejb.mdb.maxMessagesPerServerSession

for Message Driven Beans 395
ejb.mdb.max-size

Message Driven Beans 395
ejb.mdb.rebindAttemptCount

for Message Driven Beans 396
ejb.mdb.rebindAttemptInterval

for Message Driven Beans 396
ejb.mdb.threadMax for EJB Container 390
ejb.mdb.threadMaxIdle for EJB Container 390
ejb.mdb.threadMin for EJB Container 390
ejb.mdb.unDeliverableQueue

for Message Driven Beans 397
ejb.mdb.unDeliverableQueueConnectionFactory

for Message Driven Beans 396
ejb.mdb.use_jms_threads

for Message Driven Beans 395
ejb.mdb.wait_timeout

Message Driven Beans 395
ejb.module_preload for EJB Container 387
ejb.no_sleep for EJB Container 387
ejb.security.transportType

for EJB Security 399

Index 429

ejb.security.trustInClient
for EJB Security 399

ejb.sfsb.aggressive_passivation for EJB
Container 388

ejb.sfsb.factory_name for EJB Container 388
ejb.sfsb.instance_max

for Stateful Session Beans 398
ejb.sfsb.instance_max_timeout

for Stateful Session Beans 398
ejb.sfsb.keep_alive_timeout for EJB

Container 388
ejb.sfsb.passivation_timeout

for Stateful Session Beans 398
ejb.system_classpath_first for EJB Container 388
ejb.trace_container for EJB Container 387
ejb.transactionCommitMode

for Entity Beans 393
ejb.transactionManagerInstanceName

for Message Driven Beans 393, 397
ejb.use_java_serialization for EJB Container 385
ejb.useDynamicStubs for EJB Container 386
ejb.usePKHashCodeAndEquals for EJB

Container 387
ejb.xml_validation for EJB Container 387
ejb.xml_verification for EJB Container 387
EJBException 210
EJB-QL 179

dynamic queries 184
GROUP BY extension 183
optimizing SQL 185
ORDER BY extension 182
return types for aggregate functions 181
selecting a cmp-field 179
selecting a collection of cmp-fields 179
selecting a ResultSet 180
specifying custom SQL 185
sub-queries 184
using aggregate functions 180

ejb-ref-name 117, 119
ejb-refs 119
enable_loadbalancing attribute 82
enterprise bean

bean-managed transaction 204
container-managed transaction 204
get information about 109
home interface

locate 102
metadata 109
remote interface

reference to 103
remove instances of 106
transaction management 203

enterprise bean methods
to invoke 105

Enterprise JavaBeans
common properties 392
ejb.default_transaction_attribute property 392
Entity Bean properties 392
MDB properties 395
properties index 392
security properties 399
Stateful Session Bean properties 398

entity bean
create methods 105
find methods 104
remote interface

create methods 105
find methods 104
reference to 104
remove methods 105

remove instances of 106
remove methods 105

Entity Beans
EJB 2.0 149
ejb.findByPrimaryKeyBehavior property 394
ejb.maxBeansInCache property 392
ejb.maxBeansInPool property 392
ejb.maxBeansInTransactions property 393
ejb.transactionCommitMode property 393

entity beans
interfaces 150
packaging requirements 150
primary keys 191
re-entrancy 151
XML representation DTD 407

ENV variables
Borland web containert 36
Tomcat-based web container 36
web container 36

environment variables
web container 36

error recovery
JMS 218

event log
generating a stack trace 345

examples 333
building 336
deploying 337
running 337
troubleshooting 337
undeploying 337
web services 95

executing iastool from a script 372
existing applications 122

F
failover

430 BES Developer ’s Guide

IIOP connector 70, 71
JSS 72
web component clustering 69

fault tolerance
IIOP connector 70, 71
MDB 218
web component clustering 69

-file option
executing iastool from a script 372, 373

file option
executing iastool from a script 373

find methods 104

G
genclient

iastool command 346
gendeployable

iastool command 347
genstubs

iastool command 348

H
handle 106
Help Topics

accessing 5
home interface

locate 102
htdocs Apache directory 29
HTTP sessions

Apache web server 74
httpd.conf 27

IIOP and CORBA 80
location 27

httpd.conf file
configuration syntax 28
IIOP connector configuration 43

I
-iastool

executing from a script 372
iastool

compilejsp 341
compress 342
deploy 343
dumpstack 345
genclient 346
gendeployable 347
genstubs 348
info 349
kill 350
listhubs 353
listpartitions 352

listservices 354
merge 355
migrate 357
patch 357
ping 358
pservice 360
removestubs 362
restart 362
start 364, 365
stop 366
uncompress 368
undeploy 369
usage 370
verify 370

icons Apache directory 29
IIOP

adding new CORBA objects 81
CORBA 80, 81

IIOP connectior
server.xml 41

IIOP connector 41
adding a CORBA instance 80
adding clusters 47
adding CORBA instances 81
adding web applications 48
Apache configuration 43
Apache configuration files 80
Apache web server 41
clustering 70
configuration files 47
CORBA 77
failover 70, 71
fault tolerance 70, 71
load balancing 70
mapping CORBA URLs 80
mapping URIs 47
mapping URIs to CORBA servers 82
smart session handling 70, 72
UriMapFile.properties 48, 82
web components 70
web container 41
web server 41
WebClusters.properties file 47, 81

