HYUNDAI MICRO ELECTRONICS 8-BIT SINGLE-CHIP MICROCONTROLLERS

GMS90X51C GMS90X52C GMS90X54C

User's Manual (Ver. 1.0)

Version 1.0 Published by MCU Application Team ©2001 HYUNDAI MicroElectronics All right reserved.

Additional information of this manual may be served by HYUNDAI MicroElectronics offices in Korea or Distributors and Representatives listed at address directory.

HYUNDAI MicroElectronics reserves the right to make changes to any information here in at any time without notice.

The information, diagrams and other data in this manual are correct and reliable; however, HYUNDAI Micro-Electronics is in no way responsible for any violations of patents or other rights of the third party generated by the use of this manual.

Device Naming Structure

GMS90X5XC Series Selection Guide

Operating	ROM size (bytes)	RAM size	Device Name	Operating
Voltage (V)	MASK	(bytes)		Frequency (MHz)
4.25~5.5	4K	128	GMS90C51C	12/24/40
	8K	256	GMS90C52C	12/24/40
	16K	256	GMS90C54C	12/24/40
2.7~3.6	4K	128	GMS90L51C	12/16
	8K	256	GMS90L52C	12/16
	16K	256	GMS90L54C	12/16

GMS90C51C GMS90L51C(Low voltage versions)

- Fully compatible to standard MCS-51 microcontroller
- Wide operating frequency up to 40MHz (for more detail, see "GMS90X5XC Series Selection Guide")
- X2 Speed Improvement capability (6 clocks/machine cycle) 20MHz @5V (Equivalent to 40MHz @5V) 8MHz @3V (Equivalent to 16MHz @3V)
- $4K \times 8$ ROM
- $128 \times 8 \text{ RAM}$
- 64K external program memory space
- 64K external data memory space
- Four 8-bit ports
- Two 16-bit Timers / Counters
- USART
- Programmable ALE pin enable / disable (Low EMI)
- · Five interrupt sources, two priority levels
- · Power saving Idle and power down mode
- 2.7Volt low voltage version available
- P-DIP-40, P-LCC-44, P-MQFP-44 package

Block Diagram

Jan. 2001 Ver 1.0

GMS90C52C/54C GMS90L52C/54C(Low voltage versions)

- Fully compatible to standard MCS-51 microcontroller
- Wide operating frequency up to 40MHz (for more detail, see "GMS90X5XC Series Selection Guide")
- X2 Speed Improvement capability (6 clocks/machine cycle) 20MHz @5V (Equivalent to 40MHz @5V) 8MHz @3V (Equivalent to 16MHz @3V)
- 8K/16K bytes ROM
- $256 \times 8 \text{ RAM}$
- 64K external program memory space
- 64K external data memory space
- Four 8-bit ports
- Three 16-bit Timers / Counters (Timer2 with up/down counter feature)
- USART
- One clock output port
- Programmable ALE pin enable / disable (Low EMI)
- · Six interrupt sources, two priority levels
- Power saving Idle and power down mode
- 2.7Volt low voltage version available
- P-DIP-40, P-LCC-44, P-MQFP-44 package

Block Diagram

PIN CONFIGURATION

44-PLCC Pin Configuration (top view)

40-PDIP Pin Configuration (top view)

HYUNDAI MicroElectronics

44-MQFP Pin Configuration (top view)

GMS90X5XC Series

HYUNDAI MicroElectronics

Logic Symbol

	P	'in Numbe	er	Input/					
Symbol	PLCC- 44	PDIP- 40	MQFP- 44	Output	Function				
P1.0-P1.7	2-9 2 3	1-8 1 2	40-44, 1-3 40 41	I/O	Port1 Port 1 is an 8-bit bidirectional I/O port with interr pull-ups. Port 1 pins that have 1s written to them a pulled high by the internal pull-up resistors and can used as inputs. As inputs, port 1 pins that a externally pulled low will source current because the pulls-ups (I _{IL} , in the DC characteristics). Pins P1 and P1.1 also. Port1 also receives the low-ord address byte during program memory verification Port1 also serves alternate functions of Timer 2. P1.0 / T2 :Timer/counter 2 external count input P1.1 / T2EX :Timer/counter 2 trigger input				
	2	1	40		In GMS90X52C/54C: P1.0 / T2, Clock Out : Timer/counter 2 external count input, Clock Out				
P3.0-P3.7	11, 13-19	10-17	5, 7-13	I/O	Port 3 Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors and can be used as inputs. As inputs, port 3 pins that are externally pulled low will source current because of the pulls-ups (I _{IL} , in the DC characteristics). Port 3 also serves the special features of the 80C51 family, as listed below.				
	11	10	5		P3.0 / RxD receiver data input (asynchronous) or data input output(synchronous) of serial interface 0				
	13	11	7		P3.1 / TxD transmitter data output (asynchronous) or clock output (synchronous) of the serial interface 0				
	14	12	8		P3.2 /INT0 interrupt 0 input/timer 0 gate control				
	15	13	9		P3.3 / INT1 interrupt 1 input/timer 1 gate control				
	16	14	10		P3.4 /T0 counter 0 input				
	17	15	11		P3.5 /T1 counter 1 input				
	18	16	12		P3.6 / WR the write control signal latches the data byte from port 0 into the external data memory				
	19	17	13		P3.7 /RD the read control signal enables the external data memory to port 0				
XTAL2	20	18	14	0	XTAL2 Output of the inverting oscillator amplifier.				

PIN DEFINITIONS AND FUNCTIONS

GMS90X5XC Series

	P	in Numbe	er	Input/	
Symbol	PLCC- 44	PDIP- 40	MQFP- 44	Output	Function
XTAL1	21	19	15	I	XTAL1 Input to the inverting oscillator amplifier and input to the internal clock generator circuits. To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is divided down by a divide-by-two flip-flop. Minimum and maximum high and low times as well as rise fall times specified in the AC characteristics must be observed.
P2.0-P2.7	24-31	21-28	18-25	I/O	Port 2 Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors and can be used as inputs. As inputs, port 2 pins that are externally pulled low will source current because of the pulls-ups (I _{IL} , in the DC characteristics).Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 special function register.
PSEN	32	29	26	0	The Program Store Enable The read strobe to external program memory when the device is executing code from the external program memory. PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.
RESET	10	9	4	I	RESET A high level on this pin for two machine cycles while the oscillator is running resets the device. An internal diffused resistor to V_{SS} permits power-on reset using only an external capacitor to V_{CC} .

HYUNDAI MicroElectronics

	P	in Numbe	er	Innut/	
Symbol	PLCC- 44	PDIP- 40	MQFP- 44	Input/ Output	Function
ALE / PROG	33	30	27	0	The Address Latch Enable / Program pulse Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG) during EPROM programming. If desired, ALE operation can be disabled by setting bit 0 of SFR location 8E _H . With this bit set, the pin is weakly pulled high. The ALE disable feature will be terminated by reset. Setting the ALE-disable bit has no affect if the microcontroller is in external execution mode.
EA / V _{PP}	35	31	29	Ι	 External Access Enable / Program Supply Voltage EA must be external held low to enable the device to fetch code from external program memory locations 0000_H to FFFF_H. If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than its internal memory size. This pin also receives the 12.75V programming supply voltage (V_{PP}) during EPROM programming. Note; however, that if any of the Lock bits are programmed, EA will be internally latched on reset.
P0.0-P0.7	36-43	32-39	30-37	I/O	Port 0 Port 0 Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application it uses strong internal pull-ups when emitting 1s. Port 0 also outputs the code bytes during program verification in the GMS97X5X. External pull-up resistors are required during program verification.
V _{SS}	22	20	16	-	Circuit ground potential
V _{CC}	44	40	38	-	Supply terminal for all operating modes
N.C.	1,12 23,34	-	6,17 28,39	-	No connection

FUNCTIONAL DESCRIPTION

The GMS90X5XC series is fully compatible to the standard 8051 microcontroller family.

