CES\ S USBS6

V 0.3 June 29, 2010 User Manual C1030-5510

SPARTAN-6™ FPGA board with USB2.0,
SPI-Flash and JTAG interface.

Order number: C1030-5510

-
. ®:
© 0000000900000 0000500000000 00 0000
® 0000 000000000000 OGOGOLOLEOEBSIOGOEOLOGEGEOSOSOLES
LR B BN BN BN BN B IR BN B BN BN BN BN B IR B BN BN BN B AR BN BN BN B IR B BN B N J

<
=
2
c1g 18 @ Em (e E . o
c1g R i . .
D1g Gle Ld -
xxxxx
H3 e S8R KR
G186 H14 L13 F15
618 Kis o17 F16
XILINX FPGA w7 J16 | BBE L14 Mi4
SPARTAN & e Hie K14 N4
L1 K17 P18 i3
M1 Lr P15 K13
1§ CCRENERENE)
5555
N17 NiB
BEEEEEEEEE LRI
wwwwwwwwww SIEEE geex
<
~
ell=|a[alz B B2 E =2 =2 SE = oo
EEIEREEEEEIEIEEREEEEIEE g -
Tole e
AEEIEEEREEEECIBEIEEEIRIER S
= EEERE RN EEEBE SRS kee
. . Hs @ ®
n¥ 3.3ve @ GND
BB EEEEEREEE
. L]
=|[= [[z][3
5258 ¢%
<
M) ® | = [EEEEE
- LR R IR
- e USB2.0
CYPRESS FX-2
. .
[l - o
m m
< o o
~ &

sr
nS
9

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -1- preliminary

http://www.cesys.com/

Copyright information

Copyright © 2010 CESYS GmbH. All Rights Reserved. The information in this document is
proprietary to CESYS GmbH. No part of this document may be reproduced in any form or
by any means or used to make derivative work (such as translation, transformation or
adaptation) without written permission from CESYS GmbH.

CESYS GmbH provides this documentation without warranty, term or condition of any kind,
either express or implied, including, but not limited to, express and implied warranties of
merchantability, fithess for a particular purpose, and non-infringement. While the
information contained herein is believed to be accurate, such information is preliminary,
and no representations or warranties of accuracy or completeness are made. In no event
will CESYS GmbH be liable for damages arising directly or indirectly from any use of or
reliance upon the information contained in this document. CESYS GmbH will make
improvements or changes in the product(s) and/or program(s) described in this
documentation at any time.

CESYS GmbH retains the right to make changes to this product at any time, without notice.
Products may have minor variations to this publication, known as errata. CESYS GmbH
assumes no liability whatsoever, including infringement of any patent or copyright, for sale
and use of CESYS GmbH products.

CESYS GmbH and the CESYS logo are registered trademarks.

All product names are trademarks, registered trademarks, or service marks of their
respective owner.

[0 Please check www.cesys.com to get the latest version of this document.

CESYS Gesellschaft fiir angewandte Mikroelektronik mbH
Zeppelinstrasse 6a

D — 91074 Herzogenaurach

Germany

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -2- preliminary

http://www.cesys.com/
http://www.cesys.com/

Overview

Summary of USBS6

USBSG6 is a low-cost multilayer PCB with SPARTAN-6™ FPGA and USB 2.0 Interface. 34
I/0O balls of the FPGA are available on standard 2.54mm headers, 81 1/O balls can be
reached through a industry standard VG 96-pin connector. It offers multiple configuration
options including USB and onboard SPI-Flash and can also be used standalone without
the need of a USB interface.

Feature list

Form factor 120x100mm

XILINX SPARTAN-6™ XC6SLX16-2CSG324C

USB2.0 Controller CYPRESS™ CY7C68013A

FPGA configuration Using USB2.0, JTAG or SPI-Flash
Memory 16Mb SPI-Flash Numonyx M25P16,

128Mb Quad-SPI-Flash Macronix MX25L12845EMI-10G,
1Gb low-power DDR SDRAM Micron
Technology MT46H64M16LFCK-5
Peripherals USB TO SERIAL UART FTDI FT232R,
HEX rotary DIP switch,
3 status, 5 user LEDs

Expansion connectors 2x25-Pin standard RM2.54mm header,
VG 96-pin connector
Clock Onboard 48MHz clock signal,

up to two optional onboard clocks,
external clock sources possible.

Included in delivery

The standard delivery, order no. C1030-5510, includes:

* One USBS6
* One USB cable 1,5m

* One CD-ROM containing the user's manual (English), drivers, libraries, tools and
example source code.

All parts are ROHS compliant.

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -3- preliminary

http://www.cesys.com/

Hardware

Block Diagram

E

OO

O

Optlonal 3 status & USB to HEX rotary
Oscillators 5 user LEDs UART DIP switch

Figure 1: USBS6 Block Diagram

Spartan-6™" FPGA

XC6SLX16-2CSG324C FPGA features:

Logic cells 14,579

Configurable logic blocks (Slices / Flip-Flops) 2,278 /18,224

Max distributed RAM (kb) 136

DSP Slices 136

Block RAM Blocks (18kB / Max(kb)) 32/576

CMTs 2

For details of the SPARTAN -6™ FPGA device, please look at the data sheet at:
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -4- preliminary

http://www.cesys.com/
http://direct.xilinx.com/bvdocs/publications/ds312.pdf

. LI I I I I I I B I I B I B B I B B N .
k ® @ & & & & & 0 S O 0 O SO Ee SN S e e 0
1%]
=
cig F18 [m [=]|[m]|[m [m L] e
= BT AR - SIS - R)
€17 613 L4 ®
D18 Gia L] L
A e s X
H13 i (&) |5 8] B (8
G16 H14 L13 F15
618 K15 017 F16
XILINX FPGA H1T J16 L14 M1
SPARTAN & J1g am | -FPOR | Ni4
L K17 PLE M13
M18 L7 P15 K13
M16 Ol IENENE
® ~N e~
N17 N1B
= = = (S (=] = (E = SERRIE
@ |k e |5 KN e Ll g e e
[
[p%]
g (B = B = B B E E = e EEE EEEE LI
—d-)mhwh_wm_hmcmcomuluc & @8
TDIie ®
_4<—‘zr-_4.;—‘<'ﬂz<<ciﬂ—‘,,cs“m..
=< w58 (=8 5886 RS EEEEEE ke e
C @ [
- THs @ ®
™~ 3.3ve @ GND
=l (=] = (2] (&l el [=] (=] [e][&
SHEERERENELE &
[] []
FRENERERE
w@mﬁﬂ
-
v e L] = g [Z[E][E
- ERENEREE
- = e USB2.0
CYPRESS FX-2
® ®
| o I~
e e e o (I
Se e e ey e
{ B BN
es e e * o 0 0
. * @ & 0 .

Sr

IMS
or

Figure 2: USBS6 Top View

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -5- preliminary

http://www.cesys.com/

Powering USBS6

USBS6 may be used bus-powered (see SW2 below) without the need of any external
power supply other than USB. In this mode VCCO _I0O on J3,PIN A3, B3, C3 sourcing
capability is limited due to the fact, that USB power supply current is limited depending on
which system is used as host. Typically USB hosts allow up to 500mA. In bus-powered
mode, at first only FX2 is enabled. After successful connection to the operating system the
further power-on sequencing behavior depends on UDK configuration. Until the release of
UDK2.0 only the API could enable further power-on sequencing, therefore after plugging
an USB cable it also was necessary to start an application like cesys- Monitor before the
FPGA and other devices turned on. With v2.0 and upcoming releases of UDK framework
the user now can decide which power-on behavior fits best. Power-on sequencing through
API or as soon as USB cable is plugged in. Default mode is API- controlled.

Modes of operation
Mode Sw2 Comment * VCCO_IO

Bus- powered USB is used as power supply input. 3.3Vv@ ??? mA

Connect 5V power supply to VG- 96pin external |3.3V@ 3 A**
expansion connector J3 PINS A1, B1 and C1.

Self- powered

Minimum required supply current: ?7?A

* The actual required supply current strongly depends on FGPA design and may exceed the
minimum required.

** In self-powered mode the actual VCCO_IO current limit depends on sourcing capability of
external 5V power supply and may be less.

If the attached USB2.0 host interface should not be used as power supply, it is possible to
use USBS6 self-powered (see SW2 above). In this mode an external 5V power supply
must be connected to the external expansion connector J3, PINS A1, B1 and C1. All
onboard voltages are enabled as soon as an external power supply is applied. VCCO on
BANKO and BANKS is tied together to VCCO_IO but routed independent from other supply
voltages. Therefore in self-powered mode maximum current available on J3,PIN

A3, B3, C3 (VCCO_IO) mainly depends on the external power supply to the limit of the
onboard regulator, which is about 3A. As default VCCO_IO is regulated to 3.3V to enable
3.3V signaling levels on the external expansion connectors. Other signaling levels may be
supported but require adjustment of the onboard synchronous buck regulator to the desired
value.

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -6- preliminary

http://www.cesys.com/

I'lt is strongly recommended to check XILINX™ UG381 about Spartan-6 FPGA SelectlO

Signal Standards on XILINX™ website.

Configuration

Configuration of USBS6 can be accomplished in several ways: JTAG, SPI-Flash or USB.
The default configuration mode is booting from SPI-Flash. After powering on the FPGA,
USBSG6 always tries to configure itself from the attached Flash using SPI Master mode. If
no valid design is stored in the SPI-Flash the FPGA has to be configured via JTAG or USB.
JTAG configuration is supported at any time after the FPGA is properly powered on. For
downloading designs via JTAG ISE WebPACK from XILINX™ is recommended. The tool
can be downloaded from XILINX web page free of charge. As JTAG connector USBS6
implements a standard 2x7-Pin header with 2mm pitch which is compatible to recent
XILINX™ platform cables.

Figure 3: JTAG connector J2

J2 JTAG connector
PIN | Signal |FPGA Comment PIN [Signal |FPGA Comment
Name 10 Name 10

1 GND -- | Ground signal 2 | VCCAUX -- 3.3V auxiliary supply.
3 GND -- | Ground signal 4 TMS B18 Test Mode Select.
5 GND -- | Ground signal 6 TCK A17 Test Clock.
7 GND -- | Ground signal 8 TDO D16 Test Data Out.
9 GND -- | Ground signal 10 TDI D15 Test Data In.

1" GND -- | Ground signal 12 -- -- No connection.
13 GND -- | Ground signal 14 -- -- No connection.

For further information on the different configuration solutions for XILINX™ SPARTAN-6™

USBS6 / C1030-5510
User Doc V0.3

http://www.cesys.com/

preliminary

http://www.cesys.com/
http://www.xilinx.com/tools/webpack.htm
http://direct.xilinx.com/bvdocs/userguides/ug381.pdf

FPGA the reader is encouraged to take a look at the user guide UG380 on XILINX™ web
page.

USB2.0 controller

CYPRESS™ FX2LP™ is a highly integrated, low power USB2.0 microcontroller, that
integrates USB2.0 transceiver, serial interface engine (SIE), enhanced 8051 micro-
controller and a programmable peripheral interface. More information on usage of FX2LP™
in conjunction with Spartan-6 can be found in chapter C.

USB2.0 FX2LP™ Microcontroller CYPRESS™ CY7C68013A

Signal Name |FPGAIO Comment
FX2_ IFCLK V9 Clock input for both, FX2 and FPGA. 48MHz clock is provided by an
external oscillator.
FX2_SLWR us FX2 input, FIFO write-strobe.
FX2_SLRD T7 FX2 input, FIFO read-strobe.
FX2_SLOE V11 FX2 input, output-enable, activates FX2 data bus.
FX2_PKTEND V8 FX2 input, packet end control signal, causes FX2 to send data to host

at once, ignoring 512 byte alignment (so called “short packet”).

I Short packets sometimes lead to unpredictable behavior at host
side, wherefore short packets are not support!

FX2_FIFOADRO R10 FX2 input, endpoint buffer addresses, only two endpoints are used:
FX2 FIFOADR1 U3 EP2 (OUT, ADR[1:0] = b”00”) and EP6 (IN, ADR[1:0] = b”10”).

FX2_FLAGA V16 FX2 output, EP2 “empty” flag.
FX2_FLAGB u16 FX2 output, EP2 “almost empty” flag.
FX2_FLAGC un FX2 output, EP6 “almost full” flag.
FX2_FDO R11 16-Bit bidirectional FIFO data bus.
FX2_FD1 T14
FX2_FD2 V14
FX2_FD3 us
FX2_FD4 V5
FX2_FD5 R3
FX2_FD6 T3
FX2_FD7 R5
FX2_FD8 N5
FX2_FD9 P6
FX2_FD10 P12
USBS6 / C1030-5510 http://www.cesys.com/

User Doc V0.3 -8- preliminary

http://www.cesys.com/
http://direct.xilinx.com/bvdocs/userguides/ug380.pdf

USB2.0 FX2LP™ Microcontroller CYPRESS™ CY7C68013A
Signal Name |FPGAIO Comment

FX2_FD11 u13

FX2_FD12 V13

FX2_FD13 u10

FX2_FD14 R8

FX2_FD15 T8

External memory

USBSE6 offers the opportunity to use various external memory architectures in one’s FPGA
design. With Micron Technology MT46H64M16LFCK-5 up to 1Gbit of high-speed low-
power DDR SDRAM is available. The integrated memory controller of Spartan-6™ devices
enables system designers to implement state-of-the-art memory interfaces without the
need to develop a whole memory controller Soft-IP all on their own. Some examples on
how to implement LPDDR with Spartan-6 are available in chapter C.

LPDDR SDRAM MT46H64M16LFCK-5

Signal Name | FPGAIO Comment
MCB1_A0 H15
MCB1_A1 H16
MCB1_A2 F18
MCB1_A3 J13
MCB1_A4 E18 Address inputs: Provide the row address for ACTIVE commands, and
MCB1 A5 L12 the column address and auto precharge bit (A10) for READ or
— WRITE commands, to select one location out of the memory array in
MCB1_A6 L13 the respective bank. During a PRECHARGE command, A10
MCB1 A7 F17 determines whether the PRECHARGE applies to one bank (A10
= LOW, bank selected by BAO, BA1) or all banks (A10 HIGH). The
MCB1_A8 H12 |address inputs also provide the op-code during a LOAD MODE
MCB1 A9 G13 REGISTER command.
MCB1_A10 E16
MCB1_A11 G14
MCB1_A12 D18
MCB1_A13 c17
MCB1_BAO H13 Bank address inputs: BAO and BA1 define to which bank an ACTIVE,

READ, WRITE, or PRECHARGE command is being applied. BAO
and BA1 also determine which mode register is loaded during a
LOAD MODE REGISTER command.

MCB1_BA1 H14

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -9- preliminary

http://www.cesys.com/
http://www.micron.com/products/partdetail?part=MT46H64M16LFCK-5

LPDDR SDRAM MT46H64M16LFCK-5
Signal Name | FPGAIO Comment
MCB1_RAS_n K15

MCB1_CAS_n K16 |Command inputs: RAS#, CAS#, and WE# (along with CS#) define
MCB1 WE n K12 the command being entered. *

MCB1_CS_n -

MCB1_CKE_n D17 Clock enable: CKE HIGH activates, and CKE LOW deactivates, the
internal clock signals, input buffers, and output drivers. Taking CKE
LOW enables PRECHARGE power-down and SELF REFRESH
operations (all banks idle), or ACTIVE power-down (row active in any
bank). CKE is synchronous for all functions except SELF REFRESH
exit. All input buffers (except CKE) are disabled during power-down
and self refresh modes.