IIOP plugin 41
IIOP redirector 36

adding clusters 59
adding web applications 61
configuration 59
configuration files 59
IIS web server 55
mapping URIs 59
UriMapFile.properties 61
WebClusters.properties file 59

IIS

Index 431

adding new clusters 59
adding new web applications 61

IIS redirector 36
directories 36

IIS web server
connecting to web container 55
IIOP redirector 36, 55
IIOP redirector configuration 55, 59
IIOP redirector directory structure 36
versions supported 36

IIS/IIOP redirector
ISAPI filter 55
virtual directory 55

info
iastool command 349

internet
accessing CORBA 77

ISAPI filter
IIS/IIOP redirector 55

J
J2EE

VisiClient 115
VisiClient environment 115

J2EE APIs
supported 14

J2EE connector architecture 271
JAR files

deploying 343
server-side deployable 347
undeploying 369

Java Server Pages
precompiling 341

Java Session Service
automatic storage 73
configuration 66
JDataStore 66
JDBC datasource 66
jss.debug property 403
jss.factoryName property 401
jss.maxIdle property 402
jss.pstore property 401
jss.softCommit property 402
jss.userName property 402
jss.workingDir property 401
programmatic storage 73
properties 66, 67, 399
session management 63
storage implementation 73
web components 73

Java Session Service (JSS) 63
Java Transaction API 207
Java Transaction Service 197

jts.allow_unrecoverable_completion
property 404

jts.default_max_timeout property 405
jts.default_timeout property 405
jts.no_global_tids property 404
jts.no_local_tids property 404
jts.timeout_enable property 404
jts.timeout_interval property 405
jts.trace property 405
jts.transaction_debug_timeout property 405
properties 404
system properties migration 405

Java types
mapped to SQL types 146, 189

Java2WSDL tool
web services 96

JavaServer Pages (JSPs) 30
JDataStore 13

DataExpress 63
JDBC 227

configuring datasources 228
configuring properties 232
connecting from deployed modules 242
datasources 227
debugging 238
deployment descriptor contruction 240
enabling and disabling datasources 224
JDBC 1.x drivers 239

JDBC Connection Pooling 117
JDBC datasource

and JSS 66
JMS 245

clustered service 260
configuring 246
configuring connection factories 246
connecting from deployed modules 250
connection factories 245
connection recovery 218
creating queues 247
deployment descriptor elements 249
error recovery 218
other provider, runtime pluggability 254
runtime pluggability 254
security 249, 263
security enabling 263
transactions 247
using other JMS services 256

JMS provider
clustering 217

JMS providers
foreign JMS products 256, 259
required libraries 259
required properties 256

JMS services

432 BES Developer ’s Guide

Sonic 263
Tibco 254

JNDI
serial context persistent store 225
serial context provider 224
support 109

jndi-definitions module 222
jndi-definitions.xml

DTD 421
JSP

definition 30
JSS 63

automatic storage 73
configuration 66
connecting to web containers 37
failover 72
JDataStore 66
JDBC datasource 66
programmatic storage 73
properties 66, 67
session management 63
storage implementation 73
web components 73

jss.debug for Java Session Service 403
jss.factoryName

for Java Session Service 401
jss.maxIdle

for Java Session Service 402
jss.pstore for Java Session Service 401
jss.softCommit

for Java Session Service 402
jss.userName

for Java Session Service 402
jss.workingDir

for Java Session Service 401
JTA 207
JTS

two-phase commit 197
jts.allow_unrecoverable_completion for Java

Transaction Service 404
jts.default_max_timeout for Java Transaction

Service 405
jts.default_timeout for Java Transaction

Service 405
jts.no_global_tids for Java Transaction

Service 404
jts.no_local_tids for Java Transaction Service 404
jts.timeout_enable for Java Transaction

Service 404
jts.timeout_interval for Java Transaction

Service 405
jts.trace for Java Transaction Service 405
jts.transaction_debug_timeout for Java

Transaction Service 405

K
key cache size 194
kill

iastool command 350

L
listhubs

iastool command 353
listpartitions

iastool command 352
listservices

iastool command 354
load balancing 70

corbaloc-based 70
IIOP connector 70
osagent-based 70
web component clustering 69

login information
protecting 372
running from a script file 372

logs Apache directory 29
logs IIS directory 37

M
managed objects

Partitions 21
managed sign-on

VisiConnect Container 277
Manifest 123
Manifest file 123
manifest file 123
MDB

connection recovery 218
dead queue 219
error recovery 218
fault tolerance 218
JMS provider clustering 217
queue configuration 219
rebind attempt 218

merge
iastool command 355

Message Driven Beans
ejb.mdb.init-size 395
ejb.mdb.local_transaction_optimization

property 395
ejb.mdb.maxMessagesPerServerSession

property 395
ejb.mdb.max-size 395
ejb.mdb.rebindAttemptCount property 396
ejb.mdb.rebindAttemptInterval property 396
ejb.mdb.unDeliverableQueue property 397