It is compatible with the general 8051 family. While maintaining all architectural and operational characteristics of the general 8051 family.

Figure 1 shows a block diagram of the GMS90X5XC series

Figure 1. Block Diagram of the GMS90X5XC series

CPU

The GMS90X5XC series is efficient both as a controller and as an arithmetic processor. It has extensive facilities for binary and BCD arithmetic and excels in its bit-handling capabilities. Efficient use of program memory results from an instruction set consisting of 44% one-byte, 41% two-byte, and 15% three-byte instructions. With a 12 MHz crystal, 58% of the instructions are executed in 1.0µs (40MHz: 300ns).

Special Function Register PSW

В	it	Function					
С	Y	Carry Flag					
A	С	Auxiliary Carry Flag (for BCD operations)					
F	70	General Purpose Flag					
RS1	RS0	Register Bank select control bits					
0	0	Bank 0 selected, data address 00 _H - 07 _H					
0	1	Bank 1 selected, data address 08 _H - 0F _H					
1	0	Bank 2 selected, data address 10 _H - 17 _H					
1	1	Bank 3 selected, data address 18 _H - 1F _H					
0	V	Overflow Flag					
F	1	General Purpose Flag					
ŀ	D	Parity Flag Set/cleared by hardware each instruction cycle to indicate an odd/even number of "one" bits in the accumulator, i.e. even parity.					

Reset value of PSW is 00_H.

SPECIAL FUNCTION REGISTERS

All registers, except the program counter and the four general purpose register banks, reside in the special function register area.

The 28 special function registers (SFR) include pointers and registers that provide an interface between the CPU and the other on-chip peripherals. There are also 128 directly addressable bits within the SFR area.

All SFRs are listed in Table 1, Table 2, and Table 3.

In Table 1 they are organized in numeric order of their addresses. In Table 2 they are organized in groups which refer to the functional blocks of the GMS90X5XC series. Table 3 illustrates the contents of the SFRs

Address	Register	Contents after Reset	Address	Register	Contents after Reset
80H	P0 ¹⁾	FFH	88H	TCON ¹⁾	00H
81H	SP	07H	89H	TMOD	00H
82H	DPL	00H	8AH	TL0	00H
83H	DPH	00H	8BH	TL1	00H
84H	reserved	XXH ²⁾	8CH	TH0	00H
85H	reserved	XXH ²⁾	8DH	TH1	00H
86H	reserved	XXH ²⁾	8EH	AUXR0	XXH ²⁾
87H	PCON	0XXX0000 _B ²⁾	8FH	CKCON	XXXXXXX0 _B ²⁾
90H	P1 ¹⁾	FF _H	98H	SCON ¹⁾	00H
91H	reserved	00 _H	99H	SBUF	XXH ²⁾
92H	reserved	XXH ²⁾	9AH	reserved	XXH ²⁾
93H	reserved	XXH ²⁾	9BH	reserved	XXH ²⁾
94H	reserved	XXH ²⁾	9CH	reserved	XXH ²⁾
95H	reserved	XXH ²⁾	9DH	reserved	XXH ²⁾
96H	reserved	XXH ²⁾	9EH	reserved	XXH ²⁾
97H	reserved	XXH ²⁾	9FH	reserved	XXH ²⁾
A0H	P2 ³⁾	FFH	A8H	IE ¹⁾	0X00000B ²⁾
A1H	reserved	XXH ²⁾	A9H	reserved	XXH ²⁾
A2H	reserved	XXH ²⁾	AAH	reserved	XXH ²⁾
A3H	reserved	XXH ²⁾	ABH	reserved	XXH ²⁾
A4H	reserved	XXH ²⁾	ACH	reserved	XXH ²⁾
A5H	reserved	XXH ²⁾	ADH	reserved	XXH ²⁾
A6H	reserved	XXH ²⁾	AEH	reserved	XXH ²⁾
A7H	reserved	XXH ²⁾	AFH	reserved	XXH ²⁾
B0H	P3 ¹⁾	FFH	B8H	IP ¹⁾	XX00000B ²⁾
B1H	reserved	XXH ²⁾	B9H	reserved	XXH ²⁾
B2H	reserved	XXH ²⁾	BAH	reserved	XXH ²⁾
B3H	reserved	XXH ²⁾	BBH	reserved	XXH ²⁾
B4H	reserved	XXH ²⁾	BCH	reserved	XXH ²⁾
B5H	reserved	XXH ²⁾	BDH	reserved	XXH ²⁾
B6H	reserved	XXH ²⁾	BEH	reserved	XXH ²⁾
B7H	reserved	XXH ²⁾	BFH	reserved	XXH ²⁾

Table 1. Special Function Registers in Numeric Order of their Addresses (cont'd)
--

HYUNDAI MicroElectronics

Address	Register	Contents after Reset	Address	Register	Contents after Reset
СОН	reserved	ХХ _Н	C8H ³⁾	T2CON ¹⁾	00H
C1H	reserved	XXH ²⁾	C9H ⁴⁾	T2MOD	XXXXXX00 _B ²⁾
C2H	reserved	XXH ²⁾	CAH ³⁾	RC2L	00H
C3H	reserved	XXH ²⁾	CBH ³⁾	RC2H	00H
C4H	reserved	XXH ²⁾	CCH ³⁾	TL2	00H
C5H	reserved	XXH ²⁾	CDH ³⁾	TH2	00H
C6H	reserved	XXH ²⁾	CEH	reserved	XXH ²⁾
C7H	reserved	XXH ²⁾	CFH	reserved	XXH ²⁾
D0H	PSW ¹⁾	FFH	D8H	reserved	XXH ²⁾
D1H	reserved	XXH ²⁾	D9H	reserved	XXH ²⁾
D2H	reserved	XXH ²⁾	DAH	reserved	XXH ²⁾
D3H	reserved	XXH ²⁾	DBH	reserved	XXH ²⁾
D4H	reserved	XXH ²⁾	DCH	reserved	XXH ²⁾
D5H	reserved	XXH ²⁾	DDH	reserved	XXH ²⁾
D6H	reserved	XXH ²⁾	DEH	reserved	XXH ²⁾
D7H	reserved	XXH ²⁾	DFH	reserved	XXH ²⁾
E0H	ACC ¹⁾	00H	E8H	reserved	XXH ²⁾
E1H	reserved	XXH ²⁾	E9H	reserved	XXH ²⁾
E2H	reserved	XXH ²⁾	EAH	reserved	XXH ²⁾
E3H	reserved	XXH ²⁾	EBH	reserved	XXH ²⁾
E4H	reserved	XXH ²⁾	ECH	reserved	XXH ²⁾
E5H	reserved	XXH ²⁾	EDH	reserved	XXH ²⁾
E6H	reserved	XXH ²⁾	EEH	reserved	XXH ²⁾
E7H	reserved	XXH ²⁾	EFH	reserved	XXH ²⁾
F0H	B ¹⁾	00H	F8H	reserved	XXH ²⁾
F1H	reserved	XXH ²⁾	F9H	reserved	XXH ²⁾
F2H	reserved	XXH ²⁾	FAH	reserved	XXH ²⁾
F3H	reserved	XXH ²⁾	FBH	reserved	XXH ²⁾
F4H	reserved	XXH ²⁾	FCH	reserved	XXH ²⁾
F5H	reserved	XXH ²⁾	FDH	reserved	XXH ²⁾
F6H	reserved	XXH ²⁾	FEH	reserved	XXH ²⁾
F7H	reserved	XXH ²⁾	FFH	reserved	XXH ²⁾

Table 1. Special Function Registers in Numeric Order of their Addresses (cont'd)

1) Bit-addressable Special Function Register.