MCB1_RZQ N14 Input termination calibration pin used with the soft calibration module.
External 100 Ohm resistor to GND.

MCB1_ZIO No connect signal used with the soft calibration module to calibrate
the input termination value.

MCB1_CK G16 Clock: CK is the system clock input. CK and CK# are differential

clock inputs. All address and control input signals are sampled on the
crossing of the positive edge of CK and the negative edge of CK#.

LICEURS Eils Input and output data is referenced to the crossing of CK and CK#
(both directions of the crossing).

MCB1_DQO M16

MCB1_DQ1 M18

MCB1_DQ2 L17

MCB1_DQ3 L18
Data input/output: Lower Byte Data bus.

MCB1_DQ4 H17

MCB1_DQ5 H18

MCB1_DQ6 J16

MCB1_DQ7 J18

MCB1_LDQS K17 Data strobe for Lower Byte Data bus: Output with read data, input
with write data. DQS is edge-aligned with read data, center-aligned in
write data. It is used to capture data.

MCB1_LDM L16 Input data mask: DM is an input mask signal for write data. Input data
is masked when DM is sampled HIGH along with that input data

MCB1_UDM L15 during a WRITE access. DM is sampled on both edges of DQS.

MCB1_DQ8 N17 Data input/output: Upper Byte Data bus.

MCB1_DQ9 N18

MCB1_DQ10 P17

MCB1_DQ11 P18

USBS6 / C1030-5510 http://www.cesys.com/

User Doc V0.3 -10- preliminary

http://www.cesys.com/

LPDDR SDRAM MT46H64M16LFCK-5

Signal Name | FPGAIO Comment

MCB1_DQ12 T17

MCB1_DQ13 T18

MCB1_DQ14 u17

MCB1_DQ15 u18

MCB1_UDQS N15 Data strobe for Upper Byte Data bus: Output with read data, input
with write data. DQS is edge-aligned with read data, center-aligned in
write data. It is used to capture data.

* As the memory device interface of Spartan-6 supports only one device, CS# signal is not
supported by Spartan-6 MCB. CS# is pulled LOW via an external 0 Ohm resistor.

I'lt is strongly recommended to check XILINX™ user guide UG388 about Spartan-6™
FPGA Memory Controller on XILINX™ website.

I'lt is strongly recommended to check XILINX™ user guide UG416 about Spartan-6™
FPGA Memory Interface Solutions on XILINX™ website.

User specific data can be stored in up to 128Mb of non-volatile Flash-memory. The

SPI- compliant interface guarantees ease of use and when speed matters

Macronix MX25L12845EMI-10G supports Q- SPI with data-rates up to 50 MByte/s in fast
read double transfer rate mode. Some examples on how to implement a SPI- compliant
interface with Spartan-6™ are available in chapter C.

Q- SPI Flash MX25L12845EMI-10G
Signal Name | FPGAIO Comment
MX_CS _n T6 Active- low Chip Select.
MX_SCLK V4 Clock Input.
MX_SIO0 V6 Serial Data Input (SPI) / Serial Data |10 (Dual- or Q- SPI).
MX_SIO1 T4 Serial Data Input (SPI) / Serial Data 10 (Dual- or Q- SPI).
MX_SI102 u7 Active- low Write Protect (SPI) / Serial Data 10 (Dual- or Q-SPI).
MX_SI03 V7 Not connect pin (SPI) / Serial Data 10 (Dual- or Q-SPI).
Peripherals

USBSE6 integrates several peripheral devices. Three system and five user- configurable
LEDs, one HEX rotary DIP switch and one USB to SERIAL UART are available. Power
supply status and FPGA configuration are observable through the system LEDs. The user-

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -11- preliminary

http://www.cesys.com/
http://www.mxic.com.tw/QuickPlace/hq/PageLibrary4825740B00298A3B.nsf/h_Index/3F21BAC2E121E17848257639003A3146/$File/MX25L6445EMX25L12845Ever12-1.2.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug416.pdf
http://www.xilinx.com/support/documentation/user_guides/ug388.pdf

configurable LEDs allow to make internal monitoring status signals visible by driving the
appropriate FPGA IO to a HIGH level.

s O O

Figure 4: Bitte durch Orginalbild ersetzen

LEDs

Signal Name | FPGAIO Comment
SYS _LEDO -- Internal 5V power supply.
SYS LED1 - Power OK- signal from onboard voltage regulator.
SYS_LED2 V17 llluminates to indicate the status of the DONE pin if FPGA is

successfully configured.

USER_LEDO P7 User- configurable LED.

USER_LED1 N7 User- configurable LED.

USER LED2 P8 User- configurable LED.

USER_LED3 N6 User- configurable LED.

USER_LED4 R7 User- configurable LED.

The HEX rotary DIP switch is of binary coded type. The four weighted terminals are
externally pulled HIGH with 4,7 kOhm resistors, the common terminals are connected to
GND. Therefore the four FPGA inputs behave like a complementary binary coded
hexadecimal switch.

HEX rotary DIP switch
DIAL FPGA Pin N8 FPGA Pin M11 FPGA Pin M10 FPGA Pin N9
0 1 1 1 1
1 0 1 1 1
2 1 0 1 1
3 0 0 1 1
4 1 1 0 1
USBS6 / C1030-5510 http://www.cesys.com/

User Doc V0.3 -12- preliminary

http://www.cesys.com/

HEX rotary DIP switch
DIAL FPGA Pin N8 FPGA Pin M11 FPGA Pin M10 FPGA Pin N9
5 0 1 0 1
6 1 0 0 1
7 0 0 0 1
8 1 1 1 0
9 0 1 1 0
A 1 0 1 0
B 0 0 1 0
C 1 1 0 0
D 0 1 0 0
E 1 0 0 0
F 0 0 0 0

FT232R from FTDI is a USB to serial UART interface.

USB to serial UART interface

Signal Name FPGAIO| Direction Comment
FTDI_TXD u1is FPGAIN |Transmit asynchronous data output for FT232R.
FTDI_RXD V15 FPGA OUT |Receiving asynchronous data input for FT232R.
FTDI_RTS n N11 FPGAIN |Request to send control output for FT232R.
FTDI_CTS n M8 FPGA OUT [Clear to send control input for FT232R.
FTDI_RESET n T12 FPGA OUT [Active low reset pin for FT232R.

External expansion connectors

On connectors J3 and J4 up to 115 general purpose FPGA IO are accessible. Bank 0 and
Bank 3 of the FPGA are configured for 3.3V signaling level. Differential IO standards as for
example LVDS are supported too. Detail information about IO pairing is available in
paragraph |0 pairing and etch length report of chapter D.

I'10 on connectors J3 and J4 are directly connected to FPGA 10 and therefore are only 3.3
Volt tolerant. NEVER apply voltages outside the interval [-0.95V..4.1V] as this may lead to
severe damage of FPGA and attached components. For more information regarding DC
and switching characteristics of Spartan-6 FPGA please consult documentation DS160 on
XILINXTM website

USBS6 / C1030-5510

User Doc V0.3

-13-

http://www.cesys.com/

preliminary

http://www.cesys.com/
http://www.xilinx.com/support/documentation/data_sheets/ds162.pdf
http://www.ftdichip.com/Documents/DataSheets/DS_FT232R_V205.pdf

‘AEI:I:EI:II:I:II:II:II:IEII:I:I:DI:II:II:IEI:I:!:IDDDI:II—I

—

'—lﬂﬂﬂﬁlﬂﬂEEEEEI:IEI:EI:I::IQLJ:I:J:IDDD:IZ

1 L (§ (B LEC

-

o0 % [(» [(® (&B

I_II_I_I'_I‘_1IA

F igitre 5: VG 96-pin external expansion connector J3

J3 VG 96-pin external expansion connector
PIN ([FPGA Comment PIN (FPGA Comment PIN [FPGA Comment
10 10 10
A32| -- GND B32| -- GND Cc32| -- GND
A31| F13 VG96_I078 B31| E13 VG96_I079 C31| C4 VG96_1080
A30| F12 VG96_I075 B30| E12 VG96_I076 C30(F11 VG96_I077
A29| D11 VG96_|072* B29| C11 VG96_I073* C29| EM1 VG96_I074
A28 | G11 VG96_1069 B28| F10 VG96_I070 C28| G8 VG96_I071
A27| G9 VG96_1066 B27| F9 VG96_|067 C27| F8 VG96_l068
A26| D9 VG96_l063* B26| C9 VG96_1064* C26| D8 VG96_l065
A25| E7 VG96_1060 B25| ES8 VG96_1061 C25(C8 VG96_1062
A24| D6 VG96_|057 B24| C6 VG96_1058 C24| F7 VG96_1059
A23| F6 VG96_1054 B23| F5 VG96_l055 C23| EG6 VG96_l056
A22| -- GND B22| -- GND c22| -- GND
A21| E4 VG96_1051 B21| D3 VG96_1052 C21| F4 VG96_1053
A20| H7 VG96_1048 B20| G6 VG96_1049 C20| F3 VG96_1050
A19| H4 VG96_1045* B19| H3 VG96_1046* c19(J7 VG96_1047
A18| H6 VG96_1042 B18| H5 VG96_1043 C18| J6 VG96_1044
A17| K4 VG96_1039* B17| K3 VG96_1040* C17| L6 VG96_1041
A16| L7 VG96_|036 B16| K6 VG96_|037 C16| M5 VG96_1038
A15| L5 VG96_1033* B15| K5 VG96_1034* C15(E3 VG96_1035
A14| L4 VG96_1030 B14| L3 VG96_1031 C14| E1 VG96_1032
A13| C2 VG96_1027 B13| C1 VG96_1028 C13| G3 VG96_1029
A12| D2 VG96_1024 B12| D1 VG96_1025 C12| Gt VG96_1026
A11| F2 VG96_1021 B11| F1 VG96_1022 C11| J3 VG96_1023
A10| H2 VG96_1018* B10| H1 VG96_I019* c10| J1 VG96_1020
A9 | K2 VG96_I015 B9 | K1 VG96_1016 C9 | M3 VG96_1017
A8 | L2 VG96_1012 B8 | L1 VG96_1013 c8 | M1 VG96_1014
USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -14- preliminary

http://www.cesys.com/

J3 VG 96-pin external expansion connector
PIN |FPGA Comment PIN (FPGA Comment PIN [FPGA Comment
10 10 10
A7 | N2 VG96_109 B7 | N1 VG96_1010 C7 | N4 VG96_1011
A6 P2 VG996 106 B6 P1 VG96_ 107 C6 | N3 VG96_108
A5 | T2 VG96_103 B5 | T1 VG96_104 C5| P4 VG96_105
A4 | U2 VG96_100 B4 | U1 VG96_101 C4 | P3 VG96_102
A3 -- VCCO_IO B3 -- VCCO_IO C3 -- VCCO_IO
A2 - GND B2 -- GND C2 -- GND
A1 - 5.0V_EXT B1 -- 5.0V_EXT Cc1 -- 5.0V_EXT
* GCLK

1 49

\ — /

Figure 6: IDC 2x25-Pin external expansion connector J4

J4 IDC 2x25-Pin external expansion connector

PIN | FPGAIO Comment PIN | FPGAIO Comment
1 -- VCCO_IO 2 -- GND
3 C5 ADD_IO0 4 A5 ADD_I0O1
5 C7 ADD 102 6 A7 ADD 103
7 -- GND 8 -- GND
9 B2 ADD 104 10 A2 ADD_105
1 B3 ADD 106 12 A3 ADD_107
13 B4 ADD 108 14 A4 ADD_109
15 B6 ADD 1010 16 A6 ADD_1011
17 -- GND 18 -- GND

19 B8 ADD 1012 20 A8 ADD 1013
21 B9 ADD_1014* 22 A9 ADD_1015*
23 -- GND 24 -- GND

USBS6 / C1030-5510 http://www.cesys.com/

User Doc V0.3 -15- preliminary

http://www.cesys.com/

J4 IDC 2x25-Pin external expansion connector
PIN | FPGAIO Comment PIN | FPGAIO Comment
25 B11 ADD_l016 26 A11 ADD_I017
27 B12 ADD_|018 28 A12 ADD_I019
29 B14 ADD_1020 30 A14 ADD_1021
31 B16 ADD_|022 32 A16 ADD_1023
33 - GND 34 -- GND
35 C10 ADD_|024* 36 A10 ADD_|025*
37 D12 ADD_|026 38 C12 ADD_l|027
39 -- GND 40 -- GND
41 C13 ADD_1028 42 A13 ADD_1029
43 D14 ADD_1030 44 C14 ADD_1031
45 C15 ADD_1032 46 A15 ADD_1033
47 D4 HSWAPEN** 48 -- GND
49 - VCCO_IO 50 -- GND
* GCLK
** Enable / Disable optional pull-up resistors during configuration. Pulled HIGH via external
4,7 kOhm resistor. Leave unconnected.

! It is strongly recommended to check the appropriate data sheets of SPARTAN-6™

devices about special functionality 10 like GCLK, HSWAPEN, ...

USBS6 / C1030-5510
User Doc V0.3 -16-

http://www.cesys.com/

preliminary

http://www.cesys.com/

FPGA design

Cypress FX-2 LP and USB basics

Several data transfer types are defined in USB 2.0 specification. High-speed bulk transfer
is the one and only mode of interest to end users. USB transfers are packet oriented and
have a time framing scheme. USB packets consist of USB protocol and user payload data.
Payload could have a variable length of up to 512 bytes per packet. Packet size is fixed to
the maximum value of 512 bytes for data communication with CESYS USB cards to
achieve highest possible data throughput. USB peripherals could have several logical
channels to the host. The data source/sink for each channel inside the USB peripheral is
called the USB endpoint. Each endpoint can be configured as “IN”- (channel direction:
peripheral => host) or “OUT”-endpoint (channel direction: host => peripheral) from host
side perspective. CESYS USB cards support two endpoints, one for each direction. FX-2
has an integrated USB SIE (Serial Interface Engine) handling USB protocol and
transferring user payload data to the appropriate endpoint. So end users do not have to
care about USB protocol in their own applications. FX-2 endpoints are realized as 2 kB
buffers. These buffers can be accessed over a FIFO-like interface with a 16 bit tristate data
bus by external hardware. External hardware acts as a master, polling FIFO flags, applying
read- and write-strobes and transferring data. Therefore this FX-2 data transfer mechanism
is called “slave FIFO mode”. As already mentioned, all data is transferred in multiples of
512 bytes. External hardware has to ensure, that the data written to IN-endpoint is aligned
to this value, so that data will be transmitted from endpoint buffer to host. The 512 byte
alignment normally causes no restrictions in data streaming applications with endless data
transfers. Maybe it is necessary to fill up endpoint buffer with dummy data, if some kind of
host timeout condition has to be met. Another FX-2 data transfer mechanism is called
“GPIF (General Programmable InterFace) mode”. The GPIF engine inside the FX-2 acts as
a master to endpoint buffers, transferring data and presenting configurable handshake
waveforms to external hardware. CESYS USB card supports “slave FIFO mode” for data
communication only. “GPIF mode” is exclusively used for downloading configuration
bitstreams to FPGA.