Index 433

ejb.mdb.unDeliverableQueueConnectionFactor
y property 396

ejb.mdb.use_jms_threads property 395
ejb.mdb.wait_timeout 395
ejb.transactionManagerInstanceName

property 393, 397
Message-Driven Beans 213

client view of 214
clustering 217
connecting to JMS connection factories 215
EJB 2.0 specification and 214
failover and fault tolerance 217
JMS and 213
transactions 220

message-driven beans
XML representation DTD 407

metadata 109
Microsoft Internet Information Services web server

(see IIS) 36
migrate

iastool command 357

N
named sequence table

primary key generation 193
Naming service 13
Newsgroups 8

O
one-phase commit

VisiConnect 276
online Help Topics

accessing 5
optimistic concurrecy 153

UpdateAllFields 155
UpdateModifiedFields 155
VerifyAllFields 156
VerifyModifiedFields 155

optimistic concurrency
SelectForUpdate 155
SelectForUpdateNoWAIT 155

optimisticConcurrencyBehavior
table properties 175

osagent
and web components 37

P
Partition

server.xml 29
Borland web container ENV variables 36
server.xml 41

services 12
Tomcat configuration files 41
web container env variables 36
web container service 29
web services 85, 86

Partition Lifecycle Interceptors 13, 24
deploying 270
interception points 24
interceptor class 268
interceptor class example 269
module-borland.xml DTD 267

Partition Services
Borland web container 29
Java Session Service (JSS) 63

Partition services 22
configuring 23
statistics gathering 23

partition.xml reference 375
Partitions 12, 17

classloading policies 24
configuring in XML 375
configuring properties 22
creating 18
deploying archives 22
deploying JAR files 343
lifecycle interceptors 13, 24
logging 21
overview 17
Partition services 22
partition.xml reference 375
running 19
running managed objects 21
running unmanaged 19
security management 24
undeploying JAR files 369

password
credential storage 285

password information
protecting 372
running from a script file 372

patch
iastool command 357

PDF documentation 5
persistence schema

DTD 407
pessimistic concurrency 153
ping

iastool command 358
plugin

IIOP 41
precompiling JSPs 341
primary keys 191

automatic generation 193
generating 191, 192, 193

434 BES Developer ’s Guide

key cache size 194
named sequence table 193

process
Partitions 17

process()method
and ReqProcessor IDL 79

products 1
properties

container-level 385
EJB 385, 392
EJB common 392
EJB customization 390
EJB security 399
ejb.classload_policy 387
ejb.collect.display_detail_statistics 390
ejb.collect.display_statistics 389
ejb.collect.statistics 390
ejb.collect.stats_gather_frequency 389
ejb.copy_arguments 385
ejb.default_transaction_attribute 392
ejb.findByPrimaryKeyBehavior 394
ejb.finder.no_custom_marshal 389
ejb.interop.marshal_handle_as_ior 389
ejb.jdb.pstore_location 389
ejb.jsec.doInstanceBasedAC 398
ejb.jss.pstore_location 389
ejb.logging.doFullExceptionLogging 389
ejb.logging.verbose 389
ejb.maxBeansInCache 392
ejb.maxBeansInPool 392
ejb.maxBeansInTransactions 393
ejb.mdb.init-size 395
ejb.mdb.local_transaction_optimization 395
ejb.mdb.maxMessagesPerServerSession 395
ejb.mdb.max-size 395
ejb.mdb.rebindAttemptCount 396
ejb.mdb.rebindAttemptInterval 396
ejb.mdb.threadMax 390
ejb.mdb.threadMaxIdle 390
ejb.mdb.threadMin 390
ejb.mdb.unDeliverableQueue 397
ejb.mdb.unDeliverableQueueConnectionFactor

y 396
ejb.mdb.use_jms_threads 395
ejb.mdb.wait_timeout 395
ejb.module_preload 387
ejb.no_sleep 387
ejb.security.transportType 399
ejb.security.trustInClient 399
ejb.sfsb.aggressive_passivation 388
ejb.sfsb.factory_name 388
ejb.sfsb.instance_max 398
ejb.sfsb.instance_max_timeout 398
ejb.sfsb.keep_alive_timeout 388

ejb.sfsb.passivation_timeout 398
ejb.system_classpath_first 388
ejb.trace_container 387
ejb.transactionCommitMode 393
ejb.transactionManagerInstanceName 393,