2) X means that the value is indeterminate and the location is reserved.

3) Bit-addressable Special Function Register.

4) These Registers are in the GMS90X52C/54C only.

Block	Symbol	Name	Address	Contents after Reset
CPU	ACC	Accumulator	E0H 1)	00H
	B	B-Register	F0H ¹⁾	00H
	DPH	Data Pointer, High Byte	83H	00H
	DPL	Data Pointer, Low Byte	82H	00H
	PSW	Program Status Word Register	D0H ¹⁾	00H
	SP	Stack Pointer	81H	07H
Interrupt System	IE	Interrupt Enable Register	A8H ¹⁾	0X000000B ²⁾
	IP	Interrupt Priority Register	B8H ¹⁾	XX000000B ²⁾
Ports	P0	Port 0	80H ¹⁾	FFH
	P1	Port 1	90H ¹⁾	FFH
	P2	Port 2	A0H ¹⁾	FFH
	P3	Port 3	B0H ¹⁾	FFH
Serial Channels	PCON ³⁾	Power Control Register	87H	0XXX0000B ²⁾
	SBUF	Serial Channel Buffer Reg.	99H	XXH ²⁾
	SCON	Serial Channel 0 Control Reg.	98H ¹⁾	00H
Timer 0/ Timer 1	TCON	Timer 0/1 Control Register	88H ¹⁾	00H
	TH0	Timer 0, High Byte	8CH	00H
	TH1	Timer 1, High Byte	8DH	00H
	TL0	Timer 0, Low Byte	8AH	00H
	TL1	Timer 1, Low Byte	8BH	00H
	TMOD	Timer Mode Register	89H	00H
Timer 2	T2CON	Timer 2 Control Register	C8H ¹⁾	00H
	T2MOD	Timer 2 Mode Register	C9H	00H
	RC2H	Timer 2 Reload Capture Reg., High Byte	CBH	00H
	RC2L	Timer 2 Reload Capture Reg., Low Byte	CAH	00H
	TH2	Timer 2, High Byte	CDH	00H
	TL2	Timer 2, Low Byte	CCH	00H
	AUXR0	Aux. Register 0	8EH	XXXXXX0B ²⁾
Power Saving Modes	PCON ³⁾	Power Control Register	87H	0XXX0000B ²⁾

Table 2. Special Function Registers - Functional Blocks

1) Bit-addressable Special Function register

2) X means that the value is indeterminate and the location is reserved

3) This special function register is listed repeatedly since some bit of it also belong to other functional blocks

Table 3. Contents of SFRs, SFRs in Numeric Order

Address	Register	Bit 7	6	5	4	3	2	1	0
80H	P0								

HYUNDAI MicroElectronics

Table 3. Contents of SFRs, SFRs in Numeric Order

Address	Register	Bit 7	6	5	4	3	2	1	0
81H	SP								
82H	DPL								
83H	DPH								
87H	PCON	SMOD	-	-	-	GF1	GF0	PDE	IDLE
88H	TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
89H	TMOD	GATE	C/T	M1	MT	GATE	C/T	M1	M0
8AH	TL0								
8BH	TL1								
8CH	TH0								
8DH	TH1								
8EH	AUXR0	-	-	-	-	-	-	-	A0
8FH	CKCON	-	-	-	-	-	-	-	X2
90H	P1								
98H	SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
99H	SBUF								
A0H	P2								
A8H	IE	EA	-	ET2	ES	ET1	EX1	ET0	EX0
B0H	P3								
B8H	IP	-	-	PT2	PS	PT1	PX1	PT0	PX0

SFR not bit addressable

- : this bit location is reserved

Address	Register	Bit 7	6	5	4	3	2	1	0
C8H	T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2
C9H	T2MOD	-	-	-	-	-	-	T20E †	DCEN
CAH	RC2L								
CBH	RC2H								
ССН	TL2								
CDH	TH2								
D0H	PSW	CY	AC	F0	RS1	RS0	OV	F1	Р
E0H	ACC								
F0H	В								
† indicates resid	ent in the GMS90X5	2C/54C, no	t in 90X510	C.					
8EH			A0						
8FH				0 : Ena 1 : Dis 2 X2 : CPI ┌ 0 : Se	able ALE U & Peripl lect 12 clo	Signal (Ge Signal (Ne neral Cloc	ot Genera k Select I s per mac	hine cycle	Signal)
С9Н			T2OE	_ 0 : Di	sable Tim hable Time	utput Enal er2 Outpu er2 Output and byte	t :	ble	
					_			2.0	
		on in	nicod		J SEK NO	t bit addre	ssable		
	 this bit locati 	on is rese	rvea						

Table 3. Contents of SFRs, SFRs in Numeric Order (cont'd)

Jan. 2001 Ver 1.0

X2 MODE

The GMS90X5XC core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages:

- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power.
- Save power consumption while keeping same CPU power (oscillator power saving).
- Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes.
- Increase CPU power by 2 while keeping same crystal frequency.

In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

X2 Mode Description

The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 2. shows the clock generation block diagram. X2 bit is validated on XTAL1+2 rising edge to avoid glitches when switching from X2 to STD mode. Figure 3.shows the mode switching waveforms:

Figure 2. Clock Generation Diagram

The X2 bit in the CKCON register allows to switch from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature(X2 mode).

CAUTION

In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals using clock frequency as time reference (UART, timers) will have their time reference divided by two. For example a free running timer generating an interrupt every 30 ms will then generate an interrupt every 15 ms. UART with 2400 baud rate will have 4800 baud rate.

Figure 3. Mode Swithcing Waveforms

•

TIMER / COUNTER 0 AND 1

Timer/Counter 0 and 1 can be used in four operating modes as listed in Table 4:

Table 4. Timer/Counter 0 and 1 Operating Modes

Mode	Description	TMOD				Input Clock	
WOUE	Description	Gate	C/T	M1	MO	internal	external (Max.)
0	8-bit timer/counter with a divide-by-32 prescaler	Х	Х	0	0	f _{OSC} ÷(12×32)	f _{OSC} ÷(24×32)
1	16-bit timer/counter	Х	Х	0	1	f _{OSC} ÷12	f _{OSC} ÷24
2	8-bit timer/counter with 8-bit auto-reload	Х	Х	1	0	f _{OSC} ÷12	f _{OSC} ÷24
3	Timer/counter 0 used as one 8-bit timer/counter and one 8-bit timer Timer 1 stops	Х	Х	1	1	f _{OSC} ÷12	f _{OSC} ÷24

In the "timer" function (C/ \overline{T} = "0") the register is incremented every machine cycle. Therefore the count rate is $f_{OSC}/12$.