Clocking FPGA designs

The 48 MHz SYSCLK oscillator is an onboard clock source for the FPGA. It is used as
interface clock (IFCLK) between FX-2 slave FIFO bus and FPGA 1/Os. So this clock source
must be used for data transfers to and from FPGA over USB! Appropriate timing
constraints can be found in “*.ucf’-files of design examples included in delivery.

It is strictly recommended to use a single clock domain whenever possible. Using a fully
synchronous system architecture often results in smaller, less complex and more
performant FPGA designs (compare Xilinx™ white paper WP331 “Timing Closure/Coding
Guidelines”).

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -17- preliminary

http://www.cesys.com/
http://www.xilinx.com/support/documentation/white_papers/wp331.pdf

In FPGA designs with multiple clock domains asynchronous FIFOs have to be used for
transferring data from one clock domain to the other and comprehensive control signals
have to be resynchronized.

Other clock sources can be added internally by using Spartan-6™ onchip digital clock
managers (DCMs) or PLLs or externally by connecting clock sources to other FPGA global
clock inputs. A wide range of clock frequencies can be synthesized with DCMs and PLLs.
For further details on DCMs/PLLs please see “Spartan-6™ FPGA Clocking Resources
User Guide UG382”.

FX-2/FPGA slave FIFO connection

Only the logical behavior of slave FIFO interface is discussed here. For information about
the timing behavior like setup- and hold-times please see FX-2 datasheet.

All flags and control signals are active low (postfix “#”). The whole interface is synchronous
to IFCLK. The asynchronous FIFO transfer mode is not supported.

* SLWR#: FX-2 input, FIFO write-strobe
* SLRD#: FX-2 input, FIFO read-strobe
* SLOE#: FX-2 input, output-enable, activates FX-2 data bus drivers

* PKTEND#: FX-2 input, packet end control signal, causes FX-2 to send data to host at
once, ignoring 512 byte alignment (so called “short packet”)

» Short packets sometimes lead to unpredictable behavior at host side. So CESYS USB
cards do not support short packets! This signal has to be statically set to HIGH! Dummy
data should be added instead of creating short packets. There is normally no lack of
performance by doing this, because transmission of USB packets is bound to a time
framing scheme, regardless of amount of payload data.

* FIFOADR][1:0]: FX-2 input, endpoint buffer addresses, CESYS USB cards use only two
endpoints EP2 (OUT, ADR[1:0] = b”00”) and EP6 (IN, ADR[1:0] = b"10”)

» Switching FIFOADR[1] is enough to select data direction. FIFOADR][0] has to be
statically set to LOW!

* FLAG#-A/-B/-C: FX-2 outputs, A => EP2 “empty” flag, B => EP2 “almost empty” flag,
meaning one 16 bit data word is available, C => EP6 “almost full” flag, meaning one 16

bit data word can still be transmitted to EP6, there is no real “full” flag for EP6, “almost
full” could be used instead

» FDI[15:0]: bidirectional tristate data bus

Introduction to example FPGA designs

The CESYS USBS6 Card is shipped with some demonstration FPGA designs to give you
an easy starting point for own development projects. The whole source code is written in

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -18- preliminary

http://www.cesys.com/
http://www.xilinx.com/support/documentation/user_guides/ug382.pdf
http://www.xilinx.com/support/documentation/user_guides/ug382.pdf
http://www.xilinx.com/support/documentation/user_guides/ug331.pdf
http://www.xilinx.com/support/documentation/user_guides/ug331.pdf

VHDL. Verilog and schematic entry design flows are not supported.

* The design “usbs6_soc” demonstrates the implementation of a system-on-chip (SoC)
with host software access to the peripherals like GPIOs, external Flash Memory, LPDDR
Memory and internal BlockRAM over USB. This design requires a protocol layer over the
simple USB bulk transfer (see CESYS application note “Transfer Protocol for CESYS
USB products” for details), which is already provided by CESYS software API.

* The design “usbs6_bram” is a minimal example for data transfers from and to the FPGA
over USB and can be used to get for familiar with UDK hardware/software interface.

The Spartan-6 XC6SLX16 Device is supported by the free Xilinx™ ISE Webpack
development software. You will have to change some options of the project properties for
own applications.

A bitstream in the “*.bin”-format is needed, if you want to download your FPGA design with
the CESYS software API-functions LoadBIN () and ProgramFPGA (). The generation of
this file is disabled by default in the Xilinx™ ISE development environment. Check “create
binary configuration file” at right click “generate programming file”=>properties=>general
options:

ﬂ Process Properties
Category
General Options General OpﬂOﬂS
Confiquration Options
Startup Options
Readback Options
FProperty Mame Value
Fiun Design Rules Checker [DRC)
Create Bit File
Create Binary Configuration File I
Create ASCI Configuration File]
Create [EEE 1532 Configuration File J
Enable BitStream Compression il

Enable Debugging of Serial Maode BitStream [
Enable Cyclic Redundancy Checking [CRC)

Broperty dizplay level: | Standard | » Ciefault

[ok][Cancel][Apply][Help]

Figure 7: ISE Generate Programming File Properties (Gen. Opt.)

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -19- preliminary

http://www.cesys.com/

After ProgramFPGA () is called and the FPGA design is completely downloaded, the pin
#RESET (note: the prefix # means, that the signal is active low) is automatically pulsed
(HIGH/LOW/HIGH). This signal can be used for resetting the FPGA design. The API-
function ResetFPGA () can be called to initiate a pulse on #RESET at a user given time.

The following sections will give you a brief introduction about the data transfer from and to
the FPGA over the Cypress FX-2 USB peripheral controller's slave FIFO interface, the
WISHBONE interconnection architecture and the provided peripheral controllers.

CESYS USB cards use only slave FIFO mode for transferring data. For further information
about the FX-2 slave FIFO mode see Cypress FX-2 user manual and datasheet and about
the WISHBONE architecture see specification B.3 (wbspec_b3.pdf).

FPGA source code copyright information

This source code is copyrighted by CESYS GmbH / GERMANY, unless otherwise noted.

FPGA source code license

THIS SOURCECODE IS NOT FREE! IT IS FOR USE TOGETHER WITH THE CESYS
PRODUCTS ONLY! YOU ARE NOT ALLOWED TO MODIFY AND DISTRIBUTE OR USE
IT WITH ANY OTHER HARDWARE, SOFTWARE OR ANY OTHER KIND OF ASIC OR
PROGRAMMABLE LOGIC DESIGN WITHOUT THE EXPLICIT PERMISSION OF THE
COPYRIGHT HOLDER!

Disclaimer of warranty

THIS SOURCECODE IS DISTRIBUTED IN THE HOPE THAT IT WILL BE USEFUL, BUT
THERE IS NO WARRANTY OR SUPPORT FOR THIS SOURCECODE. THE COPYRIGHT
HOLDER PROVIDES THIS SOURCECODE "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THIS
SOURCECODE IS WITH YOU. SHOULD THIS SOURCECODE PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

IN NO EVENT WILL THE COPYRIGHT HOLDER BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THIS SOURCECODE (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THIS
SOURCECODE TO OPERATE WITH ANY OTHER SOFTWARE-PROGRAMS,

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -20- preliminary

http://www.cesys.com/

HARDWARE-CIRCUITS OR ANY OTHER KIND OF ASIC OR PROGRAMMABLE LOGIC
DESIGN), EVEN IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

Design “usbs6_soc”

An on-chip-bus system is implemented in this design. The VHDL source code shows you,
how to build a 32 Bit WISHBONE based shared bus architecture. All devices of the
WISHBONE system support only SINGLE READ / WRITE Cycles. Files and modules
having something to do with the WISHBONE system are labeled with the prefix “wb_". The
WISHBONE master is labeled with the additional prefix “ma_” and the slaves are labeled
with “sl_". There is a package for each module with the additional postfix “_pkg”. It contains
the appropriate VHDL component declaration / interface description as well as public
constants like register address offsets.

32-Bit SoC
UART

Xilinx ®
SIO
Macros

Universal Data
Source/Sink

Mce LPDDR

Ext.-Mem. ' '

Access

” On-Chip-Bus

Protocol

Slave-FIFO Engine

Configuration
&

User Flash
Access

Connectors
LEDs
Hex-Enc.

ISPI I Multi-l/O

Figure 8: WISHBONE system overview

Files and modules
src/wishbone_pkg.vhd:

A package containing datatypes, constants, and components needed for the WISHBONE
system. There are VHDL subroutines for a WISHBONE master bus functional model

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -21- preliminary

http://www.cesys.com/

(BFM), too. These can be used for behavioral simulation purposes.

src/usbs6_soc_top.vhd:

This is the top level entity of the design. The WISHBONE components are instantiated
here.

src/wb_intercon.vhd:

All WISHBONE devices are connected to this shared bus interconnection logic. Some
MSBs of the address are used to select the appropriate slave.

src/wb_ma_fx2.vhd:

This is the entity of the WISHBONE master, which converts the CESYS USB protocol into
one or more 32 Bit single read/write WISHBONE cycles. The low level FX-2 slave FIFO
controller (fx2_slfifo_ctrl.vhd) is used and 16/32 bit data width conversion is done by using
special FIFOs (sfifo_hd_a1Kx18b0K5x36.vhd).

src/wb_sl_bram.vhd:

A internal BlockRAM is instantiated here and simply connected to the WISHBONE
architecture. It can be used for testing address oriented data transactions over USB.

src/wb_sl_gpio.vhd:

This entity provides up to 256 general purpose I/Os to set and monitor non-timing-critical
internal and external FPGA signals. The 1/Os can be accessed as eight ports with 32 bits
each. Every single 1/0 can be configured as an in- or output.

I/0O signals of VG96 connector VG96_10[80:0] are at port0 — port2, bits[80:0], I/O signals of
add-on connector ADD _10[33:0] are at port3 — port4, bits[129:96], user LEDs are at port5,
bits[163:160] and hex encoder is at port6, bits[195:192].

Port7 is used for monitoring MCB status signals bit[224] => READ ERROR, bit[225] =>
READ OVERFLOW, bit[226] => WRITE ERROR, bit[227] => WRITE UNDERRUN and
bit[228] => CALIBRATION DONE.

src/wb_sl_flash.vhd:

The module encapsulates the low level FLASH controller flash_ctrl.vhd. The integrated
command register supports the BULK ERASE command, which erases the whole memory
by programming all bits to '1'. In write cycles the bit values can only be changed from '1' to
'0". That means, that it is not allowed to have a write access to the same address twice
without erasing the whole flash before. The read access is as simple as reading from any
other WISHBONE device. Please see the SPI-FLASH data sheet for details on
programming and erasing. There are two instances of this module. One is used for

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -22- preliminary

http://www.cesys.com/

programming FPGA configuration bitstream to SPI-FLASH and the other accesses QUAD-
SPI-FLASH for storing nonvolatile application data.

src/wb_sl_mcb.vhd:

WISHBONE adapter for one port of Spartan-6™ build in multiport memory controller block
(MCB).

src/wb_sl_uart.vhd:

This entity is a simple UART transceiver with 16 byte buffer for each direction connected to
USB2UART interface. Xilinx™ UART transceiver macros are used as physical layer.
Baudrate is adjustable up to 230400 (default: 9600) by writing appropriate timer prescaling
values to the status and configuration register. This register contains buffer level flags
FULL and HALFFULL for each direction, too. Data format is fixed at 8-N-1. Reading from
UART pipe is always non-blocking. A data present flag provided along with received bytes
indicates, if current RX value is valid. Writing to UART pipe is blocking, if TX buffer gets full.
So that loss of transmitted data can easily be avoided.

src/xil_uart_macro/:

This directory contains VHDL source code files of Xilinx™ UART transceiver macros. Note
that these source code files are copyrighted by Xilinx™ and are absolutely not supported
by CESYS! For details on these macros see the application note “XAPP223 - 200 MHz
UART with Internal 16-Byte Buffer” provided by Xilinx™.

src/xil_mcb_mig/:

This directory contains VHDL source code files generated by Xilinx™ memory interface
generator tool to build the frontend for MCB. File memc1_infrastructure.vhd has been
modified to fit example design requirements.

src/fx2_slfifo_ctrl.vhd:

This controller handles 512 byte aligned raw USB bulk transfers without CESYS USB
transfer protocol. It checks FX-2 FIFO flags and copies data from FX-2 endpoints to
internal FPGA buffers (sync_fifo.vhd) and vice versa. So the USB data link looks like any
other FPGA FIFO buffer to user logic. Ports of £x2 sl1fifo ctrl connected to FX-2 are
labeled with prefix fx2_ and ports connected to user logic are labeled with prefix app_.
Sometimes the abbreviations _h2p_ (host to peripheral) and _p2h_ (peripheral to host) are
used in signal names to indicate data flow direction.

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -23- preliminary

http://www.cesys.com/
http://www.xilinx.com/support/documentation/application_notes/xapp223.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp223.pdf

ifclk

app_fifo_wr_i

app_fifo_wr_data_i

app_fifo_wr_full_o

FPGA => FX-2

app_fifo_wr_count_o 122 b 123 X 124 X 125 X 126 127)

app_fifo_rd_i /T \ / \ g
app._fito_rd data o /77777777X 0 X[777777X05 X0z X 01 X00) >
app_fifo_rd_empty_o : 5 3 / g
app_fifo_rd_count_o 5 X @ 4 ‘ 0 J L

Figure 9: FIFO transactions of £x2_slfifo ctrl at user logic side

The upper waveform demonstrates the behavior of app fifo wr full o and

app fifo wr count o when there is no transaction on the slave FIFO controller side of
the FIFO. During simultaneous FIFO-read- and FIFO-write-transactions, the signals do not
change. The signal app_fifo wr full o will be cleared and app fifo wr count o

will decrease, if there are read-transactions at the slave FIFO controller side, but no write-

transactions at the application side.

The lower waveform demonstrates the behavior of app fifo rd empty o and

app fifo rd count o when there is no transaction at the slave FIFO controller side of
the FIFO. During simultaneous FIFO-read- and FIFO-write-transactions, the signals do not
change. The signal app fifo rd empty o will be cleared and

app fifo rd count o will increase, if there are write-transactions on the slave FIFO
controller side, but no read-transactions at the application side. Please note the one clock-
cycle delay between app fifo rd iand app fifo rd data ol

The signals app usb h2p pktcount o[7:0] and app usb p2h pktcount o[7:0]
(not shown in figure 9) are useful to fit the 512 byte USB bulk packet alignment. They
are automatically incremented, if the appropriate read- (app fifo rd i) or write-
strobe (app fifo wr 1i)is asserted. These signals count 16 bit data words, not data
bytes! 512 byte alignment is turned into a 256 16 bit word alignment at this interface.

Please note, that using raw USB bulk transfers and slave FIFO transactions directly is not
recommended! It is just for background information. Use protocol based WISHBONE
interface instead!

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -24- preliminary

http://www.cesys.com/

src/sync_fifo.vhd:

This entity is a general purpose synchronous FIFO buffer. It is build of FPGA distributed
RAM.

src/sfifo_hd_a1Kx18b0K5x36.vhd:

This entity is a general purpose synchronous FIFO buffer with mismatched port widths. It is
build of a FPGA BlockRAM.

src/flash_ctrl.vhd:

The low level FLASH controller for SPI FLASH memory. It supports reading and writing of
four bytes of data at one time as well as erasing the whole memory.

usbs6_soc.xise:

Project file for Xilinx™ ISE

usbs6_soc.ucf:

User constraint file with timing and pinout constraints

usbs6_soc_fpga_consts.h:

C header file extracted from VHDL packages. It contains address, flag, bitfield and value
definitions for FPGA design access integration into host software application.