397
ejb.use_java_serialization 385
ejb.useDynamicStubs 386
ejb.usePKHashCodeAndEquals 387
ejb.xml_validation 387
ejb.xml_verification 387
Entity Beans 392
Java Session Service 67
JSS 67, 399
jss.debug 403
jss.factoryName 401
jss.maxIdle 402
jss.pstore 401
jss.softCommit 402
jss.userName 402
jss.workingDir 401
JTS 404
JTS migration 405
jts.allow_unrecoverable_completion 404
jts.default_max_timeout 405
jts.default_timeout 405
jts.no_global_tids 404
jts.no_local_tids 404
jts.timeout_enable 404
jts.timeout_interval 405
jts.trace 405
jts.transaction_debug_timeout 405
MDBs 395
migration 403
Session Service 67
Stateful Session Beans 398

Providers
web services 86, 88, 89, 90, 92
web services examples 95

proxy Apache directory 29
pservice

iastool command 360

R
RA managed sign-on 277
realm information

protecting 372
running from a script file 372

redirector
IIS/IIOP configuration 59

References
links 120

remote interface

Index 435

obtain reference to 103
removestubs

iastool command 362
ReqProcessor IDL 78

process()method 79
ReqProcessor Interface Definition Language

(IDL) 77
resource adapters 285

VisiConnect 287
resource references

DTD 407
res-ref-name 117
res-ref-names 119
restart

iastool command 362

S
script file

-file option 373
passing a file to iastool 373
piping a file to iastool 373
running iastool utilities from 372

Security
ejb.security.transportType property 399
ejb.security.trustInClient property 399

security
in Partitions 24
JMS 249
policy ra.xml processing 285

server.xml 29
IIOP connector configuration 41

server.xml file 41
server-config.wsdd file

web services 93, 94
server-side stub file

generating 348
Service Broker

web services 85
Service Provider

web services 85
Service Requestor

web services 85
servlet 30
session bean

remote interface
reference to 103

remove instances of 106
transaction attributes 206

session beans
XML representation DTD 407

session management 63
web component clustering 69

Session Service

automatic storage 73
programmatic storage 73
properties 67
storage implementation 73
web components 73

session service 14
Smart Agent 37

and web components 37
smart session handling

IIOP connector 70, 72
SOAP

Web services 92
web services 85

Software
updates 8

SonicMQ
connecting from application components 250
deployment descriptor elements 249

SQL types
mapped to Java types 146, 189

square brackets 6
stack trace

generating 345
start

iastool command 364, 365
stateful service 69
Stateful Session Beans

ejb.jsec.doInstanceBasedAC property 398
ejb.sfsb.instance_max property 398
ejb.sfsb.instance_max_timeout property 398
ejb.sfsb.passivation_timeout property 398

Stateful Sessions
aggressive passivation 128
caching 127
passivation 127
secondary storage 129
simple passivation 128
stateful storage timeout 129

stateless service 69
stateless session bean

exposing as a web service 87
stop

iastool command 366
stub file

generating 348
Support

contacting 7
symbols

ellipsis ... 6
square brackets [] 6
vertical bar | 6

system configuration information 349
system contracts

VisiConnect 273

436 BES Developer ’s Guide

T
table properties

optimisticConcurrencyBehavior 175
XML representation DTD 407

Technical Support
contacting 7

thread dump
generating 345

Tibco
clustered service 260
runtime pluggability 254
Tibco Admin Console 256

Tomcat web container
Cocoon 99

Tomcat-based web container 29
adding environment variables 36
configuration files 29
connecting to JSS 37
ENV variables 36
IIOP configuration 41
IIOP connector 41
JavaServer Pages 30
server.xml 29, 41
servlets 30

transaction
bean-managed 204
characteristics of 195
client management of 108
commit protocol 197
container support for 196
container-managed 203, 204
declarative management of 203
definition of 195
distributed 197

two-phase commit 197
EJBException 210
enterprise bean management of 203
exceptions 209

application-level 210
continuing 210
handling of 210
rollback 210
system-level 210

flat 196
Java Transaction API 207
Java Transaction Service 197
Mandatory attribute 206
nested 196
Never attribute 206
NotSupported attribute 206
recovery 197
Required attribute 206
RequiresNew attribute 206

rollback 210
Supports attribute 206
transaction attributes 206
two-phase commit 197

transaction management
VisiConnect 275

transaction manager 14
VisiTransact 197

transaction properties 197
transactions

two-phase commit 198
VisiConnect 275

two-phase commit
best practices 198
completion flag 197
distributed transactions 197
transactions 198
tunneling databases 198
VisiTransact 197
when to use 198

type mapping 146, 189

U
UDDI

web services 85
uncompress

iastool command 368
undeploy

iastool command 369
unmanaged objects

Partitions 19
UriMapFile.properties 48, 61, 82

Apache to CORBA connections 81
usage

iastool command 370
UserTransaction interface 108, 207
using

VisiConnect 287

V
verify

iastool command 370
VisiBroker

overview 3
Standalone 1

VisiBroker Edition 1
VisiClient 121

about 115
deployment descriptors 116
example 121

VisiClient Container
embed into existing application 122

VisiConnect

Index 437

component managed sign-on 277
connection management 274
description 281
managed sign-on 277
overview 287
ra managed sign-on 277
security 276