In the "counter" function the register is incremented in response to a 1-to-0 transition at its corresponding external input pin (P3.4/T0, P3.5/T1). Since it takes two machine cycles to detect a falling edge the max. count rate is $f_{OSC}/24$. External inputs INT0 and INT1 (P3.2, P3.3) can be programmed to function as a gate to facilitate pulse width measurements. Figure 4 illustrates the input clock logic.

Figure 4. Timer/Counter 0 and 1 Input Clock Logic

TIMER 2

Timer 2 is a 16-bit timer/Counter with an up/down count feature. It can operate either as timer or as an event counter which is selected by bit $C/\overline{T2}$ (T2CON.1). It has three operating modes as shown in Table 5.

		T2CON		T2MOD	T2CON	P1.1/		Input	Clock
Mode	RCLK or TCLK	CP/RL2	TR2	DCEN	EXEN2	T2EX	Remarks	internal	external (P1.0/T2)
16-bit Auto- Reload	0	0	1	0	0	Х	reload upon over- flow	f _{OSC} ÷ 12	Max. f _{OSC} ÷24
	0	0	1	0	1	\downarrow	reload trigger (fall- ing edge)		
	0	0	1	1	Х	0	Down counting		
	0	0	1	1	Х	1	Up counting		
16-bit Capture	0	1	1	Х	0	Х	16 bit Timer/ Coun- ter (only up-count- ing)	f _{OSC} ÷ 12	Max. f _{OSC} ÷ 24
	0	1	1	х	1	\downarrow	capture TH2,TL2 \rightarrow RC2H,RC2L		
Baud Rate Generator	1	Х	1	Х	0	Х	no overflow interrupt request (TF2)	f _{OSC} ÷ 12	Max. f _{OSC} ÷ 24
	1	Х	1	х	1	\downarrow	extra external inter- rupt ("Timer 2")		
Off	Х	Х	0	Х	Х	Х	Timer 2 stops	-	-

Table 5. Timer/Counter 2 Operating Modes

Note: $\downarrow = \neg falling edge$

SERIAL INTERFACE (USART)

The serial port is full duplex and can operate in four modes (one synchronous mode, three asynchronous modes) as illustrated in Table 6. The possible baud rates can be calculated using the formulas given in Table 7.

SCON Mode Baudrate Description SM0 SM1 'osc 0 Serial data enters and exits through RxD. 0 0 12 TxD outputs the shift clock. 8-bit are transmitted/received (LSB first) 1 0 1 Timer 1/2 overflow rate 8-bit UART 10 bits are transmitted (through TxD) or received (RxD) $\frac{f_{OSC}}{32}$ or $\frac{f_{OSC}}{64}$ 2 1 0 9-bit UART 64 11 bits are transmitted (TxD) or received (RxD) 3 1 1 Timer 1/2 overflow rate 9-bit UART Like mode 2 except the variable baud rate

Table 6. USART Operating Modes

Baud Rate derived from	Interface Mode	Baudrate
Oscillator	0	12 SMOD
	2	$\frac{2^{-100}}{64} \times f_{OSC}$
Timer 1 (16-bit timer)	1,3	$\frac{2^{\circ m \circ \beta}}{s \Re \rho} \times (Timer 1 \text{ overflow})$
(8-bit timer with 8-bit auto reload)	1,3	$\frac{2^{OHOD}}{32} \times \frac{I_{OSC}}{12 \times [256 - (TH1)]}$
Timer 2	1,3	$\frac{l_{OSC}}{32 \times [65536 - (RC2H, RC2L)]}$

INTERRUPT SYSTEM

The GMS90X5XC series provides 5 (4K bytes ROM version) or 6 (above 8K bytes ROM version) interrupt sources with two priority levels. Figure 5 gives a general overview of the interrupt sources and illustrates the request and control flags.

Figure 5. Interrupt Request Sources

Jan. 2001 Ver 1.0

Source (Request Flags)	Vectors	Vector Address
RESET	RESET	0000H
IEO	External interrupt 0	0003H
TF0	Timer 0 interrupt	000BH
IE1	External interrupt 1	0013H
TF1	Timer 1 interrupt	001BH
RI + TI	Serial port interrupt	0023H
TF2 + EXF2	Timer 2 interrupt	002BH

Table 8. Interrupt Sources and their Corresponding Interrupt Vectors

A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another low priority interrupt. A high-priority interrupt cannot be interrupted by any other interrupt source.

If two requests of different priority level are received simultaneously, the request of higher priority is serviced. If requests of the same priority are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence as shown in Table 9.

Table 9. Interrupt Priority-Within-Level

Interru	Priority	
External Interrupt 0	IE0	High
Timer 0 Interrupt	TF0	\downarrow
External Interrupt 1	IE1	\downarrow
Timer 1 Interrupt	TF1	\downarrow
Serial Channel	RI + TI	\downarrow
Timer 2 Interrupt	TF2 + EXF2	Low

Power Saving Modes

Two power down modes are available, the Idle Mode and Power Down Mode.

The bits PDE and IDLE of the register PCON select the Power Down mode or the Idle mode, respectively. If the Power Down mode and the Idle mode are set at the same time, the Power Down mode takes precedence. Table 10 gives a general overview of the power saving modes.

Mode	Entering Instruction Example	Leaving by	Remarks
Idle mode	ORL PCON, #01H	- Enabled interrupt - Hardware Reset	CPU is gated off CPU status registers maintain their data. Peripherals are active
Power-Down mode	ORL PCON, #02H	Hardware Reset	Oscillator is stopped, contents of on- chip RAM and SFR's are maintained (leaving Power Down Mode means redefinition of SFR contents).

In the Power Down mode of operation, V_{CC} can be reduced to minimize power consumption. It must be ensured, however, that V_{CC} is not reduced before the Power Down mode is invoked, and that V_{CC} is restored to its normal operating level, before the Power Down mode is terminated. The reset signal that terminates the Power Down mode also restarts the oscillator. The reset should not be activated before V_{CC} is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize (similar to power-on reset).

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Ambient temperature under bias (T _A)	40 to + 85 °C
Storage temperature (T _{ST})	65 to + 150 °C
Voltage on V_{CC} pins with respect to ground (V_{SS})	0.5V to 6.5V
Voltage on any pin with respect to ground (VSS)	0.5V to V_{CC} + 0.5V
Input current on any pin during overload condition	15mA to +15mA
Absolute sum of all input currents during overload condition	100mA
Power dissipation	1.5W

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage of the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for longer periods may affect device reliability. During overload conditions ($V_{IN} > V_{CC}$ or $V_{IN} < V_{SS}$) the Voltage on V_{CC} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