Software Pseudo-Code Example:
#include “usbs6 soc fpga consts.h”

/* address of UART status and configuration register */
uint32 t uiRegAddr = UART BASEADR + UART STACFG_OFFSET;

/* read-modify-write register value for 9600 baud */
uint32 t uiRegVal = ReadRegister(uiRegAddr) & (~UART STACFG BDR FIELD);
uiRegVal |=
UART STACFG BDR FIELD &
(UART_STACFG_BDR VAL 9600<<UART STACFG BDR FIELD POS);

/* setting UART baud rate */
WriteRegister(uiRegAddr, uiRegVal);

WISHBONE transactions

The software API-functions ReadRegister (), WriteRegister () lead to one and
ReadBlock (), WriteBlock () to several consecutive WISHBONE single cycles.
Bursting is not allowed in the WISHBONE demo application. The address can be

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -25- preliminary

http://www.cesys.com/

incremented automatically in block transfers. You can find details on enabling/disabling the
burst mode and address auto-increment mode in the CESYS application note “Transfer
Protocol for CESYS USB products” and software API documentation.

CESYS USB transfer protocol is converted into one or more WISHBONE data transaction
cycles. So the FX-2 becomes a master device in the internal WISHBONE architecture.
Input signals for the WISHBONE master are labeled with the postfix “_I”, output signals
with “_O”.

WISHBONE signals driven by the master:
» STB_O: strobe, qualifier for the other output signals of the master, indicates valid data
and control signals
* WE_O: write enable, indicates, if a write or read cycle is in progress
* ADR_OJ31:2]: 32-Bit address bus, the software uses BYTE addressing, but all internal

WISHBONE accesses are DWORD (32-Bit) aligned. So address LSBs [1:0] are
discarded.

* DAT_OI31:0]: 32-Bit data out bus for data transportation from master to slaves

WISHBONE signals driven by slaves:
» DAT _I[31:0]: 32-Bit data in bus for data transportation from slaves to master

* ACK_I: handshake signal, slave devices indicate a successful data transfer for writing
and valid data on bus for reading by asserting this signal, slaves can insert wait states by
delaying this signal, it is possible to assert ACK_I in first clock cycle of STB_O assertion
using a combinatorial handshake to transfer data in one clock cycle (recommendation:
registered feedback handshake should be used in applications, where maximum data
throughput is not needed, because timing specs are easier to meet)

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -26- preliminary

http://www.cesys.com/

Basic WISHBONE cycle

CLK _J 1 I L J L L
STB ['_\
WE ZZZZZ7I7TIK—— XZZ777
ADR _ ZZZZZITII_— & XIZ171
DAT_ zzzzzzzzzzx: ><zzzzz,
DAT S
ACK | _/—_

> Master

Slave

Figure 10: WISHBONE transactions with WriteRegister () WriteBlock ()
ReadRegister () ReadBlock ()

The WISHBONE signals in these illustrations and explanations are shown as simple bit
types or bit vector types, but in the VHDL code these signals could be encapsulated in
extended data types like arrays or records.

Example:

port map

(

ACK I => intercon.masters.slave(2).ack,

Port ACK_I is connected to signal ack of element 2 of array slave, of record masters, of
record intercon.

Design “usbs6_bram”

This design is intended to demonstrate behavior of UDK software API resulting in

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -27- preliminary

http://www.cesys.com/

WISHBONE cycles. It is a reduced version of “usbs6_soc” example implementing a single
BlockRAM slave.

Files and modules
src/wishbone_pkg.vhd:

See chapter “Design usbs6_soc”

src/usbs6_bram_top.vhd:

This is the top level module. It instantiates FX-2 module as a WISHBONE master device
(wb_ma_fx2.vhd) and a BlockRAM as a WISHBONE slave device (wb_sl bram.vhd).

src/wb_ma_fx2.vhd:

See chapter “Design usbs6_soc”

src/wb_sl_bram.vhd:

See chapter “Design usbs6_soc”

src/sim_tb/wb_sl_bram_tb.vhd:

Example of a VHDL simulation testbench demonstrating BFM techniques for accessing
BlockRAM as a WISHBONE slave device (wb_sl _bram.vhd).

src/fx2_slfifo_ctrl.vhd:

See chapter “Design usbs6_soc”

src/sync_fifo.vhd:

See chapter “Design usbs6_soc”

usbs6_bram.xise:

Project file for Xilinx™ ISE.

usbs6_bram.ucf:
User constraint file with timing and pinout constraints.
wb_sl_bram_tb.do:

ModelSim command macro file for BFM BlockRAM testbench (wb_sl_bram_tb.vhd).

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -28- preliminary

http://www.cesys.com/

wb_sl_bram_tb.cmd:

Win32 batch file automatically starting ModelSim with example testbench and appropriate
simulation script (wb_sl_bram_tb.do). Just doubleclick for running the demo!

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -29- preliminary

http://www.cesys.com/

Software

Introduction

The UDK (Unified Development Kit) is used to allow developers to communicate with
Cesys's USB and PCl(e) devices. Older releases were just a release of USB and PCI
drivers plus APl combined with some shared code components. The latest UDK combines
all components into one single C++ project and offers interfaces to C++, C and for .NET
(Windows only). The API has functions to mask-able enumeration, unique device
identification (runtime), FPGA programming and 32bit bus based data communication. PCI
devices have additional support for interrupts.

Changes to previous versions

Beginning with release 2.0, the UDK APl is a truly combined interface to Cesys's USB and
PCI devices. The class interface from the former USBUni and PCIBase API's was saved at
a large extend, so porting applications from previous UDK releases can be done without
much work.

Here are some notes about additional changes:

* Complete rewrite

* Build system cleanup, all UDK parts (except .NET) are now part of one large project
* 64 bit operating system support

» UDK tools combined into one application (UDKLab)

» Updated to latest PLX SDK (6.31)

* |dentical C, C++ and .NET APl interface (.NET = Windows only)

« Different versions of components collapsed to one UDK version

* Windows only:

* Microsoft Windows Vista / Seven(7) support (PCI drivers are not released for Seven at
the moment)

* Driver installation / update is done by an installer now
» Switched to Microsoft's generic USB driver (WinUSB)

» Support moved to Visual Studio 2005, 2008 and 2010(experimental), older Visual
Studio versions are not supported anymore

* Linux only:
* Revisited USB driver, tested on latest Ubuntu distributions (32/64)
» Simpler USB driver installation

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -30- preliminary

http://www.cesys.com/

Windows

Requirements

To use the UDK in own projects, the following is required:

* |nstalled drivers
* Microsoft Visual Studio 2005 or 2008; 2010 is experimental
» CMake 2.6 or higher = http://www.cmake.org

+ wxWidgets 2.8.10 or higher (must be build separately) = http://www.wxwidgets.org
[optionally, only if UDKLab should be build]

Driver installation

The driver installation is part of the UDK installation but can run standalone on final
customer machines without the need to install the UDK itself. During installation, a choice
of drivers to install can be made, so it is not necessary to install i.e. PCI drivers on
machines that should run USB devices only or vice versa. If USB drivers get installed on a
machine that has a pre-2.0 UDK driver installation, we prefer the option for USB driver
cleanup offered by the installer, this cleanly removes all dependencies of the old driver
installation.

Note: There are separate installers for 32 and 64 bit systems.

Important: At least one device should be present when installing the drivers !

Build UDK
Prerequisites

The most components of the UDK are part of one large CMake project. There are some
options that need to be fixed in msvc.cmake inside the UDK installation root:

* BUILD_UI_TOOLS If 0, UDKLab will not be part of the subsequent build procedure, if 1 it
will. This requires an installation of an already built wxWidgets.

« WX_WIDGETS_BASE_PATH Path to wxWidgets build root, only needed if
BUILD_UI_TOOLS is not 0.

* USE_STATIC_RTL If 0, all projects are build against the dynamic runtime libraries. This
requires the installation of the appropriate Visual Studio redistributable pack on every
machine the UDK is used on. Using a static build does not create such dependencies,
but will conflict with the standard wxWidgets build configuration.

Solution creation and build

The preferred way is to open a command prompt inside the installation root of the UDK,

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -31- preliminary

http://www.cesys.com/
http://www.wxwidgets.org/
http://www.cmake.org/

lets assume to use c:\\udkapi.

c:
cd \udkapi

CMake allows the build directory separated to the source directory, so it's a good idea to do
it inside an empty sub-directory:

mkdir build
cd build

The following code requires an installation of CMake and at least one supported Visual
Studio version. If CMake isn't included into the PATH environment variable, the path must
be specified as well:

‘cmake .. ‘

This searches the preferred Visual Studio installation and creates projects for it. Visual
Studio Express users may need to use the command prompt offered by their installation. If
multiple Visual Studio versions are installed, CMake's command parameter '-G' can be
used to specify a special one, see CMake's documentation in this case. This process
creates the solution files inside c:\\udkapi\\build. All subsequent tasks can be done in Visual
Studio (with the created solution), another invocation of cmake isn't necessary under
normal circumstances.

Important: The UDK C++ API must be build with the same toolchain and build flags like
the application that uses it. Otherwise unwanted side effects in exception handling will
occur ! (See example in Add project to UDK build).

Info: It is easy to create different builds with different Visual Studio versions by creating
different build directories and invoke CMake with different '-G' options inside them:

C:
cd \udkapi

mkdir build2005

cd build2005

cmake -G"Visual Studio 8 2005" ..
cd ..

mkdir build2008

cd build2008

cmake -G"Visual Studio 9 2008" ..

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -32- preliminary

http://www.cesys.com/

Linux

There are too many distributions and releases to offer a unique way to the UDK installation.
We've chosen to work with the most recent Ubuntu release, 9.10 at the moment. All
commands are tested on an up to date installation and may need some tweaking on other
systems / versions.

Requirements

* GNU C++ compiler toolchain
 zlib development libraries
* CMake 2.6 or higher = http://www.cmake.org

+ wxWidgets 2.8.10 or higher = http://www.wxwidgets.org [optionally, only if UDKLab
should be build]

sudo apt-get install build-essential cmake zliblg-dev libwxbase2.8-dev
libwxgtk2.8-dev

The Linux UDK comes as gzip'ed tar archive, as the Windows installer won't usually work.
The best way is to extract it to the home directory:

tar xzvf UDKAPI-x.x.tgz ~/ |

This creates a directory /home/[user]/udkapi[version] which is subsequently called udkroot.
The following examples assume an installation root in ~/udkapi2.0.

Important: Commands sometimes contain a * symbol, have attention to use the right one,
refer to command substitution if not familiar with.

Drivers

The driver installation on Linux systems is a bit more complicated than on Windows
systems. The drivers must be build against the installed kernel version. Updating the kernel
requires a rebuild.

usSB

As the USB driver is written by Cesys, the installation procedure is designed to be as
simple and automated as possible. The sources and support files reside in directory
<udkroot>/drivers/linux/usb. Just go there and invoke make.

cd ~/udkapi2.0/drivers/linux/usb
make

If all external dependencies are met, the build procedure should finish without errors.
Newer kernel releases may change things which prevent success, but it is out of the scope
of our possibilities to be always up-to-date with latest kernels. To install the driver, the

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -33- preliminary

http://www.cesys.com/
http://www.wxwidgets.org/
http://www.cmake.org/

following command has to be done:

\sudo make install \
This will do the following things:

* Install the kernel module inside the module library path, update module dependencies

* Install a new udev rule to give device nodes the correct access rights (0666)
(/etc/udev/rules.d/99-ceusbuni.rules)

* Install module configuration file (/etc/dev/imodprobe.d/ceusbuni.conf)
« Start module

If things work as intended, there must be an entry /proc/ceusbuni after this procedure.

The following code will completely revert the above installation (called in same directory):

\sudo make remove \

The configuration file, /etc/modprobe.d/ceusbuni.conf, offers two simple options (Read the
comments in the file):

* Enable kernel module debugging
* Choose between firmware which automatically powers board peripherals or not

Changing these options require a module reload to take affect.

PCI

The PCI drivers are not created or maintained by Cesys, they are offered by the
manufacturer of the PCI bridges that were used on Cesys PCl(e) boards. So problems
regarding them can't be handled or supported by us.

Important: If building PIxXSdk components generate the following error / warning:
/bin/sh [[: not found |

Here's a workaround: The problem is Ubuntu's default usage of dash as sh, which can't
handle command [[. Replacing dash with bash is accomplished by the following commands
that must be done as root:

sudo rm /bin/sh
sudo ln -s /bin/bash /bin/sh

Installation explained in detail:

PIxSdk decompression:

tar xvf P1xSdk.tar

cd ~/udkapi2.0/drivers/linux

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -34- preliminary

http://www.cesys.com/

Build drivers:

cd P1xSdk/Linux/Driver
PLX SDK DIR="pwd /../../ ./buildalldrivers

Loading the driver manually requires a successful build, it is done using the following
commands:

cd ~/udkapi2.0/drivers/linux/P1xSdk
sudo PLX SDK DIR="pwd" Bin/Plx_ load Svc

PCI based boards like the PCIS3Base require the following driver:
'sudo PLX_SDK_DIR="pwd’ Bin/Plx_load 9056 |

PCle based boards like the PCleV4Base require the following:

\sudo PLX SDK DIR="pwd Bin/Plx load 8311

Automation of this load process is out of the scope of this document.

Build UDK
Prerequisites

The whole UDK will be build using CMake, a free cross platform build tool. It creates
dynamic Makefiles on unix compatible platforms.

The first thing should be editing the little configuration file linux.cmake inside the installation
root of the UDK. It contains the following options:

* BUILD_UI_TOOLS If 0 UDKLab isn't build, if 7 UDKLab is part of the build, but requires
a compatible wxWidgets installation.

» CMAKE_BUILD_TYPE Select build type, can be one of Debug, Release,
RelWithDeblInfo, MinSizeRel. If there should be at least 2 builds in parallel, remove this
line and specify the type using command line option -DCMAKE_BUILD _TYPE-=....

Makefile creation and build

Best usage is to create an empty build directory and run cmake inside of it:

cd ~/udkapi2.0
mkdir build

cd build

cmake ..

If all external dependencies are met, this will finish creating a Makefile. To build the UDK,
just invoke make:

\make ‘

Important: The UDK C++ API must be build with the same toolchain and build flags like

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -35- preliminary

http://www.cesys.com/

the application that uses it. Otherwise unwanted side effects in exception handling will
occur ! (See example in Add project to UDK build).

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -36- preliminary

http://www.cesys.com/

Use APIs in own projects

C++ API

* Include file: udkapi.h
* Library file:

* Windows: udkapi_vc|[ver]_[arch].lib, [ver] is 8, 9, 10, [arch] is x86 or amd64, resides in
lib/[build]/

* Linux: libusbapi.so, resides in lib/
* Namespace: ceUDK
As this API uses exceptions for error handling, it is really important to use the same

compiler and build settings which are used to build the APl itself. Otherwise exception
based stack unwinding may cause undefined side effects which are really hard to fix.

Add project to UDK build

A simple example would be the following. Let's assume there's a source file
mytest/mytest.cpp inside UDK's root installation. To build a mytestexe executable with UDK
components, those lines must be appended:

add executable(mytestexe mytest/mytest.cpp)
target link libraries(mytestexe ${UDKAPI LIBNAME})

Rebuilding the UDK with these entries in Visual Studio will create a new project inside the
solution (and request a solution reload). On Linux, calling make will just include mytestexe
into the build process.