VisiConnect container
overview 287
partition service 289
standalone process 289

W
WAR file 29, 30, 31

containing web services 93
web services 93, 94
WEB-INF directory 31

WAR files
precompiling Java Server Pages 341

web application
WAR file 31
WEB-INF directory 31

web application archive
DTD 423

Web application archive (WAR) file 31
Web Application Archive File (WAR file) 29, 30
web applications

XML DTD 423
web component connection

modifying 41
web components 27

and Smart Agent (osagent) 37
clustering 69, 73

web container 14, 29
adding environment variables 36
Cocoon 99
configuration files 29
connecting to JSS 37
ENV variables 36
IIOP configuration 41
IIOP connector 41
JavaServer Pages 30
server.xml 29, 41
servlets 30

Web Edition 2
Web module 30
web server

.httaccess files 28
Apache 27
connecting to CORBA 77
directory structure 29
IIOP configuration 47, 80
IIOP connector 41

Web Service Deployment Descriptor (WSDD)
web services 92, 93

Web service pProviders 90
Web service Providers 86, 89, 95
Web service providers 92
Web Services

server-config.wsdd file 93
Web services 85

Apache ANT tool 96
Apache Axis 86, 88
Apache Axis Admin tool 97
Apache Axis samples 96
architecture 85
Axis Toolkit libraries 94
creating a WAR 94
deploy.wssd file 89
EJB provider 89, 95
examples 95
Java2WSDL tool 96
MDB provider 92
overview 85
Partitions 86
provider examples 95
Providers 92
providers 88, 89, 90, 92
RPC provider 89
server-config.wsdd file 94
Service Broker 85
Service Providers 85
service providers 86, 89
Service Requestor 85
SOAP 85, 92
stateless session bean 87
tools 96
UDDI 85
VisiBroker provider 90
WAR file 93
WSDD 92, 93
WSDL2Java tool 97
XML 88, 92
xml 85

web.xml 31
web-borland.xml 29, 31, 35
WebClusters.properties

Apache to CORBA connections 81
WebClusters.properties file 47, 59, 81
webcontainer_id attribute 82
WEB-INF directory 31
World Wide Web

Borland documentation on the 8
Borland newsgroups 8
Borland updated software 8

WSDL2Java tool
web services 97

438 BES Developer ’s Guide

X
XML

DTD 117, 118
VisiClient 116

grammar 117
web application DTD 423
Web services 92
web services 85, 88

xml
Cocoon 99

	Developer’s Guide
	Contents
	Tables
	Figures
	Chapter 1: Introduction to Borland Enterprise Server
	BES Product overview
	Web Edition
	Web Edition features

	VisiBroker Edition
	VisiBroker Edition features

	VisiBroker Standalone (installation option)
	Team Edition
	Team Edition features

	Borland Enterprise Server “AppServer Edition”
	Borland Enterprise Server “AppServer Edition” features

	Borland Enterprise Server (BES) Documentation
	Accessing the BES Standalone online Help Topics
	Accessing online Help Topics from within BES

	Documentation conventions
	Platform conventions

	Contacting Borland support
	Online resources
	World Wide Web
	Borland newsgroups

	Chapter 2: Borland Enterprise Server overview and architecture
	BES architecture overview
	BES services overview
	Web Server
	JMS
	Smart Agent
	2PC Transaction Service
	Management

	The Partition and its services
	Connector Service
	EJB Container
	JDataStore Server
	Lifecycle Interceptor Manager
	Naming Service
	Session Storage Service
	Transaction Manager
	Web Container

	Borland Enterprise Server and J2EE APIs
	JDBC
	Java Mail
	JTA
	JAXP
	JNDI
	RMI-IIOP
	Other Technologies
	OptimizeIt Profiler

	Chapter 3: Partitions
	Partitions Overview
	Creating Partitions
	Running Partitions
	Running unmanaged Partitions
	Running managed Partitions
	Partition logging

	Configuring Partitions
	Application archives
	Working with Partition services
	Partition handling of services
	Configuring individual services

	Gathering Statistics
	Security management and policies
	Classloading policies
	Partition Lifecycle Interceptors

	Chapter 4: Web components
	Apache web server implementation
	Apache configuration
	Apache configuration syntax
	Using the .htaccess files
	Apache directory structure

	Borland web container implementation
	Servlets and JavaServer Pages
	Typical web application development process
	Web application archive (WAR) file
	Borland-specific DTD
	Adding ENV variables for the web container

	Microsoft Internet Information Services (IIS) web server
	IIS/IIOP redirector directory structure

	Smart Agent implementation
	Connecting an Apache web server to a Borland web container
	Connecting Borland web containers to Java Session Service