DC Characteristics

DC Characteristics for GMS90C51C/52C/54C

 $V_{CC}=5V + 10\%$, -15%; $V_{SS}=0V$; $T_A=0^{\circ}C$ to 70°C

Devementer	Cumhal	Limit	Values	Unit	Test Conditions
Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Input low voltage (except EA, RESET)	VIL	-0.5	0.2V _{CC} - 0.1	V	-
Input low voltage (EA)	V _{IL1}	-0.5	0.2V _{CC} - 0.3	V	-
Input low voltage (RESET)	V _{IL2}	-0.5	0.2V _{CC} + 0.1	V	-
Input high voltage (except XTAL1, EA, RESET)	V _{IH}	0.2V _{CC} + 0.9	V _{CC} + 0.5	V	-
Input high voltage to XTAL1	V _{IH1}	0.7V _{CC}	V _{CC} + 0.5	V	-
Input high voltage to EA, RESET	V _{IH2}	0.6V _{CC}	V _{CC} + 0.5	V	-
Output low voltage (ports 1, 2, 3)	V _{OL}	-	0.45	V	I _{OL} = 1.6mA ¹⁾
Output low voltage (port 0, ALE, PSEN)	V _{OL1}	-	0.45	V	I _{OL} = 3.2mA ¹⁾
Output high voltage (ports 1, 2, 3)	V _{OH}	2.4 0.9V _{CC}	-	V	I _{OH} = -80μA I _{OH} = -10μA
Output high voltage (port 0 in external bus mode, ALE, PSEN)	V _{OH1}	2.4 0.9V _{CC}	-	V	I _{OH} = -800μA ²⁾ I _{OH} = -80μA ²⁾
Logic 0 input current (ports 1, 2, 3)	١ _{١Ľ}	-10	-50	μΑ	V _{IN} = 0.45V
Logical 1-to-0 transition current (ports 1, 2, 3)	ITL	-65	-650	μΑ	V _{IN} = 2.0V
Input leakage current (port 0, EA)	ILI	-	±1	μΑ	$0.45 < V_{IN} < V_{CC}$
Pin capacitance	C _{IO}	-	10	pF	f _C = 1MHz T _A = 25°C
Power supply current:					
Active mode, 12MHz ³⁾	ICC	-	21	mA	$V_{CC} = 5V^{(4)}$
Idle mode, 12MHz ³⁾	ICC	-	4.8	mA	$V_{CC} = 5V^{(5)}$
Active mode, 24 MHz ³⁾	ICC	-	36.2	mA	$V_{CC} = 5V^{(4)}$
Idle mode, 24MHz ³⁾	Icc	-	8.2	mA	$V_{CC} = 5V^{(5)}$
Active mode, 40 MHz ³⁾	Icc	-	58.5	mA	$V_{CC} = 5V^{4}$ $V_{CC} = 5V^{5}$
Idle mode, 40 MHz ³⁾	I _{CC}	-	12.5	mA	$V_{CC} = 5V^{(6)}$
Power Down Mode ³⁾	I _{PD}	-	50	μA	

1) Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL} of ALE and port 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operation. In the worst case (capacitive loading: > 50pF at 3.3V, > 100pF at 5V), the noise pulse on ALE line may exceed 0.8V. In such cases it may be desirable to qualify ALE with a schmitt-trigger, or use an address latch with a schmitt-trigger strobe input.

Jan. 2001 Ver 1.0

HYUNDAI MicroElectronics

- Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the 0.9V_{CC} specification when the address lines are stabilizing.
- $\begin{array}{ll} \mbox{3)} & I_{CC} \mbox{ Max at other frequencies is given by:} \\ & \mbox{active mode:} & I_{CC} = 1.27 \times f_{OSC} + 5.73 \\ & \mbox{idle mode:} & I_{CC} = 0.28 \times f_{OSC} + 1.45 \mbox{ (except OTP devices)} \\ & \mbox{where } f_{OSC} \mbox{ is the oscillator frequency in MHz. } I_{CC} \mbox{ values are given in mA and measured at } V_{CC} = 5V. \end{array}$
- 4) I_{CC} (active mode) is measured with: XTAL1 driven with t_{CLCH}, t_{CHCL} = 5ns, V_{IL} = V_{SS} + 0.5V, V_{IH} = V_{CC} - 0.5V; XTAL2 = N.C.; \overline{EA} = Port0 = RESET = V_{CC}; all other pins are disconnected. I_{CC} would be slightly higher if a crystal oscillator is used (appr. 1mA).
- 5) I_{CC} (Idle mode) is measured with all output pins disconnected and with all peripherals disabled; XTAL1 driven with t_{CLCH}, t_{CHCL} = 5ns, V_{IL} = V_{SS} + 0.5V, V_{IH} = V_{CC} - 0.5V; XTAL2 = N.C.; RESET = EA = V_{SS}; Port0 = V_{CC}; all other pins are disconnected;

DC Characteristics for GMS90L51C/52C/54C

 V_{CC} = 3.3V + 0.3V, -0.6V; V_{SS} =0V; T_A = 0°C to 70°C

Devementer	Limit Values			l lm it	To at Oan ditions
Parameter	Symbol	Min.	Max.	– Unit	Test Conditions
Input low voltage	VIL	-0.5	0.8	V	-
Input high voltage	V _{IH}	2.0	V _{CC} + 0.5	V	-
Output low voltage (ports 1, 2, 3)	V _{OL}	-	0.45 0.30	V	I _{OL} = 1.6mA ¹⁾ I _{OL} = 100μA ¹⁾
Output low voltage (port 0, ALE, PSEN)	V _{OL1}	-	0.45 0.30	V	I _{OL} = 3.2mA ¹⁾ I _{OL} = 200µA ¹⁾
Output high voltage (ports 1, 2, 3)	V _{OH}	2.0 0.9V _{CC}	-	V	I _{OH} = -20μΑ I _{OH} = -10μΑ
Output high voltage (port 0 in external bus mode, ALE, PSEN)	V _{OH1}	2.0 0.9V _{CC}	-	V	I _{OH} = -800μA ²⁾ I _{OH} = -80μA ²⁾
Logic 0 input current (ports 1, 2, 3)	Ι _{ΙL}	-1	-50	μA	V _{IN} = 0.45V
Logical 1-to-0 transition current (ports 1, 2, 3)	I _{TL}	-25	-250	μA	V _{IN} = 2.0V
Input leakage current (port 0, EA)	ILI	-	±1	μA	$0.45 < V_{IN} < V_{CC}$
Pin capacitance	C _{IO}	-	10	pF	f _C = 1MHz T _A = 25°C
Power supply current: Active mode, 16 MHz ³⁾ Idle mode, 16MHz ³⁾ Power Down Mode ³⁾	Icc Icc IPD	- - -	15 5 10	mA mA μA	$V_{CC}= 3.6V^{4)}$ $V_{CC}= 2.6V^{5)}$ $V_{CC}= 2^{-} 5.5V^{6)}$

AC Characteristics

Explanation of the AC Symbols

Each timing symbol has 5 characters. The first character is always a 't' (stand for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A: Address	T: Time
C: Clock	V: Valid
D: Input Data	W: WR signal
H: Logic level HIGH	X: No longer a valid logic level
I: Instruction (program memory contents)	Z: Float
L: Logic level LOW, or ALE	
P: PSEN	For example,
Q: <u>Ou</u> tput Data	t _{AVLL} = Time from Address Valid to ALE Low
R: RD signal	t _{LLPL} = Time from ALE Low to PSEN Low

AC Characteristics for GMS90X5XC series (12MHz version)

V _{CC} = 5V :	V_{CC} = 5V + 10%, - 15%; V_{SS} = 0V; T_A = 0°C to 70°C (C _L for port 0. ALE and PSEN outputs = 100pF; C _L for all other outputs = 80pF)
V _{CC} = 3.3V :	V_{CC} = 3.3V + 0.3V, - 0.6V; V_{SS} = 0V; T_A = 0°C to 70°C (C _L for port 0. ALE and PSEN outputs = 50pF; C _L for all other outputs = 50pF)
Variable clock :	Vcc = 5V : $1/t_{CLCL}$ = 3.5 MHz to 12 MHz Vcc = 3.3V : $1/t_{CLCL}$ = 1 MHz to 12 MHz

