Panasonic

POWER CONSUMPTION

OVERVIEW

Power Consumption-related items are described for installation of a plasma display.

RUSH CURRENT

If power is ON where a sine wave voltage is 0V, a rush current is 0 to maximum 49.8[A].

- * TH-42PWD5 except US I=240Vx1.41/6.8 ohm= 49.8 [A]
- * TH-50PHD5 US model I=120Vx1.41/6.8 ohm= 24.9 [A]

 A rush current is an instantaneous large current flowing at a time of Power ON and depends on an input resistance of power supply circuit (in parallel with a soft start relay).

MAXIMUM POWER CONSUMPTION & CURRENT

* Maximum Power Consumption

The power Consumption values described on the catalog resulted from the measurement of power Consumption for a certain sound and image for European models. The PDP must make every pixel discharge light repetitively on a not-constant base, thus resulting in a huge value of power Consumption.(US models)

* Maximum Current

Current can be normally found by the formula: Current A = Power P \div Voltage V, but it depends heavily on the power factor of a power circuit.

*Values of the existing models

		Power	Max. Power	Power	Max. Current (Approx.)	
		Consumption	Consumption	Factor	AC100v	AC200v
	TH-50PHD5	495W	Approx. 550W	100%	5.5A	2.8A
	TH-42PHD5	375W	Approx. 450W	100%	5.0A	2.5A
ĺ	TH-42PWD5	295W	Approx. 395W	75%	5.3A	2.7A
	TH-37PWD5	225W	Approx. 325W	70%	4.4A	2.2A

CALORIFIC VALUE

Calorific Value[J]=Power Consumption[W]xTime[S] 1 J=0.24cal Calorific value per hour[Kcal/H] = 0.24xPowerConsumptionx3600 =Power Consumptionx0.864

* TH-42PWD5UY = 295Wx0.864 = 255[Kcal/H]

British Thermal Units VALUE

British Thermal Units = Power Consumption [W] \times 3.41 = [BTU/h] * TH-42PWD5UY = 295 W \times 3.41 = 1,006 BTU/h

HEAT COOLING

* PDP operation conditions

Temperature: 0 deg – 40 deg Humidity : 20% - 80%(not dewing) NOTICE: When it exceeds the above range, you have to consider cooling.

* Method of choosing a cooling fan

Operating airflow rate needed for cooling (Q')

 $Q' [m^3/min] = \frac{PDP Power Consumption}{20x [Temp inside the housing case - Housing case ambient Temp)}$

NOTICE: The formula is based on the assumption that heat eradication is done by a cooling airflow of a fan.

Choice of a fan

Since the operating airflow is generally 1/2 to 2/3 the maximum airflow, it is recommended that you choose the fan 1.5 to 2.0 times the calculated airflow Q'.

Assuming that an operating airflow is 2/3 the maximum airflow, the maximum airflow $Q[m3/min]=Q' \times 3/2$.

: Calculation example for placing TH-42PWD4 inside the housing:

* Power Consumption	: 295W
*Temp inside Housing	: Need to be below 40 deg
*Ambient Temp	: 35 deg (example)
*Operating airflow	: 2/3 the maximum airflow

Q' = 295 / [20x(40-35)) = 2.95 [m³/min]

 $Q = 2.95 \times 3/2 = 4.425 \text{ [m}^3/\text{min]}$

Heat tends to focus on the upper part. A fan had better be placed to ventilate this area.

Example) Two fans whose maximum airflow is 2.3[m³/min]

or 3 fans whose maximum airflow is 1.5[m³/min.]

(Example) Ambient temp. =25 deg:
$$Q' = 0.98m^3$$
/min.
Ambient temp. =30 deg: $Q' = 1.48m^3$ /min.

* Other cautions

- * Never fail to attach the fan the PDP inside.
- * The values mentioned above are the theoretical ones. You are required to make enough tolerance in actual design and to perform a mounting experiment at the time of studying.
- * When you study the outdoor use, you have to take into account the heat inflow from outside such as solar heat.

<For System Sales Company / SI,SE>

PDP SE Referencece

No.PDP006-Ver02

*Plasma Display Panel Division *TV System Products Division *Overseas Solution Business Dept.