	Chapter 5: Web server to web container connectivity
	Apache to Borland web container connectivity
	Modifying the Borland web container IIOP configuration
	Modifying the IIOP configuration in Apache
	Additional Apache IIOP directives

	Apache IIOP connector configuration
	Adding new clusters
	Adding new web applications

	Large data transfer
	Downloading large data
	Implementing chunked download
	Enabling chunked download
	Known content length versus unknown
	Chunked download with known content length
	Chunked download with unknown content length
	Browsers supporting only the HTTP 1.0 protocol
	Implementing non-chunked download

	Uploading large data
	Implementing chunked upload
	Enabling chunked upload
	Changing the upload buffer size
	Known content length versus unknown
	Chunked upload with known content length
	Chunked upload with unknown content length
	Implementing non-chunked upload

	IIS to Borland web container connectivity
	Modifying the IIOP configuration in the Borland web container
	Microsoft Internet Information Services (IIS) server-specific IIOP configuration
	Windows 2000/IIS version 5.0
	Windows XP/IIS version 5.1

	IIS/IIOP redirector configuration
	Adding new clusters
	Adding new web applications

	Chapter 6: Java Session Service (JSS) configuration
	Session management with JSS
	Managing and configuring the JSS
	Configuring the JSS Partition service

	Chapter 7: Clustering web components
	Stateless and stateful connection services
	The Borland IIOP connector
	Load balancing support
	OSAgent based load balancing
	Corbaloc based load balancing

	Fault tolerance (failover)
	Smart session handling

	Setting up your web container with JSS
	Modifying a Borland web container for failover
	Session storage implementation
	Programmatic implementation
	Automatic implementation

	Using HTTP sessions

	Chapter 8: Apache web server to CORBA server connectivity
	Web-enabling your CORBA server
	Determining the urls for your CORBA methods
	Implementing the ReqProcessor IDL in your CORBA server
	The process() method

	Configuring your Apache web server to invoke a CORBA server
	Apache IIOP configuration
	Adding new CORBA servers (clusters)
	Mapping URIs to defined clusters

	Chapter 9: Borland Enterprise Server Web Services
	Web Services Overview
	Web Services Architecture

	Web Services and Partitions
	Web Service providers
	Specifying web service information in a deploy.wsdd file
	Java:RPC provider
	Java:EJB provider
	Java:VISIBROKER provider
	Java:MDB provider

	How Borland Web Services work
	Web Service Deployment Descriptors
	Creating a server-config.wsdd file
	Viewing and Editing WSDD Properties

	Packaging Web Service Application Archives
	Borland Web Services examples
	Using the Web Service provider examples
	Steps to build, deploy, and run the examples

	Apache Axis Web Service samples

	Tools Overview
	Apache ANT tool
	Java2WSDL tool
	WSDL2Java tool
	Axis Admin tool

	Chapter 10: Web applications bundled with BES
	About Cocoon

	Chapter 11: Writing enterprise bean clients
	Client view of an enterprise bean
	Initializing the client
	Locating the home interface
	Obtaining the remote interface
	Session beans
	Entity beans
	Find methods and primary key class
	Create and remove methods

	Invoking methods
	Removing bean instances
	Using a bean's handle

	Managing transactions
	Getting information about an enterprise bean
	Support for JNDI
	EJB to CORBA mapping
	Mapping for distribution
	Mapping for naming
	Mapping for transaction
	Mapping for security

	Chapter 12: The VisiClient Container
	Application Client architecture
	Packaging and deployment
	Benefits of the VisiClient Container

	Document Type Definitions (DTDs)
	Example XML using the DTD

	Support of references and links
	Using the VisiClient Container
	VisiClient Container usage example
	Running a J2EE client application on machines not running BES

	Embedding VisiClient Container functionality into an existing application
	Use of Manifest files
	Example of a Manifest file

	Exception handling
	Using resource-reference factory types
	Other features
	Using the Client Verify tool

	Chapter 13: Caching of Stateful Session Beans
	Passivating Session Beans
	Simple Passivation
	Aggressive Passivation

	Sessions in secondary storage
	Setting the keep alive timeout in Containers
	Setting the keep alive timeout for a particular session bean

	Chapter 14: Entity Beans and CMP 1.1 in Borland Enterprise Server
	Entity Beans
	Container-managed persistence and Relationships
	Implementing an entity bean
	Packaging Requirements
	Entity Bean Primary Keys
	Generating primary keys from a user class
	Generating primary keys from a custom class
	Support for composite keys

	Reentrancy

	Container-Managed Persistence in Borland Enterprise Server
	BES CMP engine's CMP 1.1 implementation
	Providing CMP metadata to the Container
	Constructing finder methods
	Constructing the where clause
	Parameter substitution
	Compound parameters
	Entity beans as parameters
	Specifying relationships between entities
	Container-managed field names

	Setting Properties
	Using the Deployment Descriptor Editor
	J2EE 1.2 Entity Bean using BMP or CMP 1.1