Parameter	Symbol	12 MHz Oscillator		Variable Oscillator 1/t _{CLCL} = 3.5 to 12MHz		Unit
		Min.	Max.	Min.	Max.	
ALE pulse width	t _{LHLL}	127	-	2t _{CLCL} -40	-	ns
Address setup to ALE	t _{AVLL}	43	-	t _{CLCL} -40	-	ns
Address hold after ALE	t _{LLAX}	30	-	t _{CLCL} -53	-	ns
ALE low to valid instruction in	t _{LLIV}	-	233	-	4t _{CLCL} -100	ns
ALE to PSEN	t _{LLPL}	58	-	t _{CLCL} -25	-	ns
PSEN pulse width	t _{PLPH}	215	-	3t _{CLCL} -35	-	ns
PSEN to valid instruction in	t _{PLIV}	-	150	-	3t _{CLCL} -100	ns
Input instruction hold after PSEN	t _{PXIX}	0	-	0	-	ns
Input instruction float after PSEN	t _{PXIZ} †	-	63	-	t _{CLCL} -20	ns
Address valid after PSEN	t _{PXAV} †	75	-	t _{CLCL} -8	-	ns
Address to valid instruction in	t _{AVIV}	-	302	-	5t _{CLCL} -115	ns
Address float to PSEN	tazpl	0	-	0	-	ns

External Program Memory Characteristics

Jan. 2001 Ver 1.0

GMS90X5XC Series

[†] Interfacing the GMS90X5XC series to devices with float times up to 75 ns is permissible. This limited bus contention will not cause

any damage to port 0 Drivers.

HYUNDAI MicroElectronics

AC Characteristics for GMS90X5XC series (12MHz)

External Data Memory Characteristics

Parameter	Symbol	12 MHz Oscillator		Variable Oscillator 1/t _{CLCL} = 3.5 to 12MHz		Unit	
		Min.	Max.	Min.	Max.		
RD pulse width	t _{RLRH}	400	-	6t _{CLCL} -100	-	ns	
WR pulse width	t _{WLWH}	400	-	6t _{CLCL} -100	-	ns	
Address hold after ALE	t _{LLAX2}	53	-	t _{CLCL} -30	-	ns	
RD to valid data in	t _{RLDV}	-	252	-	5t _{CLCL} -165	ns	
Data hold after RD	t _{RHDX}	0	-	0	-	ns	
Data float after RD	t _{RHDZ}	-	97	-	2t _{CLCL} -70	ns	
ALE to valid data in	t _{LLDV}	-	517	-	8t _{CLCL} -150	ns	
Address to valid data in	t _{AVDV}	-	585	-	9t _{CLCL} -165	ns	
ALE to WR or RD	tLLWL	200	300	3t _{CLCL} -50	3t _{CLCL} +50	ns	
Address valid to \overline{WR} or \overline{RD}	t _{AVWL}	203	-	4t _{CLCL} -130	-	ns	
\overline{WR} or \overline{RD} high to ALE high	t _{WHLH}	43	123	t _{CLCL} -40	t _{CLCL} +40	ns	
Data valid to WR transition	t _{QVWX}	33	-	t _{CLCL} -50	-	ns	
Data setup before WR	t _{QVWH}	433	-	7t _{CLCL} -150	-	ns	
Data hold after WR	t _{WHQX}	33	-	t _{CLCL} -50	-	ns	
Address float after RD	t _{RLAZ}	-	0	-	0	ns	

Advance Information (12MHz)

External Clock Drive

Parameter	Symbol	Variable (Freq. = 3.5	Unit		
		Min.	Max.		
Oscillator period (V_{CC} =5V) Oscillator period (V_{CC} =3.3V)	tCLCL tCLCL	83.3 83.3	285.7 1	ns	
High time	t _{CHCX}	20	tclcl - tclcx	ns	
Low time	t _{CLCX}	20	tCLCL - tCHCX	ns	
Rise time	t _{CLCH}	-	20	ns	
Fall time	t CHCL	-	20	ns	

AC Characteristics for GMS90X5XC series (16MHz version)

 V_{CC} = 3.3V + 0.3V, -0.6V; V_{SS} = 0V; T_A = 0°C to 70°C (C_L for port 0. ALE and PSEN outputs = 50pF; C_L for all other outputs = 50pF)

Parameter	Symbol	16 MHz Oscillator		Variable Oscillator 1/t _{CLCL} = 3.5 to 16MHz		Unit
		Min.	Max.	Min.	Max.	
ALE pulse width	tLHLL	85	-	2t _{CLCL} -40	-	ns
Address setup to ALE	t _{AVLL}	23	-	t _{CLCL} -40	-	ns
Address hold after ALE	t _{LLAX}	23	-	t _{CLCL} -40	-	ns
ALE low to valid instruction in	t _{LLIV}	-	150	-	4t _{CLCL} -100	ns
ALE to PSEN	t _{LLPL}	38	-	t _{CLCL} -25	-	ns
PSEN pulse width	t _{PLPH}	153	-	3t _{CLCL} -35	-	ns
PSEN to valid instruction in	t _{PLIV}	-	88	-	3t _{CLCL} -100	ns
Input instruction hold after PSEN	t _{PXIX}	0	-	0	-	ns
Input instruction float after PSEN	t _{PXIZ} †	-	43	-	t _{CLCL} -20	ns
Address valid after PSEN	t _{PXAV} †	55	-	t _{CLCL} -8	-	ns
Address to valid instruction in	t _{AVIV}	-	198	-	5t _{CLCL} -115	ns
Address float to PSEN	t _{AZPL}	0	-	0	-	ns

External Program Memory Characteristics

[†] Interfacing the GMS90X5XC series to devices with float times up to 35 ns is permissible. This limited bus contention will not cause

any damage to port 0 Drivers.

HYUNDAI MicroElectronics

AC Characteristics for GMS90X5XC series (16MHz)

External Data Memory Characteristics

Parameter	Symbol	16 MHz Oscillator		Variable Oscillator 1/t _{CLCL} = 3.5 to 16MHz		Unit	
		Min.	Max.	Min.	Max.		
RD pulse width	t _{RLRH}	275	-	6t _{CLCL} -100	-	ns	
WR pulse width	t _{WLWH}	275	-	6t _{CLCL} -100	-	ns	
Address hold after ALE	t _{LLAX2}	23	-	t _{CLCL} -40	-	ns	
RD to valid data in	t _{RLDV}	-	183	-	5t _{CLCL} -130	ns	
Data hold after RD	t _{RHDX}	0	-	0	-	ns	
Data float after RD	t _{RHDZ}	-	75	-	2t _{CLCL} -50	ns	
ALE to valid data in	t _{LLDV}	-	350	-	8t _{CLCL} -150	ns	
Address to valid data in	t _{AVDV}	-	398	-	9t _{CLCL} -165	ns	
ALE to WR or RD	tLLVVL	138	238	3t _{CLCL} -50	3t _{CLCL} +50	ns	
Address valid to \overline{WR} or \overline{RD}	t _{AVWL}	120	-	4t _{CLCL} -130	-	ns	
\overline{WR} or \overline{RD} high to ALE high	t _{WHLH}	28	97	t _{CLCL} -35	t _{CLCL} +35	ns	
Data valid to WR transition	t _{QVWX}	13	-	t _{CLCL} -50	-	ns	
Data setup before WR	t _{QVWH}	288	-	7t _{CLCL} -150	-	ns	
Data hold after WR	t _{WHQX}	23	-	t _{CLCL} -40	-	ns	
Address float after RD	t _{RLAZ}	-	0	-	0	ns	