C API

* Include file: udkapic.h
* Library file:

* Windows: udkapic_vc[ver]_[arch].lib, [ver] is 8, 9, 10, [arch] is x86 or amd64, resides in
lib/[build]/

* Linux: libusbapic.so, resides in lib/
* Namespace: Not applicable

The C API offers all functions from a dynamic link library (Windows: .dll, Linux: .so) and
uses standardized data types only, so it is usable in a wide range of environments.

Adding it to the UDK build process is nearly identical to the C++ API description, except
that ${UDKAPIC LIBNAME} must be used.

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -37- preliminary

http://www.cesys.com/

.NET API

* Include file: -

* Library file: udkapinet.dll, resided in bin/[build]

* Namespace: cesys.ceUDK

The .NET API, as well as it example application is separated from the normal UDK build.
First of all, CMake doesn't have native support .NET, as well as it is working on Windows
systems only. Building it has no dependency to the standard UDKAPI, all required sources
are part of the .NET API project. The Visual Studio solution is located in directory dotnet/
inside the UDK installation root. It is a Visual Studio 8/2005 solution and should be

convertible to newer releases. The solution is split into two parts, the .NET API in mixed
native/managed C++ and an example written in C#.

To use the .NET API in own projects, it's just needed to add the generated DLL
udkapinet.dll to the projects references.

API Functions in detail

Notice: To prevent overhead in most usual scenarios, the API does not serialize calls in
any way, so the API user is responsible to serialize call if used in a multi-threaded context !

Notice: The examples for .NET in the following chapter are in C# coding style.

API Error handling

Error handling is offered very different. While both C++ and .NET API use exception
handling, the C API uses a classical return code / error inquiry scheme.

C++ and .NET API

UDK API code should be embedded inside a try branch and exceptions of type
ceException must be caught. If an exception is raised, the generated exception object
offers methods to get detailed information about the error.

C API

All UDK C API functions return either CE_SUCCESS or CE_FAILED. If the latter is
returned, the functions below should be invoked to get the details of the error.

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -38- preliminary

http://www.cesys.com/

Methods/Functions
GetlLastErrorCode

API Code
C++ unsigned int ceException::GetErrorCode()
C unsigned int GetLastErrorCode()
.NET |uint ceException.GetLastErrorCode()

Returns an error code which is intended to group the error into different kinds. It can be
one of the following constants:

Error code Kind of error

ceE_TIMEOUT Errors with any kind of timeout.

ceE_IO_ERROR 10 errors of any kind, file, hardware, etc.
ceE_UNEXP_HW_BEH |Unexpected behavior of underlying hardware (no response, wrong data).
ceE_PARAM Errors related to wrong call parameters (NULL pointers, ...).
ceE_RESOURCE Resource problem, wrong file format, missing dependency.
ceE_API Undefined behavior of underlying API.

ceE_ORDER Wrong order calling a group of code (i.e. deinit()—init()).
ceE_PROCESSING Occurred during internal processing of anything.
ceE_INCOMPATIBLE |Not supported by this device.

ceE_OUTOFMEMORY |Failure allocating enough memory.

GetlLastErrorText
API Code
C++ const char *ceException::GetLastErrorText()
C const char *GetLastErrorText()
.NET |string ceException.GetLastErrorText()

Returns a text which describes the error readable by the user. Most of the errors contain
problems meant for the developer using the UDK and are rarely usable by end users. In
most cases unexpected behavior of the underlying operation system or in data transfer is
reported. (All texts are in english.)

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -39- preliminary

http://www.cesys.com/

Device enumeration

The complete device handling is done by the API internally. It manages the resources of all
enumerated devices and offers either a device pointer or handle to API users. Calling Init()
prepares the API itself, while Delnit() does a complete cleanup and invalidates all device
pointers and handles.

To find supported devices and work with them, Enumerate() must be called after Init().
Enumerate() can be called multiple times for either finding devices of different types or to
find newly plugged devices (primary USB at the moment). One important thing is the
following: Enumerate() does never remove a device from the internal device list and so
invalidate any pointer, it just add new ones or does nothing, even if a USB device is
removed. For a clean detection of a device removal, calling Delnit(), Init() and Enumerate()
(in exactly that order) will build a new, clean device list, but invalidates all previous created
device pointers and handles.

To identify devices in a unique way, each device gets a UID, which is a combination of
device type name and connection point, so even after a complete cleanup and new
enumeration, devices can be exactly identified by this value.

Methods/Functions
Init

API Code
C++ static void ceDevice::Init()
C CE_RESULT Init()
.NET |static void ceDevice.Init()

Prepare internal structures, must be the first call to the UDK API. Can be called after
invoking Delnit() again, see top of this section.

Delnit

API Code
C++ static void ceDevice::Delnit()
C CE_RESULT Delnit()
.NET |static void ceDevice.Delnit()

Free up all internal allocated data, there must no subsequent call to the UDK API after this
call, except Init() is called again. All retrieved device pointers and handles are invalid after
this point.

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -40- preliminary

http://www.cesys.com/

Enumerate

API Code

C++ static void ceDevice::Enumerate(ceDevice::ceDeviceType DeviceType)

C CE_RESULT Enumerate(unsigned int DeviceType)

.NET static void ceDevice.Enumerate(ceDevice.ceDeviceType DeviceType)

Search for (newly plugged) devices of the given type and add them to the internal list.
Access to this list is given by GetDeviceCount() / GetDevice(). DeviceType can be one of

the following:
DeviceType Description
ceDT_ALL All UDK supported devices.
ceDT_PCI_ALL All UDK supported devices on PCI bus.
ceDT_PCIl_PCIS3BASE Cesys PCIS3Base
ceDT_PCI_DOB DOB (*)
ceDT_PCI_PCIEV4BASE Cesys PCleV4Base
ceDT_PCI_RTC RTC (*)
ceDT_PCI_PSS PSS (*)

ceDT_PCI_DEFLECTOR

Deflector (*)

ceDT_USB_ALL

All UDK supported devices.

ceDT_USB_USBV4F

Cesys USBV4F

ceDT_USB_EFMO01

Cesys EFMO01

ceDT_USB_MISS2

MISS2 (*)

ceDT_USB_CID

CID (%)

ceDT_USB_USBS6

Cesys USBS6

* Customer specific devices.

GetDeviceCount
API Code
C++ static unsigned int ceDevice::GetDeviceCount()
C CE_RESULT GetDeviceCount(unsigned int *puiCount)
.NET |static uint ceDevice.GetDeviceCount()

Return count of devices enumerated up to this point. May be larger if rechecked after
calling Enumerate() in between.

USBS6 / C1030-5510

User Doc V0.3

41-

http://www.cesys.com/

preliminary

http://www.cesys.com/

GetDevice

API Code
C++ static ceDevice *ceDevice::GetDevice(unsigned int uildx)
C CE_RESULT GetDevice(unsigned int uildx, CE_DEVICE_HANDLE *pHandle)
.NET static ceDevice ceDevice.GetDevice(uint uildx)

Get device pointer or handle to the device with the given index, which must be smaller than
the device count returned by GetDeviceCount(). This pointer or handle is valid up to the
point Delnit() is called.

USBS6 / C1030-5510

User Doc V0.3

-42-

http://www.cesys.com/

preliminary

http://www.cesys.com/

Information gathering

The functions in this chapter return valuable information. All except GetUDKVersionString()
are bound to devices and can be used after getting a device pointer or handle from
GetDevice() only.

Methods/Functions
GetUDKVersionString

API Code
C++ static const char *ceDevice::GetUDKVersionString()
C const char *GetUDKVersionString()
.NET static string ceDevice.GetUDKVersionString()

Return string which contains the UDK version in printable format.

GetDeviceUID

API Code
C++ const char *ceDevice::GetDeviceUID()

C CE_RESULT GetDeviceUID(CE_DEVICE_HANDLE Handle, char *pszDest, unsigned
int uiDestSize)

.NET |string ceDevice.GetDeviceUID()

Return string formatted unique device identifier. This identifier is in the form of
type@location while type is the type of the device (i.e. EFM01) and location is the position
the device is plugged to. For PCI devices, this is a combination of bus, slot and function
(PCI bus related values) and for USB devices a path from device to root hub, containing
the port of all used hubs. So after re-enumeration or reboot, devices on the same machine
can be identified exactly.

Notice C API: pszDest is the buffer were the value is stored to, it must be at least of size
uiDestSize.

GetDeviceName

API Code
C++ const char *ceDevice::GetDeviceName()

C CE_RESULT GetDeviceName(CE_DEVICE_HANDLE Handle, char *pszDest, unsigned
int uiDestSize)

.NET string ceDevice.GetDeviceName()

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -43- preliminary

http://www.cesys.com/

Return device type name of given device pointer or handle.

Notice C API: pszDest is the buffer were the value is stored to, it must be at least of size
uiDestSize.

GetBusType

API Code
C++ ceDevice::ceBusType ceDevice::GetBusType()
C CE_RESULT GetBusType(CE_DEVICE_HANDLE Handle, unsigned int *puiBusType)
.NET |ceDevice.ceBusType ceDevice.GetBusType()

Return type of bus a device is bound to, can be any of the following:

Constant Bus

ceBT_PCI PCI bus

ceBT_USB USB bus
GetMaxTransferSize

API Code

C++ unsigned int ceDevice::GetMaxTransferSize()

C CE_RESULT GetMaxTransferSize(CE_DEVICE_HANDLE Handle, unsigned int
*puiMaxTransferSize)

.NET uint ceDevice.GetMaxTransferSize()

Return count of bytes that represents the maximum in one transaction, larger transfers
must be split by the API user.

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -44- preliminary

http://www.cesys.com/

Using devices

After getting a device pointer or handle, devices can be used. Before transferring data to or
from devices, or catching interrupts (PCl), devices must be accessed, which is done by
calling Open(). All calls in this section require an open device, which must be freed by
calling Close() after usage.

Either way, after calling Open(), the device is ready for communication. As of the fact, that
Cesys devices usually have an FPGA on the device side of the bus, the FPGA must be
made ready for usage. If this isn't done by loading contents from the on-board flash (not all
devices have one), a design must be loaded by calling one of the ProgramFPGA*() calls.
These call internally reset the FPGA after design download. From now on, data can be
transferred.

Important: All data transfer is based on a 32 bit bus system which must be implemented
inside the FPGA design. PCI devices support this natively, while USB devices use a
protocol which is implemented by Cesys and sits on top of a stable bulk transfer
implementation.

Methods/Functions
Open

API Code
C++ void ceDevice::Open()
C CE_RESULT Open(CE_DEVICE_HANDLE Handle)
.NET |void ceDevice.Open()

Gain access to the specific device. Calling one of the other functions in this section require
a successful call to Open().

Notice: If two or more applications try to open one device, PCl and USB devices behave a
bit different. For USB devices, Open() causes an error if the device is already in use. PCI
allows opening one device from multiple processes. As PCI drivers are not developed by
Cesys, it's not possible to us to prevent this (as we see this as strange behavior). The best
way to share communication of more than one application with devices would be a client /
server approach.

Close

API Code
C++ void ceDevice::Close()
Cc CE_RESULT Close(CE_DEVICE_HANDLE Handle)
.NET |void ceDevice.Close()

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -45- preliminary

http://www.cesys.com/

Finish working with the given device.

ReadRegister
API Code
C++ unsigned int ceDevice::ReadRegister(unsiged int uiRegister)

C CE_RESULT ReadRegister(CE_DEVICE_HANDLE Handle, unsigned int uiRegister,
unsigned int *puiValue)
.NET uint ceDevice.ReadRegister(uint uiRegister)

Read 32 bit value from FPGA design address space (internally just calling ReadBlock()
with size = 4).

WriteRegister
API Code
C++ void ceDevice::WriteRegister(unsiged int uiRegister, unsigned int uiValue)
C CE_RESULT WriteRegister(CE_DEVICE_HANDLE Handle, unsigned int uiRegister,
unsigned int uiValue)
.NET void ceDevice.WriteRegister(uint uiRegister, uint uiValue)

Write 32 bit value to FPGA design address space (internally just calling WriteBlock() with

size = 4).
ReadBlock
API Code
C++ void ceDevice::ReadBlock(unsiged int uiAddress, unsigned char *pucData, unsigned int
uiSize, bool bincAddress)
C CE_RESULT ReadBlock(CE_DEVICE_HANDLE Handle, unsigned int uiAddress,
unsigned char *pucData, unsigned int uiSize, unsigned int uilncAddress)
.NET |void ceDevice.ReadBlock(uint uiAddess, byte[] Data, uint uiLen, bool biIncAddress)

Read a block of data to the host buffer which must be large enough to hold it. The size
should never exceed the value retrieved by GetMaxTransferSize() for the specific device.
blncAddress is at the moment available for USB devices only. It flags to read all data from
the same address instead of starting at it.

WriteBlock
API Code
C++ void ceDevice::WriteBlock(unsiged int uiAddress, unsigned char *pucData, unsigned int

uiSize, bool bincAddress)
C CE_RESULT WriteBlock(CE_DEVICE_HANDLE Handle, unsigned int uiAddress,

USBS6 / C1030-5510 http://www.cesys.com/

User Doc V0.3 -46-

preliminary

http://www.cesys.com/

unsigned char *pucData, unsigned int uiSize, unsigned int uilncAddress)
void ceDevice.WriteBlock(uint uiAddess, byte[] Data, uint uiLen, bool biIncAddress)

.NET

Transfer a given block of data to the 32 bit bus system address uiAddress. The size should
never exceed the value retrieved by GetMaxTransferSize() for the specific device.
bincAddress is at the moment available for USB devices only. It flags to write all data to the

same address instead of starting at it.

WaitForinterrupt
API Code
C++ bool ceDevice::WaitForinterrupt(unsigned int uiTimeOutMS)
C CE_RESULT WaitForinterrupt(CE_DEVICE_HANDLE Handle, unsigned int
uiTimeOutMS, unsigned int *puiRaised)
.NET |bool ceDevice.WaitForInterrupt(uint uiTimeOutMS)

(PCI only) Check if the interrupt is raised by the FPGA design. If this is done in the time
specified by the timeout, the function returns immediately flagging the interrupt is raised
(return code / *puiRaised). Otherwise, the function returns after the timeout without

signaling.

Important: If an interrupt is caught, Enablelnterrupt() must be called again before checking
for the next. Besides that, the FPGA must be informed to lower the interrupt line in any

way.
Enablelnterrupt
API Code
C++ void ceDevice::Enablelnterrupt()
C CE_RESULT Enablelnterrupt(CE_DEVICE_HANDLE Handle)
.NET |void ceDevice.Enablelnterrupt()

(PCI only) Must be called in front of calling WaitForInterrupt() and every time an interrupt is
caught and should be checked again.

ResetFPGA
API Code
C++ void ceDevice::ResetFPGA()
C CE_RESULT ResetFPGA(CE_DEVICE_HANDLE Handle)
.NET |void ceDevice.ResetFPGA()

USBS6 / C1030-5510
User Doc V0.3

http://www.cesys.com/

47-

preliminary

http://www.cesys.com/

Pulses the FPGA reset line for a short time. This should be used to sync the FPGA design

with the host side peripherals.

ProgramFPGAFromBIN
API Code
C++ void ceDevice::ProgramFPGAFromBIN(const char *pszFileName)
C CE_RESULT ProgramFPGAFromBIN(CE_DEVICE_HANDLE Handle, const char
*pszFileName)
.NET |void ceDevice.ProgramFPGAFromBIN(string sFileName)

Program the FPGA with the Xilinx tools .bin file indicated by the filename parameter. Calls

ResetFPGA() subsequently.

ProgramFPGAFromMemory
API Code
C++ void ceDevice::ProgramFPGAFromMemory(const unsigned char *pszData, unsigned int

uiSize)

C CE_RESULT ProgramFPGAFromMemory(CE_DEVICE_HANDLE Handle, const
unsigned char *pszData, unsigned int uiSize)
.NET |void ceDevice.ProgramFPGAFromMemory(byte[] Data, uint Size)

Program FPGA with a given array created with UDKLab. This was previously done using
fpgaconv.

ProgramFPGAFromMemoryZ

API Code
C++ void ceDevice::ProgramFPGAFromMemoryZ(const unsigned char *pszData, unsigned
int uiSize)
C CE_RESULT ProgramFPGAFromMemoryZ(CE_DEVICE_HANDLE Handle, const
unsigned char *pszData, unsigned int uiSize)
.NET |void ceDevice.ProgramFPGAFromMemoryZ(byte[] Data, uint Size)

Same as ProgramFPGAFromMemory(), except the design data is compressed.

SetTimeOut
API Code
C++ void ceDevice::SetTimeOut(unsigned int uiTimeOutMS)

Cc

CE_RESULT SetTimeOut(CE_DEVICE_HANDLE Handle, unsigned int uiTimeOutMS)

.NET

void ceDevice.SetTimeOut(uint uiTimeOutMS)

USBS6 / C1030-5510
User Doc V0.3

http://www.cesys.com/

-48- preliminary

http://www.cesys.com/

Set the timeout in milliseconds for data transfers. If a transfer is not completed inside this
timeframe, the API generates a timeout error.

EnableBurst
API Code
C++ void ceDevice::EnableBurst(bool bEnable)
C CE_RESULT EnableBurst(CE_DEVICE_HANDLE Handle, unsigned int uiEnable)
.NET |void ceDevice.EnableBurst(bool bEnable)

(PCI only) Enable bursting in transfer, which frees the shared address / data bus between

PCl(e) chip and FPGA by putting addresses on the bus frequently only.

USBS6 / C1030-5510

User Doc V0.3

-49-

http://www.cesys.com/

preliminary

http://www.cesys.com/

UDKLab

Introduction

UDKLab is a replacement of the former cesys-Monitor, as well as cesys-Lab and fpgaconv.
It is primary targeted to support FPGA designers by offering the possibility to read and write
values from and to an active design. It can further be used to write designs onto the
device's flash, so FPGA designs can load without host intervention. Additionally, designs
can be converted to C/C++ and C# arrays, which allows design embedding into an

application.

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -50- preliminary

http://www.cesys.com/

The main screen

The following screen shows an active session with an EFMO01 device. The base view is
intended to work with a device, while additional functionality can be found in the tools
menu.

The left part of the screen contains the device initialization details, needed to prepare the
FPGA with a design (or just a reset if loaded from flash), plus optional register writes for
preparation of peripheral components.

The right side contains elements for communication with the FPGA design:

* Register read and write, either by value or bit-wise using checkboxes.
Live update of register values.

Data areas (like RAM or Flash) can be filled from file or read out to file.
* Live view of data areas.

More on these areas below.

1@
Device Project Tools Info
v bOe E =] O
|
rmrs GPIO OE BankD => 0x00100008 Block RAM = 0x00000000
Prog(C:ideveliprojects\cesysudk\trunk\efmd1._top.bin) Hex: 40000000 Dec: 1073741824 Address Range: 0x00000000 - Dx000007FF
2 kByte (0 MB), Alignment: 4 byte
(ped] [] [A0] 4 [¥) [DeviceTorie | [FieToDeves | [Luveview]
evice To File ile To Device ive View
® " D¥000000 E0000000
=) i § o 00000000 00 00 00 00 00 00 00 00 -
00000008 00 00 00 04 00 00 00 00 [|
GPIO Bark => 0x00100000 00000010 00 00 00 04 00 00 00 00
— 00000018 00 00 00 00 00 00 00 00
Hex: 40000000 Dec: 1073741824 00000020 00 00 00 00 00 00 00 00
00000028 00 00 00 00 00 00 00 00
[Read] [irite] [e ® 00000030 00 00 00 00 00 00 00 00

) 00000038 00 00 00 00 00 00 00 00
™ OFOOOOO0 DOO0O00O0 00000040 00 00 00 00 00 00 00 00
Le: [FFEEEEEER @ B EEEEE EE 00000048 00 00 00 00 00 00 00 00
GPIO OE Bank1 =2 0x0010000c
Flash Contents => 0x00200000

Hex: 00000000 Dec: 0 Address Range: 0x00200000 - Dx0027FF

4 .
[read | [wie][ato | @ 512kByte (0 MB), Alignment: 4 byte
@ " 00000000 00000EED Device To Fe
R EEEEENEEEEEEEE
00200000 £f ££ ££f £f aa 99 55 &¢ - (|
GPIO Bank1 => 0x00100004 00200008 30 00 80 01 00 00 00 07 []
00200010 30 01 &0 01 00 00 00 &0
Hex: 00£00000 Dec: 15728840 00200018 30 01 20 01 00 00 31 =5
00200020 30 01 0 01 01 e2 20 33
N 00200028 30 00 <0 01 00 00 00 0O
& [Bead,] [ligite,] [iy] @ 00200030 30 00 80 01 00 OO0 00 0%
@ = Q0000000 BERE0000 30200540 23 00 20 01 99 00 20 01
« JDODE00E DO00E00E 2

00200048 30 00 40 00 50 01 14 9= il

Flash Command => 0x00230000

Hex: 00000000 Dec: 0
Read Wirite Auto
¥

]
i OO0000000 OOOO0O00H
w: AOOEEEER B0E8EEEE

[setsewee
Figure 11: UDKLab Main Screen

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -51- preliminary

http://www.cesys.com/

Using UDKLab

After starting UDKLab, most of the Ul components are disabled. They will be enabled at
the point they make sense. As no device is selected, only device independent functions are
available:

* The FPGA design array creator
* The option to define USB Power-On behavior
* Info menu contents

All other actions require a device, which can be chosen via the device selector which pops
up as separate window:

Add ... add

o Choose device selector.

e Select device to work with.

e Confirm selection (same as double click on #2).

o Re-Trigger device enumeration (i.e. after device (un-)plug).

Select device ...

USBV4F Broothubp 1
EFM01@roothubpd

Figure 12: Device selection flow

If the device list is not up to date, clicking Re-Enum will search again. A device can be
selected by either double clicking on it or choosing OK.

Important: Opening the device selector again will internally re-initialize the underlying API,
so active communication is stopped and the right panel is disabled again (more on the
state of this panel below).

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -52- preliminary

http://www.cesys.com/

After a device has been selected, most Ul components are available:

* FPGA configuration

* FPGA design flashing [if device has support]

* Project controls

* Initializer controls (Related to projects)

The last disabled component at this point is the content panel. It is enabled if the

initialization sequence has been run. The complete flow to enable all Ul elements can be
seen below:

Block RAM = o Select device.
+ e Load project / modify initialize sequence.
1
% ¥ e Run the initialization sequence. %
: 3 : : :
=) e After completion, this panel will be enabled.
0x00000100 = > uxbuuul luy
+ 00000000
T
3 ®
®
GPIO OF BankD => 0x00100008
Flash Contents => 0x00200000
: +
+ e &
¥
L ®
GPIO Bank0 =3 0x00100000
(7]
GPIO OE Bank1 => 0x00 1g000c
@
GPIO Bank1 => 0x00100004 =

Figure 13: Prepare to work with device

FPGA configuration

Choosing this will pop up a file selection dialog, allowing to choose the design for
download. If the file choosing isn't canceled, the design will be downloaded subsequent to
closing the dialog.

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -53- preliminary

http://www.cesys.com/

FPGA design flashing

This option stores a design into the flash component on devices that have support for it.
The design is loaded to the FPGA after device power on without host intervention. How
and under which circumstances this is done can be found in the hardware description of
the corresponding device. The following screen shows the required actions for flashing:

o)

o Choose device.

9 Select flash device.

e Choose FPGA design for flashing.

e Close dialog after flashing has finished..
e Alternatively, the flash can be erased.
(6]

On USB4VF devices, one of two areas can be chosen.

o
5

Stage: -

Figure 14: Flash design to device

Projects

Device communication is placed into a small project management. This reduces the
actions from session to session and can be used for simple service tasks too. A projects
stores the following information:

* Device type it is intended to
* Initializing sequence

* Register list

* Data area list

Projects are handled like files in usual applications, they can be loaded, saved, new

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -54- preliminary

http://www.cesys.com/

projects can be created. Only one project can be active in one session.

Initializing sequence

The initializing sequence is a list of actions that must be executed in order to work with the
FPGA on the device. (The image shows an example initializing list of an EFMO01, loading
our example design and let the LED blink for some seconds):

E)

itialize

Prog(C:\develiprojects\resys\udk\trunk\efm01_top.bin)
Virite(GPIO OF Bankd, 0x40000000)
Wirite(GPIO BankD,0x40000000)
Sleep(500)

Virite(GPIO BankD,0x00000000)
sleep(500)

Wirite(GPIO Banko,0x40000000)
sleep(s00)

Virite(GPIO Banko,0x00000000)
sleep(s00)

Virite(GPI0 Banko,0x40000000)
sleep(500)

Virite(GPIO Bank0,0x00000000)
sleep(s00)

Virite(GPIO Banky,0x40000000)
sleep(s00)

Virite(GPIO Bankd, 0x00000000)
Sleep(500)

Virite(GPIO BankD, 0x40000000)
Sleep(500)

Virite(GPIO BankD, 0x00000000)
5leep(500)

Virite(GPIO BankD, 0x40000000)
Sleep(500)

Virite(GPIO BankD,0x00000000)

EErpPE

T eseame
L

Figure 15: Initializing sequence

Sequence contents

UDKLab supports the following content for initialization:

* FPGA programming
* FPGATreset

* Register write

» Sleep

Without a design, an FPGA does nothing, so it must be loaded before usage. This can be
ensured in two ways:

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -55- preliminary

http://www.cesys.com/

* Download design from host

* Load design from flash (supported on EFM01, USBV4F and USBS6)

So the first entry in the initialize list must be a program entry or, if loaded from flash, a reset
entry (To sync communication to the host side). Subsequent to this, a mix of register write
and sleep commands can be placed, which totally depends on the underlying FPGA
design. This can be a sequence of commands sent to a peripheral component or to fill data
structures with predefined values. If things get complexer, i.e. return values must be

checked, this goes beyond the scope of the current UDKLab implementation and must be
solved by a host process.

To control the sequence, the buttons on the left side can be used. In the order of
appearance, they do the following (also indicated by tooltips):

* Clear complete list

Add new entry (to the end of the list)

Move currently selected entry on position up

Move currently selected entry on position down

* Remove currently selected entry

All buttons should be self explanatory, but here's a more detailed look on the add entry, it
opens the following dialog:

Choose option to add ..

Program design file to FRGA

. —

Reset FPGA

Write register value

Sleep

Figure 16: Add new initializing task

One of the four possible entries must be selected using the radio button in front of it.
Depending on the option, one or two parameters must be set, OK adds the new action to
initializer list.

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -56- preliminary

http://www.cesys.com/

Sequence start

The button sitting below the list runs all actions from top to bottom. In addition to this, the
remaining Ul components, the content panel, will be enabled, as UDKLab expects a
working communication at this point. The sequence can be modified an started as often as

wished.

Content panel

The content panel can be a visual representation of the FPGA design loaded during
initialization. It consists of a list of registers and data areas, which can be visit and modified
using UDKLab. The view is split into two columns, while the left part contains the registers
and the right part all data area / block entries.

Figure 17: Content panel

. GPIO OE Bank(=> 0x00100008

@ Hex: 40000000 : 1073741824

GPIO Bankd => 0x00100000

@ Hex: 40000000 1 1073741824

GPIO OF Bank1 => 0x0010000c

@ Hex: 00000000 Dec: 0O

o) J[an] ®

® OOOOOO0E: ODEEDOH
Lo: AEEEEEEE @ [

GPIO Bank1 => 0x00100004

@ Hex: 00000000 Dec: 0O

Yl) we J[me] @
@ OEOOOEEE O0EEEaaR
Lo: !

Flash Command =2 0x00280000

@ Hex: 00000000 Dec: O
[Read | [wnte | [Ao | (2]

Hi: !
Lo .

Block RAM =3 0x00000000
(3] Address Range: 0x00000000 -0x000007F
2kByte (0 MB), Alignment: 4 byte

Device ToFie | | FieToDevice | [Liveview |

00000000 00 00 00 00 40 00 00 00
00000002 00 00 00 00 00 00 00 00 (|

00000010 00 00 00 00 00 00 00 00
00000018 00 00 00 00 00 00 00 00
00000020 00 00 00 00 00 00 00 00
00000028 00 00 00 00 00 00 00 00
00000030 00 00 00 00 00 00 00 00
00000038 00 00 00 00 00 00 00 00
00000040 00 00 00 00 00 00 00 00
00000048 00 00 00 00 00 00 00 00

Flash Contents =3 0x00200000
(3] Address Range: 0x00200000 - 0x0027fF
512 kByte {0 ME), Alignment: 4 byte

) (overore) ()
%)

00200000 ££ ££ ££ ££ =a 39 55 66
00200008 20 00 20 01 00 00 00 07
00200010 30 01 &0 01 00 00 00 &0
00200018 20 01 20 01 00 00 31 eS
00200020 30 01 <0 01 01 cZ 20 93
00200028 20 00 =0 01 00 00 00 00
00200030 30 00 80 01 00 00 00 09
00200038 20 00 20 01 00 00 00 00
00200040 30 00 80 01 00 00 00 01
00200048 20 00 40 00 50 01 14 32

USBS6 / C1030-5510
User Doc V0.3

-57-

http://www.cesys.com/
preliminary

http://www.cesys.com/

Register entry

A register entry can be used to communicate with a 32 bit register inside the FPGA. In
UDKLab, a register consists of the following values:

¢ Address
* Name
* Info text

The visual representation of one register can be seen in the following image:

GPIO Bank(== 0x00100000

(#] Hex: ooooonnn Dec: 0
:%: | Read || wite | [Auw | ®
|i| Hi:

Lo

Figure 18: Register panel

The left buttons are responsible for adding new entries, move the entry up or down and
removing the current entry, all are self explanatory. The header shows it's mapping hame
as well as the 32 bit address. The question mark in the lower right will show a tooltip if the
mouse is above it, which is just a little help for users. Both input fields can be used to write
in a new value, either hex- or decimal or contain the values if they are read from FPGA
design. The checkboxes represent one bit of the current value. Clicking the Read button
will read the current value from FPGA and update both text boxes as well as the
checkboxes, which is automatically done every 100ms if the Auto button is active. Setting
register values inside the FPGA is done in a similar way, clicking the Write button writes the
current values to the device. One thing needs a bit attention here:

Clicking on the checkboxes implicitly writes the value without the need to click on the Write
button !

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -58- preliminary

http://www.cesys.com/

Data area entry

A data area entry can be used to communicate with a data block inside the FPGA,
examples are RAM or flash areas. Data can be transfered from and to files, as well as
displayed in a live view. An entry constits of the following data:

Address

Name

Data alignment
» Size

Read-only flag

The visual representation is shown below.

Block RRAM == 000000000
|¥| Address Range: 0x00000000 - 0x000007fF
(4| 2kByte (0MB), Alignment: 4 byte

|§| |DE'u'iIZETD File | |Fi|ETD Device | | Live View

%]

Figure 19: Data area panel

Similar to the register visualization, the buttons on the right side can be used to add, move
and remove data area panels. The header shows the name and the address followed by
the data area details. Below are these buttons:

* Device To File: The complete area is read and stored to the file which is defined in the
file dialog opening after clicking the button.

» File To Device: This reads the file selected in the upcoming file dialog and stores the
contents in the data area, limited by the file size or data area size. This button is not
shown if the Read-only flag is set.

* Live View: If this button is active, the text view below shows the contents of the area,
updated every 100 ms, the view can be scrolled, so every piece can be visited.

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -59- preliminary

http://www.cesys.com/

Additional information

Using SPI-Flash for configuration

How to store configuration data in SPI-Flash

To allow configuration of the FPGA via onboard SPI-Flash on power-up first an appropriate
configuration file has to be stored in the SPI-Flash. There are several ways to accomplish
this.

Loading SPI-Flash via USB

The easiest way to get data into SPI-Flash surely is to use CESYS software UDK-Lab.
With the help of this easy to use tiny tool binary FPGA configuration bitstreams (*.bin) can
be downloaded to onboard SPI-Flash via USB.

SPI-Flash Indirect Programming Using FPGA JTAG Chain

Since XILINX™ ISE-WebPACK version 10.1 it is possible to configure SPI-Flashes
attached to the FPGA via JTAG interface. Before starting to download a design to SPI-
Flash with iIMPACT programming software it is necessary to prepare the required *.mcs

SPI PROM file. With xapp951 XILINX™ provides an application note how to accomplish
that using IMPACT or PROMGen software tools. Select 16M SPI PROM Density when
asked. Thereafter connect JTAG adapter and power-up USBS6, either by connecting USB
cable or via external 5V power supply. With XILINX™ parallel cable IV the led lights green if
FPGA is powered on. Now start XILINX™ iMPACT, select Boundary Scan mode and follow
the manual provided by XILINX™ in xapp951. Select M25P16 SPI-Flash PROM Type
when asked.

SPI-Flash

M25P16 | Signal Name | FPGA 10 | FPGA Direction Comment

D MOSI T13 Output Master SPI Serial Data Output.

Q MISO R13 Input Master SPI Serial Data Input.

S CSO_ B V3 Output Master SPI Chip Select Output.

C CCLK R15 Output Configuration Clock.

w WP# -- Externally pulled HIGH via 4,7kOhm resistor.
HOLD |HOLD# - Externally pulled HIGH via 4,7kOhm resistor.

SPI-Flash Direct Programming using iMPACT
Out of the box Direct SPI Programming via XILINX™ download cable and iMPACT

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -60- preliminary

http://www.cesys.com/
http://www.xilinx.com/support/documentation/application_notes/xapp951.pdf
http://www.xilinx.com/tools/webpack.htm

programming software is not supported. But with the help of some tiny FPGA design which
only has to bypass SPI signals to external 10 pins on connectors J3 or J4 it is possible to
access all needed SPI-Flash pins. Connect JTAG adapter to external 10 pins as described

in the following chart.

SPI-Flash Direct Programming — necessary connections to JTAG cable
M25P16 FPGA Connection JTAG Signal Name

D MOSI TDI
Q DIN TDO
S CSO_B T™MS
C CCLK TCK

vce vcco_lo VREF

GND GND GND

Make sure that VCCO_IO is configured for 3.3V signaling levels. Do not forget to also
enable FPGA power-up. With XILINX™ parallel cable IV the led lights green if FPGA is
powered on. Before starting to download a design to SPI-Flash with IMPACT programming
software it is necessary to prepare the required *.mcs SPI-PROM file. With xapp951
XILINX™ provides an application note how to accomplish that using iIMPACT or PROMGen
software tools. Select 16M SPI PROM Density when asked. Now programming of the SPI-
Flash can be started by clicking Direct SPI Configuration from within iMPACT. Follow the
manual provided by XILINX™ in xapp951. Select M25P16 SPI-Flash PROM Type when

asked.

USBS6 / C1030-5510
User Doc V0.3

-61-

http://www.cesys.com/

preliminary

http://www.cesys.com/
http://www.xilinx.com/support/documentation/application_notes/xapp951.pdf

10 pairing and etch length report

J3 VG-96 pin connector - Differential pairs (28 IN, 12 IN/OUT)

PIN Net name FPGAIO | P/N Direction | FPGABANK | Etch Length (mm)
Ad VG96_100 U2 P IN BANK 3 62.370

B4 VG96_101 U1 N IN BANK 3 62.368

A5 VG96_103 T2 P IN BANK 3 60.667

B5 VG96_104 T1 IN BANK 3 60.664

C5 VG96_105 P4 P IN BANK 3 57.362

C4 VG96_102 P3 IN BANK 3 57.362

A6 VG96_106 P2 P IN BANK 3 59.397

B6 VG96_107 P1 IN BANK 3 59.394

A7 VG96_109 N2 P IN BANK 3 59.131

B7 VG96_1010 N1 IN BANK 3 59.129

Cc7 VG96_1011 N4 P IN BANK 3 59.244

C6 VG96_108 N3 IN BANK 3 59.232

A8 VG96_1012 L2 P IN BANK 3 58.301

B8 VG96_1013 L1 N IN BANK 3 58.299

A9 VG96_1015 K2 P IN BANK 3 58.238

B9 VG96_1016 K1 N IN BANK 3 58.236

C9 VG96_1017 M3 P IN BANK 3 59.802

Cc8 VG96_1014 M1 N IN BANK 3 59.761
A10 | VG96_1018 H2 P IN BANK 3 55.682

B10 | VG96_IO19 H1 N IN BANK 3 55.680

USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -62- preliminary

http://www.cesys.com/

PIN Net name FPGAIO | P/N Direction | FPGABANK | Etch Length (mm)
A11 VG96_ 1021 F2 P IN BANK 3 52.506
B11 VG96_ 1022 F1 N IN BANK 3 52.504
CcC11 VG96_1023 J3 P IN BANK 3 60.987
Cc10 VG96_1020 J1 IN BANK 3 60.972
A12 VG96_1024 D2 P IN BANK 3 50.233
B12 VG96_1025 D1 IN BANK 3 50.221
A13 VG96_1027 C2 P IN BANK 3 48.317
B13 VG96_1028 C1 N IN BANK 3 48.315
C13 VG96_1029 G3 P IN BANK 3 62.860
C12 VG96_1026 G1 N IN BANK 3 62.840
A14 | VG96_ 1030 L4 P IN BANK 3 61.467
B14 | VG96_I1031 L3 N IN BANK 3 61.456
A15 | VG96_1033 L5 P IN BANK 3 62.236
B15 | VG96_I034 K5 N IN BANK 3 62.210
C15 [VG96_1035 E3 P IN BANK 3 65.015
C14 | VG96_1032 E1 IN BANK 3 65.008
A16 | VG96_l036 L7 P IN BANK 3 64.049
B16 | VG96_IO37 K6 IN BANK 3 63.853
A17 VG96_1039 K4 P IN BANK 3 67.057
B17 VG96_1040 K3 IN BANK 3 67.031
C17 VG96_1041 L6 P IN BANK 3 62.885
C16 | VG96_1038 M5 IN BANK 3 62.926
A18 VG96_1042 H6 P IN BANK 3 63.499
USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -63- preliminary

http://www.cesys.com/

PIN Net name FPGAIO | P/N Direction | FPGABANK | Etch Length (mm)
B18 VG96_1043 H5 N IN BANK 3 63.426
Cc19 VG96_1045 J7 P IN BANK 3 64.103
Cc18 VG96_1046 J6 N IN BANK 3 64.144
A20 VG96_1047 H7 P IN BANK 3 63.630
B20 VG96_1044 G6 IN BANK 3 63.609
A21 VG96_1048 E4 P IN BANK 3 60.899
B21 VG96_1049 D3 N IN BANK 3 60.885
Cc21 VG96_1051 F4 P IN BANK 3 56.002
C20 VG96_1052 F3 N IN BANK 3 55.884
A23 VG96_1053 F6 P IN BANK 3 64.148
B23 VG96_1050 F5 N IN BANK 3 64.134
A24 | VG96_|057 D6 P IN/OUT BANK 0 63.585
B24 | VG96_IO58 C6 N IN/OUT BANK 0 63.540
C24 | VG96_1059 F7 P IN/OUT BANK 0 60.224
C23 VG96_1056 E6 IN/OUT BANK 0 60.128
A25 | VG96_l060 E7 P IN/OUT BANK 0 71.834
B25 | VG96_I0O61 E8 IN/OUT BANK 0 71.637
A26 | VG96_ 1063 D9 P IN/OUT BANK 0 69.596
B26 | VG96_I0O64 C9 IN/OUT BANK 0 69.497
C26 | VG96_1065 D8 P IN/OUT BANK 0 63.074
C25 [VG96_1062 Cc8 IN/OUT BANK 0 63.051
A27 VG96_1066 G9 P IN/OUT BANK 0 74.749
B27 VG96_1067 F9 IN/OUT BANK 0 74.696
USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -64- preliminary

http://www.cesys.com/

PIN Net name FPGAIO | P/N Direction | FPGABANK | Etch Length (mm)
A28 | VG96_1069 G11 P IN/OUT BANK O 73.791
B28 | VG96_l070 F10 IN/OUT BANK 0 73.594
C28 | VG96_IO71 G8 P IN/OUT BANK 0 69.296
C27 | VG96_1068 F8 IN/OUT BANK 0 69.246
A29 | VG96_I072 D11 P IN/OUT BANK 0 72.405
B29 | VG96_l073 C11 IN/OUT BANK 0 72.379
A30 | VG96_IO75 F12 P IN/OUT BANK 0 74.452
B30 | VG96_l076 E12 IN/OUT BANK 0 74.253
C30 | VG96_lO77 F11 P IN/OUT BANK O 68.952
C29 | VG96_l0O74 E11 IN/OUT BANK 0 68.755
A31 VG96_1078 F13 P IN/OUT BANK 0 75.068
B31 VG96_1079 E13 IN/OUT BANK 0 74.871

J4 IDC-50 pin connector - Differential

pairs (17 IN/OUT)

PIN Net name FPGAIO | P/N Direction | FPGABANK | Etch Length (mm)

3 ADD_IO C5 P IN/OUT BANK 0 30.618

4 ADD_IO A5 N IN/OUT BANK 0 30.458

ADD_IO Cc7 P IN/OUT BANK 0 28.054

ADD_IO A7 IN/OUT BANK 0 28.005

ADD_IO B2 P IN/OUT BANK 0 18.486

10 ADD_IO A2 IN/OUT BANK 0 18.461

11 ADD_IO B3 P IN/OUT BANK O 19.033

12 ADD_IO A3 IN/OUT BANK 0 19.021
USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -65- preliminary

http://www.cesys.com/

PIN Net name FPGAIO | P/N Direction | FPGABANK | Etch Length (mm)
13 ADD_10 B4 P IN/OUT BANK 0 19.754
14 ADD_10 A4 N IN/OUT BANK O 19.743
15 ADD_IO B6 P IN/OUT BANK 0 20.143
16 ADD_IO A6 IN/OUT BANK 0 20.131
19 ADD_IO B8 P IN/OUT BANK 0 20.421
20 ADD_IO A8 IN/OUT BANK 0 20.394
21 ADD_10 B9 P IN/OUT BANK 0 21.514
22 ADD_10 A9 N IN/OUT BANK 0 21.497
25 ADD_10 B11 P IN/OUT BANK 0 24.381
26 ADD_10 A11 N IN/OUT BANK O 24.354
27 ADD_IO B12 P IN/OUT BANK 0 25.102
28 ADD_IO A12 N IN/OUT BANK 0 25.137
29 ADD_IO B14 P IN/OUT BANK 0 25.150
30 ADD_IO A14 N IN/OUT BANK 0 25.137
31 ADD_10 B16 P IN/OUT BANK 0 26.005
32 ADD_10 A16 IN/OUT BANK 0 25.980
35 ADD_IO Cc10 P IN/OUT BANK 0 40.687
36 ADD_IO A10 IN/OUT BANK O 40.669
37 ADD_IO D12 P IN/OUT BANK 0 40.905
38 ADD_IO C12 IN/OUT BANK 0 40.865
41 ADD_IO C13 P IN/OUT BANK 0 43.579
42 ADD_IO A13 IN/OUT BANK 0 43.527
43 ADD_10 D14 P IN/OUT BANK 0 43.029
USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -66- preliminary

http://www.cesys.com/

PIN Net name FPGAIO | P/N Direction | FPGABANK | Etch Length (mm)

44 ADD_10 C14 N IN/OUT BANK 0 42.990

45 ADD_IO C15 P IN/OUT BANK 0 43.603

46 ADD_IO A15 N IN/OUT BANK 0 43.551
USBS6 / C1030-5510 http://www.cesys.com/
User Doc V0.3 -67- preliminary

http://www.cesys.com/

Mechanical dimensions

O o I
A
I <
@ QN
<
><
ke <
. =r
od ©
N =
=0]
T v 0
GG ' G e et —
- Sv 6 -—
~ 001 =
Figure 20: USBS6 mechanical dimensions in mm
USBS6 / C1030-5510 http://www.cesys.com/

User Doc V0.3 -68- preliminary

http://www.cesys.com/

Table of contents

Table of Contents

Copyright INfOrMATION. ..uuueiisiiiiiiiiitii ettt ee ettt eeeeeeeeeeee e e 2
OV O VIR W ettt ettt ettt ettt ettt ettt ettt ettt e et ettt et et e e e et e et e et e e e ae et et et eeeeeeaea e 3
Summary Of USBSO. ..ottt ettt e e eeeeieeeeeeeeeeeeeeeeeeraaeees 3
FQAUIE LIST. .eeiiuuiiiiuiiiiiiiieiii ettt ettt ettt ee e e e e e e e 3
Included in delIVeTY. . .uueiiiiiiiiiiiiiiee ettt eee e, 3
HArAWAIC. . oouveeiiiiiiiii ittt ettt ettt e et e e s eeaaeeee e 4
BlOCK DIAGIAM. c.uuuiiiiiiiiiiiiiiie ettt et e e et et e e e 4
Spartan-6TM FPGAooiieiiiiiiiiiie ettt ettt e e eeeeeeeeenneees 4
POWering USBSO......eciiuuiiiiiiiiiiiiiiiii ettt 6
CONTIGUIAION. .ueetiiiiie ettt ettt ettt ettt ettt ettt ettt et et eieeeeeieee e e 7
USB2.0 CONIOIIT . .ueiiiiiiiiiiiiiiiiii ittt ettt et et eeeeeeeeeeeeeiaeeeeeenaes 8
EXteINal MEIMIOTY . uueiiuuiiiiiiiiitii ittt ettt e ettt e et ettt eee e et et e et e e eeeseeaeeenes 9
PeriPREIAIS. .uveiiiiiiiiiieiie ettt reeeeeeeeennn 11
External eXpansion COMMECOTS. .uuuuuiuruieiiiitiieiieiiieeeeeitieeeeete et eeiee ettt et eeeiee et eeieeeeeeiteeeeeeeeeaiians 13
FPGA A@SIGN...uuiiiiiiiiiii ittt ettt e e e eeeeeeann 17
Cypress FX-2 LP and USB basiCS.....ccuuiiiiiiiiiiiiiiiiiieieieieeseeeseees e 17
Clocking FPGA deSIGNS. ..eeiiuueiiiiiiiiiiiiiiiii e eeeieee ettt ettt ettt e eeeeeeeeeeeeiaaaeee 17
EFX-2/FPGA slave FIFO CONNECHION. ...eeeuuiiiiiiiiiiiiiiiiiieiiiiie ettt e eeeeeaaans 18
Introduction to example FPGA deSI@NS.......eeeeeuuiiiiiiiiiiiiiiiiiiiiiiiiiieeiiie e, 18
FPGA source code copyright information..........ee.eeeeeueiiiiiiiiiiiiiiiiiiiiiieiieiiieeeeieeeeeeeeeeee e 20
FPGA SoUrce COde HICONSE. . uuiiuuiiiiiiiiiiiiiiiiie ittt ettt ettt ettt e e e e e e eeaeaens 20
Disclaimer Of WaITANEYveeetiiiiiiiiiiiiieiie ettt e i et e e e eeaanes 20

DeSign “USDSO SOC” . ..uiiuiiiiiieiti et 21
Files and mOdUIES.......cceeuiiiiiiiiiiiiiiiiiiiieieii it 21
src/wishbone pKg.VAd:....ocoeesiiiiiiiiiiieiies s, 21
src/usbs6 _s0C tOP. VA . eeseeiiiiiii e 22
SIC/WD_INtETCON. VI .. eiieiiiiiiiiiiiieii it 22
sre/Wb_ma_fX2.Vhd:. i 22
SIC/Wb_SI bram.Vhd: . .o.oeeieiiiiiiiiiiiiiiiiii e 22
src/wb sl gpPio.Vhd:. i, 22
sre/wb_sl flash.Vhd:...oooeiiiiiiiiiiiiiiiiiiiiiieeei e 22
SIC/WH_ Sl MCB.Vhd: et 23
USBS6 / C1030-5510 http://www.cesys.com/

User Doc V0.3 -69- preliminary

http://www.cesys.com/

SIC/X1] VATt TNACTO/ futtieiieieiieiiie ittt ettt ettt et eee et est e et e e eeeeeeeeeeenieeeeeenes 23
SIC/Xil MCD MIG/teiiiiiiiiiiiiei e 23
sre/fx2_slfifo ctrl.vhd:. . ieeeeiiiiiiiiiiiiiiiiiiie e 23
sre/sync fifo.vhd:. oo 25
src/stifo_hd alKX18bOKSX36.Vhd: . eeeuiiiiiieiiiiiiiiiiiiiiieiiieeiie et 25
sre/flash ctrl.vhd:. e 25
USDSO SO . XIS uuteeuetteeeteeetteeetteee et ee ettt ettt ettt et et e e et e ea e ea e et e et e e e e et e e eee e 25
USDSO _SOC.UCT:...eeiiiiiiiiiiiiee e 25
usbs6_soc _fpga conStS.h:..eiiiiiiiiiiiiiiiiii 25
Software Pseudo-Code EXample:c.coeeeieiiiieiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieciecceieeeee, 25

Design “USbSO DIam 27
Files and MOAUIES.eeiieueiiiiiiiiiieiieieieeeeeeeeeeeeeee e 28
SIC/WiShbone PKE.VIA: . iiiiiiiiiiiiiiiiiiiiieieeeieee et 28
src/usbs6_bram_toP. VR .. ecoueeiieiiiiiiiiiiiii e 28
sre/Wb_ma_fX2.Vhd:. e 28
src/wb sl bram.vhd:...ooooooiiiiiiiiiiiiii 28
src/sim_tb/wb_sl bram th.vhd:.......oeooiiiiiiiiiiiiiiiiiiiieee 28

sre/fx2 slfifo ctrl.vhdi. e 28
sre/sync fifo.vhd:..oeieeeiiiiii s, 28
USDSO DA XISC eeeuieeieateie ettt ettt e s s 28
USDSO Dram.uCT: . eeeiieiiie et 28
Wb_Sl bram_ th.d0: . cueeieiiiiiiiiiiiiiii e 28
Wb_sl bram_th.emd:......eeoiiiiiiiiiiiiie e 29

SO EWATE ettt ettt ee ettt et e et ee ettt eeeeeeeeeeeeerteeeerereaeees 30
INtrOAUCEION. c ittt et eeee e e e 30
Changes t0 PIreVIOUS VEISIONS. .eviiiieiuuereiiiieiiiiiiitiieiiieeeiiiiiiiieeeeeeeeeeeiiieeeeeeeeeeeieiitteeeeereeeieeeeeeeeeeeeeeess 30
WINAOWS. ettt ettt ettt ee ittt ettt e eeee bttt eee et te ittt e eeeeeeaatttteerrereeaees 31
ROQUITEIMENTS. . .vvveiiiiiiiiiiiiiiieeiiiee ettt eeeeeee e e e e eeeeeteeeeeeeeeeieiiteeeeseeeereeeseeeseees 31
Driver INSTAIIAtION. . oeueeeiiiiiiiiiiiiiiiiiiiiiei ettt ettt ettt eeeeeie e e eee e eeieeeeeeeeeens 31
BUild UDK ..eoiiiiitiiiiiieiie ettt eiaereeeeean 31
PrE T OUISTEES . cuuuteiiiiiiiiiiiiieeiiiiieee e ee et ee oottt et e e et ettt ettt ee ettt eeeeeie it eeeeeeeeereeeees 31
Solution creation and BUIld.........ceueeiiiiiueiiiiiiiiiiiiiiiiiieeiiieeeeeeee et 31
LUIMMUX ettt ettt ettt et e e e ettt e eeeeaeeeiiaaes 33
ROQUITEIMIENIES. 1oviiiiiiiiiiiiieiiiieieeieieeieee ettt eeeeee e et eeeeeitteeeeeeeeeeeeitteeeeeeeeeeeeeeeeeeeeeeeeess 33
DIIVOTS ettt ettt e e e e e eeeeeeeeeans 33
US B ettt e ettt eete e e e ettt eeeiteeeeeainaaeees 33

POl ittt e e e e e eiaaeeen 34
BUild UDK o oiiiiiieiiiiiieiiieeeeee ettt ettt ee e eiaereeeeen 35
USBS6 / C1030-5510 http://www.cesys.com/

User Doc V0.3 -70- preliminary

http://www.cesys.com/

Pl qUISI S ettt ettt ettt ettt ettt ettt ettt ettt et et e et e et e e et e et e et et ettt et et e e e e et et et et et et et et et et eteeeeeeeeeeeerennnnnasss 35

Makefile creation and BUIIA.......cceeeuuveeeiiiiiiiiiiiiiiiiie e 35

UsSE APIS i OWIN PIOJECES. 1eeeiiutiiiiieiieieeietiieeeeeiie ettt ettt ettt e eeeieeeeeeiiaeeeeeeeeeeeeeeeieaeinnns 37
Gt AP ittt e et e e et eeeiar e e eeeaiannns 37
Add project t0 UDK DUild....ccouueeiiiieuiiiiiieiiiiiieeiiieeeeiee et 37

G AP oottt e et e e e et e e e e eeeaeeens 37
INET AP ettt 38
API FUnctions in detail.......cc.ueeeiiiueeiiiiiiiiiiiiiieiiieeiiiieeeeieee et eeeeeeeeeeeennn 38
APT Error handling...ooooeeueeeeeiiiiiiiiiiiiiiiiiieee oottt eeeeeeeeeeeeeeeees 38
CHtand NET APL..ooooiiiiiiiiieiieiieeeeiee ettt eeeeeeeiieeeeennn 38

C AP ettt e eeaiaeeeean 38
MethOdS/FUNCHONS. ...uvviiiietiiiiieeiiiiie ettt eeeeeeeiteeeeeeieeeeeeaeeenn 39
DEVICE ENUMETAION. toiiiiitettiiiiiiiiiieiitieiiiieeeeeeeiite e eeeeeeetei et eeeeeeeeeeeeitteeeeeeeeeeeieiieeeeeeeeeeeeeeeeeeeeees 40
MethOdS/FUNCHONS. ...uvviiiieeiieieiiiiiee ettt ettt eeeee et e eeeieeeeeeaeeeen 40
Information gathering......ooiiiiiiiiiiiiiiiiiiieiiiiieeee ettt eee e 43
MethOdS/FUNCHONS. ...uvviiiieeiiiiiieiiiee ettt e eeeeeeeeeieeeeeeaeeeeen 43
USING QOVICES tuutiiiiiiiiiiiiitiiiiieee e ittt e et eee ettt eee et teite et eeeeeesieeeeteeeeeeeieitaeeeeeeeeeeeeinseeeeseeees 45
MethOdS/FUNCHONS. ...uvviiiieiiiiieeeiiiie ettt eeeteeeeeeieeeeeeaeeenn 45
UDKLAD ittt ettt e et eeeir et e eee e et eeeaainees 50
INtrOAUCEION. 1.ttt ettt e ee et et e eeeieeiaeees 50
The MAIN SCIEEM...uuuuiiiiiiiiiiiiiieiiiiieei et eee et eeeeeie et eeeeeeeeieeeeeeeeeeesiiieeeeeeeeeeeeeiisseeseeeeeeeeeeeees 51
USING UDKILAD . ..iiiiitiiiiiieiiiiieieeieeeeeie ettt eeeeeeeeeieeeeeeeeenn 52
FPGA CONTIGUIATION. c.tttttiiiiiiiiiiiiiiiiiiiiiee oot ieeeeeeee it eeeeeeeeeeiiieeeeeeeeeeeeeeeeeeeees 53
FPGA design flaShing........ocoeuuviiiiiueiiiiiiiiiiiiiiiiieeeiiieeeieeeeeeee e eeeeeeeeeeeeennn 54
PrOTECES ettt e ettt e e e e e e e e eiaaeeen 54
INitialiZING SEQUEIICE. uuueeeiieiiiieiitiiieiiieeeeeieeteeee e e et eeeeieeeeeeeeeeeiiieeeeeeeeeeeentt e eeeeeeeeeeens 55
CONENE PANEL.tuviiiiiiiiiiiiiiiiiiiiiie ettt eeeeeeee et e et e eeaeeens 57
Additional INfOrMAtION.veiiieuiiiiiiiiiiieeeeiie ettt e 60
Using SPI-Flash for configuration........c...eiieeeeeiiiiieiiiiiiiiiiiiiiiiieeieiieeeeiee e 60
How to store configuration data in SPI-FIash........ccccuuviiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeee e 60
Loading SPI-Flash via USB.........oouiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieee et eeeeeiieeeeeeeeens 60
SPI-Flash Indirect Programming Using FPGA JTAG ChaiN......ccoouiiiiueeeeieiiiiiiiiiiiieeieeeeeenn. 60

SPI-Flash Direct Programming uSiNg IMPACT .. et iiiieeeeeeeeeeeteeeenaaaeeeeeseeeenns 60

10 pairing and etch [eN@th TEPOIL. .. eiiieee et e ettt et eeeeeeeeeeeeeeeeaaaaeeeaeeseeeannnnaaaaas 62

J3 VG-96 pin connector - Differential pairs (28 IN. 12 IN/OUT).iiiiuiiiiiiieieiiiieieeiieseeeeeeaeeennaes 62

J4 IDC-50 pin connector - Differential pairs (17 IN/OUT). . oiiiiiiiiiiiiiiiiiiiiiiiiiieieiiieiiieeeeeeeeeeeieeeeeenes 65
Mechanical dImMENSTONS oot eeeee et eieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeaaaaaeaaeaeaaaeeeaaeaaaeaaeaeaesaaeasasseeeernnsneseerees 68
LA] Of COME OIS . ettt e e e e e ettt et e et ettt e eeeeee e et et eaeaeaaeeaeeetaaaesaeeeeenannnaasaeeeennnesennsseeennaaaes 69
USBS6 / C1030-5510 http://www.cesys.com/

User Doc V0.3 -71- preliminary

http://www.cesys.com/

	Copyright information
	Overview
	Summary of USBS6
	Feature list
	Included in delivery

	Hardware
	Block Diagram
	Spartan-6TM FPGA
	Powering USBS6
	Configuration
	USB2.0 controller
	External memory
	Peripherals
	External expansion connectors

	FPGA design
	Cypress FX-2 LP and USB basics
	Clocking FPGA designs
	FX-2/FPGA slave FIFO connection
	Introduction to example FPGA designs
	FPGA source code copyright information
	FPGA source code license
	Disclaimer of warranty
	Design “usbs6_soc”
	Files and modules
	src/wishbone_pkg.vhd:
	src/usbs6_soc_top.vhd:
	src/wb_intercon.vhd:
	src/wb_ma_fx2.vhd:
	src/wb_sl_bram.vhd:
	src/wb_sl_gpio.vhd:
	src/wb_sl_flash.vhd:
	src/wb_sl_mcb.vhd:
	src/wb_sl_uart.vhd:
	src/xil_uart_macro/:
	src/xil_mcb_mig/:
	src/fx2_slfifo_ctrl.vhd:
	src/sync_fifo.vhd:
	src/sfifo_hd_a1Kx18b0K5x36.vhd:
	src/flash_ctrl.vhd:
	usbs6_soc.xise:
	usbs6_soc.ucf:
	usbs6_soc_fpga_consts.h:
	Software Pseudo-Code Example:

	WISHBONE transactions
	WISHBONE signals driven by the master:
	WISHBONE signals driven by slaves:
	Example:

	Design “usbs6_bram”
	Files and modules
	src/wishbone_pkg.vhd:
	src/usbs6_bram_top.vhd:
	src/wb_ma_fx2.vhd:
	src/wb_sl_bram.vhd:
	src/sim_tb/wb_sl_bram_tb.vhd:
	src/fx2_slfifo_ctrl.vhd:
	src/sync_fifo.vhd:
	usbs6_bram.xise:
	usbs6_bram.ucf:
	wb_sl_bram_tb.do:
	wb_sl_bram_tb.cmd:

	Software
	Introduction
	Changes to previous versions
	Windows
	Requirements
	Driver installation
	Build UDK
	Prerequisites
	Solution creation and build

	Linux
	Requirements
	Drivers
	USB
	PCI

	Build UDK
	Prerequisites
	Makefile creation and build

	Use APIs in own projects
	C++ API
	Add project to UDK build

	C API
	.NET API

	API Functions in detail
	API Error handling
	C++ and .NET API
	C API
	Methods/Functions

	Device enumeration
	Methods/Functions

	Information gathering
	Methods/Functions

	Using devices
	Methods/Functions

	UDKLab
	Introduction
	The main screen
	Using UDKLab
	FPGA configuration
	FPGA design flashing
	Projects
	Initializing sequence
	Content panel

	Additional information
	Using SPI-Flash for configuration
	How to store configuration data in SPI-Flash
	Loading SPI-Flash via USB
	SPI-Flash Indirect Programming Using FPGA JTAG Chain
	SPI-Flash Direct Programming using iMPACT

	IO pairing and etch length report
	J3 VG-96 pin connector - Differential pairs (28 IN, 12 IN/OUT)
	J4 IDC-50 pin connector - Differential pairs (17 IN/OUT)

	Mechanical dimensions

	Table of contents