	Container-managed data access support
	Using SQL keywords
	Using null values
	Establishing a database connection
	Container-created tables
	Mapping Java types to SQL types

	Automatic table mapping

	Chapter 15: Entity Beans and Table Mapping for CMP 2.0
	Entity Beans
	Container-managed persistence and Relationships
	Packaging Requirements
	A note on reentrancy

	Container-Managed Persistence in Borland Enterprise Server
	About the Persistence Manager
	Borland CMP engine's CMP 2.0 implementation
	Optimistic Concurrency Behavior
	Pessimistic Behavior
	Optimistic Concurrency
	SelectForUpdate
	SelectForUpdateNoWAIT
	UpdateAllFields
	UpdateModifiedFields
	VerifyModifiedFields
	VerifyAllFields

	Persistence Schema
	Specifying tables and datasources
	Basic Mapping of CMP fields to columns
	Mapping one field to multiple columns
	Mapping CMP fields to multiple tables
	Specifying relationships between tables

	Using cascade delete and database cascade delete
	Database cascade delete support

	Chapter 16: Using BES Properties for CMP 2.x
	Setting Properties
	Using the Deployment Descriptor Editor
	The EJB Designer
	J2EE 1.3 Entity Bean

	Setting CMP 2.x Properties
	Editing Entity properties
	Editing Table and Column properties
	Entity Properties
	Table Properties
	Column Properties
	Security Properties

	Chapter 17: EJB-QL and Data Access Support
	Selecting a CMP Field or Collection of CMP Fields
	Selecting a ResultSet

	Aggregate Functions in EJB-QL
	Data Type Returns for Aggregate Functions

	Support for ORDER BY
	Support for GROUP BY
	Sub-Queries
	Dynamic Queries
	Overriding SQL generated from EJB-QL by the CMP engine

	Container-managed data access support
	Support for Oracle Large Objects (LOBs)
	Container-created tables

	Chapter 18: Generating Entity Bean Primary Keys
	Generating primary keys from a user class
	Generating primary keys from a custom class
	Implementing primary key generation by the CMP engine
	Oracle Sequences: using getPrimaryKeyBeforeInsertSql
	SQL Server: using getPrimaryKeyAfterInsertSql and ignoreOnInsert
	JDataStore JDBC3: using useGetGeneratedKeys
	Automatic primary key generation using named sequence tables
	Key cache size

	Chapter 19: Transaction management
	Understanding transactions
	Characteristics of transactions
	Transaction support

	Transaction manager services
	Distributed transactions and two-phase commit
	When to use two-phase commit transactions
	EJBs and 2PC transactions
	Example runtime scenarios

	Declarative transaction management in Enterprise JavaBeans
	Understanding bean-managed and container-managed transactions
	Local and Global transactions
	Transaction attributes

	Programmatic transaction management using JTA APIs
	JDBC API Modifications
	Modifications to the behavior of the JDBC API
	Overridden JDBC methods

	Handling of EJB exceptions
	System-level exceptions
	Application-level exceptions
	Handling application exceptions
	Transaction rollback
	Options for continuing a transaction

	Chapter 20: Message-Driven Beans and JMS
	JMS and EJB
	EJB 2.0 Message-Driven Bean (MDB)

	Client View of an MDB
	Naming Support and Configuration
	Connecting to JMS Connection Factories from MDBs

	Clustering of MDBs
	Error Recovery
	Rebinding
	Redelivered messages

	MDBs and transactions

	Chapter 21: Connecting to Resources with BES: using the Definitions Archive (DAR)
	JNDI Definitions Module
	Migrating to DARs from previous versions of Borland Enterprise Server

	Creating and Deploying a new JNDI Definitions Module
	Disabling and Enabling a JNDI Definitions Module
	Packaging JNDI Definitions Modules in an application EAR
	JNDI service provider for hosting resource factories
	Configuring persistent storage locations for Serial Context

	Chapter 22: Using JDBC
	Configuring JDBC Datasources
	Deploying Driver Libraries

	Defining the Connection Pool Properties for a JDBC Datasource
	Getting debug output
	Descriptions of Borland Enterprise Server's pooled connection states
	Support for older JDBC 1.x drivers
	Advanced Topics for Defining JDBC Datasources
	Connecting to JDBC Resources from Application Components

	Chapter 23: Using JMS
	Configuring JMS Connection Factories and Destinations
	Queue creation
	Enabling Sonic

	JMS and Transactions
	Enabling the JMS services security
	Advanced Concepts for Defining JMS Connection Factories
	Connecting to JMS Connection Factories from Application Components
	Connecting to JMS Connection Factories from components other than MDBs

	Chapter 24: JMS provider pluggability
	Runtime pluggability
	Configuring JMS admin objects (connection factories, queues and topics)
	Service management

	Runtime pluggability
	Tibco and Sonic
	Other JMS providers

	Configuring admin objects
	Tibco and Sonic
	Tibco Admin Console

	Configuring admin objects for other JMS providers
	Service management for supported and other JMS providers
	Other JMS providers
	Required libraries for other JMS providers

	Added value for Tibco
	Enabling Sonic

	Creating a clustered JMS service
	Tibco
	Integrating clustered Tibco servers into BES
	Sonic

	Enabling security for JMS
	Tibco
	Enabling security for Tibco:
	Disabling security for Tibco:

	Sonic
	Enabling security for Sonic:
	Disabling security for Sonic:

	Chapter 25: Implementing Partition Interceptors
	Defining the Interceptor
	Creating the Interceptor Class
	Creating the JAR file
	Deploying the Interceptor

	Chapter 26: VisiConnect overview
	J2EE™ Connector Architecture
	Components
	System Contracts
	Connection Management
	Transaction Management
	One-Phase Commit Optimization

	Security Management
	Component-Managed Sign-on
	Container-Managed Sign-on
	EIS-Managed Sign-on
	Authentication Mechanisms
	Security Map
	Security Policy Processing

	Common Client Interface (CCI)
	Packaging and Deployment
	VisiConnect Features
	VisiConnect Container
	Local and Remote Connectors Support
	Additional Classloading Support
	Secure Password Credential Storage
	Connection Leak Detection
	Security Policy Processing of ra.xml Specifications

	Resource Adapters

	Chapter 27: Using VisiConnect
	VisiConnect Container
	Container Overview
	Container built on top of VisiBroker and RMI-IIOP
	Container is a CORBA Server
	Container as a partition service and standalone process

	Connection Management
	Configuring Connection Properties
	Minimizing the Runtime Performance Cost Associated with Creating Managed Connections
	Controlling Connection Pool Growth
	Controlling System Resource Usage
	Detecting Connection Leaks
	Garbage Collection
	Idle Timer

	Security Management with the Security Map
	Authorization Domain
	Default Roles
	Generating a Resource Vault

	Resource Adapter Overview
	Development Overview
	Editing existing Resource Adapters

	Resource Adapter Packaging

	Deployment Descriptors for the Resource Adapter
	Configuring ra.xml
	Configuring the Transaction Level Type

	Configuring ra-borland.xml
	Anatomy of ra-borland.xml
	Configuring the <ra-link-ref> element
	Configuring the Security Map

	Developing the Resource Adapter
	Connection Management
	Transaction Management
	Security Management
	Packaging and Deployment

	Deploying the Resource Adapter
	The ra-borland.xml deployment descriptor DTD
	Editing Descriptors
	DOCTYPE Header Information

	Element Hierarchy
	The DTD

	Application Development Overview
	Developing Application Components
	Common Client Interface (CCI)
	Managed Application Scenario
	Non-Managed Application Scenario
	Code Excerpts - Programming to the CCI

	Deployment Descriptors for Application Components
	EJB 2.x example
	EJB 1.1 example

	Other Considerations
	Converting a Local Connector to a Remote Connector
	Conversion

	Working with Poorly Implemented Resource Adapters
	Examples of Poorly Implemented Resource Adapters
	Working with a Poor Resource Adapter Implementation

	Chapter 28: Apache Ant and running BES examples
	Syntax and general usage
	Translating BES commands into Ant tasks
	Basic Syntax
	Omitting attributes
	Multiple File Arguments

	Building the example
	Deploying the example
	Running the example
	Undeploying the example
	Troubleshooting

	Chapter 29: iastool command-line utility
	Using the iastool command-line tools
	compilejsp
	compress
	deploy
	dumpstack
	genclient
	gendeployable
	genstubs
	info
	kill
	listpartitions
	listhubs
	listservices
	merge
	migrate
	patch
	ping
	pservice
	removestubs
	restart
	setmain
	start
	stop
	uncompress
	undeploy
	usage
	verify

	Executing iastool command-line tools from a script file
	Piping a file to the iastool utility
	Passing a file to the iastool utility

	Chapter 30: Partition XML reference
	<partition> element
	<statistics.agent> element
	<security> element
	<container> element
	<user.orb> element
	<management.orb> element
	<shutdown> element
	<services> element
	<service> element
	<properties> element
	<archives> element
	<archive> element

	Chapter 31: EJB, JSS, and JTS Properties
	EJB Container-level Properties
	EJB Customization Properties: Deployment Descriptor level
	Complete Index of EJB Properties
	Properties common for any kind of EJB
	Entity Bean Properties (applicable to all types of entities - BMP, CMP 1.1 and CMP 2)
	Message Driven Bean Properties
	Stateful Session Bean Properties
	EJB Security Properties

	Session Service (JSS) Properties
	Old style EJB Container and JSS Properties

	Partition Transaction Service (Transaction Manager)
	JTS System Properties

	Chapter 32: ejb-borland.xml
	DTD

	Chapter 33: application-client-borland.xml
	DTD

	Chapter 34: ra-borland.xml
	DTD

	Chapter 35: jndi-definitions.xml
	DTD

	Chapter 36: web.xml
	DTD

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