Advance Information (16MHz)

External Clock Drive

Parameter	Symbol	Variable ((Freq. = 3.5	Unit	
		Min.	Max.	
Oscillator period	tCLCL	62.5	285.7	ns
High time	t _{CHCX}	17	tCLCL - tCLCX	ns
Low time	tCLCX	17	tCLCL - tCHCX	ns
Rise time	t _{CLCH}	-	17	ns
Fall time	t _{CHCL}	-	17	ns
AC Characteristics for GMS90X5XC series (24MHz version)

 V_{CC} = 5V + 10%, -15%; V_{SS} = 0V; T_A = 0°C to 70°C (C_L for port 0. ALE and \overline{PSEN} outputs = 100pF; C_L for all other outputs = 80pF)

Parameter	24 MHz Oscillator Symbol		Variable Oscillator 1/t _{CLCL} = 3.5 to 24MHz		Unit	
		Min.	Max.	Min.	Max.	
ALE pulse width	t _{LHLL}	43	-	2t _{CLCL} -40	-	ns
Address setup to ALE	t _{AVLL}	17	-	t _{CLCL} -25	-	ns
Address hold after ALE	t _{LLAX}	17	-	t _{CLCL} -25	-	ns
ALE low to valid instruction in	t _{LLIV}	-	80	-	4t _{CLCL} -87	ns
ALE to PSEN	t _{LLPL}	22	-	t _{CLCL} -20	-	ns
PSEN pulse width	t _{PLPH}	95	-	3t _{CLCL} -30	-	ns
PSEN to valid instruction in	t _{PLIV}	-	60	-	3t _{CLCL} -65	ns
Input instruction hold after PSEN	t _{PXIX}	0	-	0	-	ns
Input instruction float after PSEN	t _{PXIZ} †	-	32	-	t _{CLCL} -10	ns
Address valid after PSEN	t _{PXAV} †	37	-	t _{CLCL} -5	-	ns
Address to valid instruction in	t _{AVIV}	-	148	-	5t _{CLCL} -60	ns
Address float to PSEN	t _{AZPL}	0	-	0	-	ns

External Program Memory Characteristics

[†] Interfacing the GMS90X5XC series to devices with float times up to 35 ns is permissible. This limited bus contention will not cause

any damage to port 0 Drivers.

HYUNDAI MicroElectronics

AC Characteristics for GMS90X5XC series (24MHz)

External Data Memory Characteristics

Parameter	Symbol	24 MHz C	Oscillator	Variable 1/t _{CLCL} = 3.	Unit	
		Min.	Max.	Min.	Max.	
RD pulse width	t _{RLRH}	180	-	6t _{CLCL} -70	-	ns
WR pulse width	twLwH	180	-	6t _{CLCL} -70	-	ns
Address hold after ALE	t _{LLAX2}	15	-	t _{CLCL} -27	-	ns
RD to valid data in	t _{RLDV}	-	118	-	5t _{CLCL} -90	ns
Data hold after RD	t _{RHDX}	0	-	0	-	ns
Data float after RD	t _{RHDZ}	-	63	-	2t _{CLCL} -20	ns
ALE to valid data in	tLLDV	-	200	-	8t _{CLCL} -133	ns
Address to valid data in	t _{AVDV}	-	220	-	9t _{CLCL} -155	ns
ALE to WR or RD	tLLWL	75	175	3t _{CLCL} -50	3t _{CLCL} +50	ns
Address valid to \overline{WR} or \overline{RD}	t _{AVWL}	67	-	4t _{CLCL} -97	-	ns
\overline{WR} or \overline{RD} high to ALE high	t _{WHLH}	17	67	t _{CLCL} -25	t _{CLCL} +25	ns
Data valid to WR transition	t _{QVWX}	5	-	t _{CLCL} -37	-	ns
Data setup before WR	tq∨wн	170	-	7t _{CLCL} -122	-	ns
Data hold after WR	t _{WHQX}	15	-	t _{CLCL} -27	-	ns
Address float after RD	t _{RLAZ}	-	0	-	0	ns

Advance Information (24MHz)

External Clock Drive

Parameter	Symbol	Variable ((Freq. = 3.5	Unit	
		Min.	Max.	
Oscillator period	tCLCL	41.7	285.7	ns
High time	t _{CHCX}	12	tCLCL - tCLCX	ns
Low time	tCLCX	12	tCLCL - tCHCX	ns
Rise time	t _{CLCH}	-	12	ns
Fall time	t _{CHCL}	-	12	ns

AC Characteristics for GMS90X5XC series (33MHz version)

 V_{CC} = 5V + 10%, -15%; V_{SS} = 0V; T_A = 0°C to 70°C (C_L for port 0. ALE and \overline{PSEN} outputs = 100pF; C_L for all other outputs = 80pF)

Parameter	33 MHz Oscillator Symbol		Variable Oscillator 1/t _{CLCL} = 3.5 to 33MHz		Unit	
		Min.	Max.	Min.	Max.	
ALE pulse width	t _{LHLL}	40	-	2t _{CLCL} -20	-	ns
Address setup to ALE	t _{AVLL}	10	-	t _{CLCL} -20	-	ns
Address hold after ALE	t _{LLAX}	10	-	t _{CLCL} -20	-	ns
ALE low to valid instruction in	t _{LLIV}	-	56	-	4t _{CLCL} -65	ns
ALE to PSEN	t _{LLPL}	15	-	t _{CLCL} -15	-	ns
PSEN pulse width	t _{PLPH}	80	-	3t _{CLCL} -20	-	ns
PSEN to valid instruction in	t _{PLIV}	-	35	-	3t _{CLCL} -55	ns
Input instruction hold after PSEN	t _{PXIX}	0	-	0	-	ns
Input instruction float after PSEN	t _{PXIZ} †	-	20	-	t _{CLCL} -10	ns
Address valid after PSEN	t _{PXAV} †	25	-	t _{CLCL} -5	-	ns
Address to valid instruction in	t _{AVIV}	-	91	-	5t _{CLCL} -60	ns
Address float to PSEN	t _{AZPL}	0	-	0	-	ns

External Program Memory Characteristics

[†] Interfacing the GMS90X5XC series to devices with float times up to 35 ns is permissible. This limited bus contention will not cause

any damage to port 0 Drivers.

HYUNDAI MicroElectronics

AC Characteristics for GMS90X5XC series (33MHz)

External Data Memory Characteristics

Parameter	Symbol	33 MHz C	Oscillator	Variable 1/t _{CLCL} = 3	Unit	
		Min.	Max.	Min.	Max.	
RD pulse width	t _{RLRH}	132	-	6t _{CLCL} -50	-	ns
WR pulse width	twLwH	132	-	6t _{CLCL} -50	-	ns
Address hold after ALE	t _{LLAX2}	10	-	t _{CLCL} -20	-	ns
RD to valid data in	t _{RLDV}	-	81	-	5t _{CLCL} -70	ns
Data hold after RD	t _{RHDX}	0	-	0	-	ns
Data float after RD	t _{RHDZ}	-	46	-	2t _{CLCL} -15	ns
ALE to valid data in	tLLDV	-	153	-	8t _{CLCL} -90	ns
Address to valid data in	t _{AVDV}	-	183	-	9t _{CLCL} -90	ns
ALE to WR or RD	tLLWL	71	111	3t _{CLCL} -20	3t _{CLCL} +20	ns
Address valid to \overline{WR} or \overline{RD}	t _{AVWL}	66	-	4t _{CLCL} -55	-	ns
\overline{WR} or \overline{RD} high to ALE high	t _{WHLH}	10	40	t _{CLCL} -20	t _{CLCL} +20	ns
Data valid to WR transition	t _{QVWX}	5	-	t _{CLCL} -25	-	ns
Data setup before WR	tq∨wн	142	-	7t _{CLCL} -70	-	ns
Data hold after WR	t _{WHQX}	10	-	t _{CLCL} -20	-	ns
Address float after RD	t _{RLAZ}	-	0	-	0	ns

Advance Information (33MHz)

External Clock Drive

Parameter	Symbol	Variable ((Freq. = 3.5	Unit	
		Min.	Max.	
Oscillator period	tCLCL	30.3	285.7	ns
High time	t _{CHCX}	11.5	tCLCL - tCLCX	ns
Low time	tCLCX	11.5	tCLCL - tCHCX	ns
Rise time	tCLCH	-	5	ns
Fall time	t _{CHCL}	-	5	ns

AC Characteristics for GMS90X5XC series (40MHz version)

 $V_{CC}=5V + 10\%, -15\%; V_{SS}=0V; T_A=0^{\circ}C \text{ to } 70^{\circ}C$ (C_L for port 0. ALE and \overline{PSEN} outputs = 100pF; C_L for all other outputs = 80pF)

Parameter	40 MHz Oscillator Symbol		Variable Oscillator 1/t _{CLCL} = 3.5 to 40MHz		Unit	
		Min.	Max.	Min.	Max.	
ALE pulse width	t _{LHLL}	35	-	2t _{CLCL} -15	-	ns
Address setup to ALE	t _{AVLL}	10	-	t _{CLCL} –15	-	ns
Address hold after ALE	t _{LLAX}	10	-	t _{CLCL} -15	-	ns
ALE low to valid instruction in	t _{LLIV}	-	55	-	4t _{CLCL} -45	ns
ALE to PSEN	t _{LLPL}	10	-	t _{CLCL} -15	-	ns
PSEN pulse width	t _{PLPH}	60	-	3t _{CLCL} -15	-	ns
PSEN to valid instruction in	t _{PLIV}	-	25	-	3t _{CLCL} -50	ns
Input instruction hold after PSEN	t _{PXIX}	0	-	0	-	ns
Input instruction float after PSEN	t _{PXIZ} †	-	15	-	t _{CLCL} -10	ns
Address valid after PSEN	t _{PXAV} †	20	-	t _{CLCL} –5	-	ns
Address to valid instruction in	t _{AVIV}	-	65	-	5t _{CLCL} -60	ns
Address float to PSEN	t _{AZPL}	5	-	5	-	ns

External Program Memory Characteristics

[†] Interfacing the GMS90X5XC series to devices with float times up to 20 ns is permissible. This limited bus contention will not cause any damage to port 0 Drivers.

HYUNDAI MicroElectronics

AC Characteristics for GMS90X5XC series (40MHz)

External Data Memory Characteristics

Parameter	Symbol	at 40 MH	Iz Clock	Variabl 1/t _{CLCL} = 3.	Unit	
		Min.	Max.	Min.	Max.	
RD pulse width	t _{RLRH}	120	-	6t _{CLCL} -30	-	ns
WR pulse width	twLwH	120	-	6t _{CLCL} -30	-	ns
Address hold after ALE	t _{LLAX2}	10	-	t _{CLCL} -15	-	ns
RD to valid data in	t _{RLDV}	-	75	-	5t _{CLCL} -50	ns
Data hold after RD	t _{RHDX}	0	-	0	-	ns
Data float after RD	t _{RHDZ}	-	38	-	2t _{CLCL} -12	ns
ALE to valid data in	tLLDV	-	150	-	8t _{CLCL} -50	ns
Address to valid data in	t _{AVDV}	-	150	-	9t _{CLCL} -75	ns
ALE to WR or RD	t _{LLWL}	60	90	3t _{CLCL} -15	3t _{CLCL} +15	ns
Address valid to \overline{WR} or \overline{RD}	t _{AVWL}	70	-	4t _{CLCL} -30	-	ns
\overline{WR} or \overline{RD} high to ALE high	t _{WHLH}	10	40	t _{CLCL} -15	t _{CLCL} +15	ns
Data valid to WR transition	t _{QVWX}	5	-	t _{CLCL} -20	-	ns
Data setup before WR	t _{QVWH}	125	-	7t _{CLCL} -50	-	ns
Data hold after WR	t _{WHQX}	5	-	t _{CLCL} -20	-	ns
Address float after RD	t _{RLAZ}	-	0	-	0	ns

Advance Information (40MHz)

External Clock Drive

Parameter	Symbol	Variable ((Freq. = 3.5	Unit	
		Min.	Max.	
Oscillator period	tCLCL	25	285.7	ns
High time	t _{CHCX}	10	tclcl - tclcx	ns
Low time	tCLCX	10	tCLCL - tCHCX	ns
Rise time	tCLCH	-	10	ns
Fall time	t _{CHCL}	-	10	ns

GMS90X5XC Series

Figure 6. External Program Memory Read Cycle

Figure 7. External Data Memory Read Cycle

Figure 8. External Data Memory Write Cycle

GMS90X5XC Series

Figure 9. AC Testing: Input, Output Waveforms

Figure 10. Float Waveforms

Figure 11. External Clock Cycle

Jan. 2001 Ver 1.0

OSCILLATOR CIRCUIT

Figure 12. Recommended Oscillator Circuits

Oscillation circuit is designed to be used either with a ceramic resonator or crystal oscillator. Since each crystal and ceramic resonator have their own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

Plastic Package P-LCC-44

(Plastic Leaded Chip-Carrier)

Plastic Package P-DIP-40

(Plastic Dual in-Line Package)

Plastic Package P-MPQF-44

(Plastic Metric Quad Flat Package)

. Customer I	nformation	2. Device Inf	ormation	
Company Name		ROM size	Package	Vol. / Freq.
Application		☐ 4K	44MQFP	12MHz
Order Date	YYYY MM DD	□ 8K	☐ 44PLCC	5V 40MHz
Tel:	Fax:	🗌 16K	☐ 40PDIP	3V { 12MHz
Name & Signature:		ROM Protect	on Without	Normal Super
. Marking Sp	ecification	et C Se E E E E E E E E E E E E E E E E E E	Sum:	
40PDIP o	or 44PLCC	44MQFP	(Plea	se check mark into
HME GMS90 YYWW ©SIEME	152C-GC	HME 90152C-G(VYWW KC ©SIEMENS		① C: 5V ② ROM size L: 3V 1: 4K 2: 8K 4: 16K
	↓ Customer's part number			
Γ				

4. Delivery Schedule

		Date		Quantity	HME Confirmation
Customer Sample	YYYY	MM •	DD •	pcs	
Risk Order	YYYY	MM •	DD •	pcs	

5. ROM Code Verification

Please confirm our verification data.

Verification Date:

Check Sum:

Tel:

Name & Signature: YYYY

Fax:

MM

•

•

2	YYYY MM DD
	Approval Date:
	I agree with your verification data and confirm you to make mask set.
	Tel: Fax:
	Name & Signature: