
Kannel 1.3.1 User’s Guide

Open Source WAP and SMS gateway

Lars Wirzenius
Gateway architect

Wapit Ltd

liw@wapit.com
http://www.wapit.com
http://www.kannel.org

Kalle Marjola
Manager
Wapit Ltd

rpr@wapit.com
http://www.wapit.com
http://www.kannel.org

Andreas Fink
Chairman & CTO

Global Networks Inc.

andreas@fink.org
http://www.smsrelay.com

http://www.gni.ch

Bruno Rodrigues
bruno.rodrigues@litux.org

http://litux.org/bruno

Stipe Tolj
CTO & CIO

Wapme Systems AG

tolj@wapme-systems.de
http://www.wapme.de
http://www.kannel.org

Aarno Syvänen
Chief MMS Developer
Global Networks Inc.

as@gni.ch
http://www.gni.ch

Kannel 1.3.1 User’s Guide: Open Source WAP and SMS gateway
by Lars Wirzenius, Kalle Marjola, Andreas Fink, Bruno Rodrigues, Stipe Tolj, and Aarno Syvänen

Abstract

This document describes how to install and use Kannel, the Open Source WAP and SMS Gateway originally
developed by Wapit Ltd (now out of business) and now being developed further by the open source community,
namely the Kannel Group.

Revision History

Revision 1.3.1 2006.07.01

Table of Contents
1. Introduction..1

Overview of WAP ..1
Overview of WAP Push..2
Overview of SMS...3
Features ..4
Requirements ...4

2. Installing the gateway..5
Getting the source code..5
Finding the documentation...5
Compiling the gateway...6
Installing the gateway...7
Using pre-compiled binary packages ...7

Installing Kannel from RPM packages...7
Installing Kannel from DEB packages ...9

3. Using the gateway ..12
Configuring the gateway ..12

Configuration file syntax ..12
Inclusion of configuration files...13
Core configuration ..13

Running Kannel ...20
Starting the gateway ...20
Command line options..20
Kannel statuses ...21
HTTP administration ..22

4. Setting up a WAP gateway ..24
WAP gateway configuration...24

Wapbox configuration...24
Running WAP gateway ..26
Checking whether the WAP gateway is alive...26

5. Setting up a SMS Gateway..27
Required components...27
SMS gateway configuration ...27

SMS centers..27
Nokia CIMD 1.37 and 2.0...30
CMG UCP/EMI 4.0 ..32
SMPP 3.4 ..36
Sema Group SMS2000 OIS 4.0 and 5.0 ...40
SM/ASI (for CriticalPath InVoke SMS Center 4.x)..41
GSM modem...42
GSM modem 2..44
Fake SMSC ...47
HTTP-based relay and content gateways..48
Using multiple SMS centers ...49
Feature checklist ...49

iv

Smsbox configuration...51
Smsbox routing inside bearerbox ...55
SMS-service configurations..56
How sms-service interprets the HTTP response...62

Extended headers ..63
Kannel POST ..64
XML Post..64

SendSMS-user configurations ..65
External delivery report (DLR) storage..67

Internal DLR storage...68
MySQL DLR storage..68
LibSDB DLR storage..68
DLR database field configuration ...69

MySQL connection configuration ..70
Over-The-Air configurations ..71
Setting up more complex services ..73

Redirected replies..73
Setting up operator specific services...74
Setting up multi-operator Kannel..74

Running SMS gateway...75
Using the HTTP interface to send SMS messages ...75
Using the HTTP interface to send OTA configuration messages ...79

GET method for the OTA HTTP interface..79

6. Setting up a SMS&WAP gateway ..82
SMS&WAP gateway configuration..82
Running SMS&WAP gateway ...82

7. Setting up Push Proxy Gateway ...83
Configuring ppg core group, for push initiator (PI) interface ..83
Configuring PPG user group variables...84
Finishing ppg configuration ...86
Running a push proxy gateway ..87
An example using HTTP SMSC..87
An example push (tokenised SI) document ...87
Default network and bearer used by push proxy gateway..87

8. Using SSL for HTTP..89
Using SSL client support ...89
Using SSL server support for the administration HTTP interface ...89
Using SSL server support for the sendsms HTTP interface ..89
Using SSL server support for PPG HTTPS interface ..90

9. Delivery Reports ..91
10. Getting help and reporting bugs...92
A. Using the fake WAP sender..93
B. Using the fake SMS center ...94

Setting up fakesmsc..94
Compiling fakesmsc ...94
Configuring Kannel ..94

v

Running Kannel with fakesmsc connections ...94
Starting fake SMS center..94

Fake messages...95
Fakesmsc command line options ..95

C. Setting up a test environment for Push Proxy Gateway..97
Creating push content and control document for testing ...97
Starting necessary programs ..98
Using Nokia Toolkit as a part of a developing environment..100
Testing PAP protocol over HTTPS ..100

D. Setting up a dial-up line..103
Analog modem...103
ISDN terminal ..104

E. Log files ..105
Bearerbox Access Log ...105
Log rotation..105

Glossary ..107
Bibliography...108

vi

List of Tables
3-1. Core Group Variables ...14
3-2. Kannel Command Line Options...20
3-3. Kannel HTTP Administration Commands ...22
4-1. Wapbox Group Variables..24
5-1. SMSC Group Variables ..27
5-2. SMSC driver features ...49
5-3. SMSC driver internal features ..50
5-4. Smsbox Group Variables ..52
5-5. Smsbox-route Group Variables ..55
5-6. SMS-Service Group Variables..56
5-7. Parameters (Escape Codes) ..61
5-8. X-Kannel Headers ..63
5-9. X-Kannel Post Headers ..64
5-10. SendSMS-User Group Variables ..66
5-11. DLR Database Field Configuration Group Variables...69
5-12. MySQL Connection Group Variables ..71
5-13. OTA Setting Group Variables...72
5-14. OTA Bookmark Group Variables ...73
5-15. SMS Push (send-sms) CGI Variables...75
5-16. OTA CGI Variables...80
7-1. PPG core group configuration variables...83
7-2. PPG user group configuration variables ...85
B-1. Fakesmsc command line options ...95
C-1. Test_ppg’s command line options ...99
C-2. Test_ppg’s configuration file directives ...101

vii

Chapter 1. Introduction

This chapter introduces WAP and SMS in general terms, and explains the role of the gateway in WAP
and SMS, outlining their duties and features. It also explains why the Kannel project was started in the
first place, and why it is open source.

With hundreds of millions of mobile phones in use all over the world, the market for services targeted at
mobile users is mind-bogglingly immense. Even simple services find plenty of users, as long as they’re
useful or fun. Being able to get news, send e-mail or just be entertained wherever you are is extremely
attractive to many.

The hottest technology for implementing mobile services is WAP, short for Wireless Application
Protocol. It lets the phone act as a simple web browser, but optimizes the markup language, scripting
language, and the transmission protocols for wireless use. The optimized protocols are translated to plain
old HTTP by a WAP gateway.

Kannel is an open source WAP gateway. It attempts to provide this essential part of the WAP
infrastructure freely to everyone so that the market potential for WAP services, both from wireless
operators and specialized service providers, will be realized as efficiently as possible.

Kannel also works as an SMS gateway for GSM networks. Almost all GSM phones can send and receive
SMS messages, so this is a way to serve many more clients than just those using a new WAP phone.

In addition, Kannel operates as Push Proxy Gateway , or PPG, making possible for content servers to
send data to the phones. This is a new type of WAP service, and have many interesting applications.
Usually servers know whether some data is new, not the users.

Open Source (http://www.opensource.org) is a way to formalize the principle of openness by placing the
source code of a product under a Open Source compliant software license. The BSD license was chosen
over other Open Source licenses by the merit of placing the least amount of limitations on what a third
party is able to do with the source code. In practice this means that Kannel is going to be a fully-featured
WAP implementation and compatible with the maximum number of bearers with special emphasis on
SMSC compatibility. The Kannel project was founded by Wapit Ltd in June, 1999.

Overview of WAP
WAP, short for Wireless Application Protocol, is a collection of various languages and tools and an
infrastructure for implementing services for mobile phones. Traditionally such services have worked via
normal phone calls or short textual messages (e.g., SMS messages in GSM networks). Neither are very
efficient to use, nor very user friendly. WAP makes it possible to implement services similar to the World
Wide Web.

Unlike marketers claim, WAP does not bring the existing content of the Internet directly to the phone.
There are too many technical and other problems for this to ever work properly. The main problem is that
Internet content is mainly in the form of HTML pages, and they are written in such way that they require
fast connections, fast processors, large memories, big screens, audio output and often also fairly efficient
input mechanisms. That’s OK, since they hopefully work better for traditional computers and networks
that way. However, portable phones have very slow processors, very little memory, abysmal and

1

Chapter 1. Introduction

intermittent bandwidth, and extremely awkward input mechanisms. Most existing HTML pages do not
work on mobiles phones, and never will.

WAP defines a completely new markup language, the Wireless Markup Language (WML), which is
simpler and much more strictly defined than HTML. It also defines a scripting language, WMLScript,
which all browsers are required to support. To make things even simpler for the phones, it even defines
its own bitmap format (Wireless Bitmap, or WBMP).

HTTP is also too inefficient for wireless use. However, by using a semantically similar binary and
compressed format it is possible to reduce the protocol overhead to a few bytes per request, instead of the
usual hundreds of bytes. Thus, WAP defines a new protocol stack to be used. However, to make things
simpler also for the people actually implementing the services, WAP introduces a gateway between the
phones and the servers providing content to the phones.

Figure 1-1. Logical position of WAP gateway (and PPG)between a phone and a content server.

The WAP gateway talks to the phone using the WAP protocol stack, and translates the requests it receives
to normal HTTP. Thus content providers can use any HTTP servers and utilize existing know-how about
HTTP service implementation and administration.

In addition to protocol translations, the gateway also compresses the WML pages into a more compact
form, to save on-the-air bandwidth and to further reduce the phone’s processing requirements. It also
compiles WMLScript programs into a bytecode format.

Kannel is not just a WAP gateway. It also works as an SMS gateway. Although WAP is the hot and
technically superior technology, SMS phones exist in huge numbers and SMS services are thus quite
useful. Therefore, Kannel functions simultaneously as both a WAP and an SMS gateway.

Overview of WAP Push
Previous chapter explained pull mode of operation: the phone iniatiates the transaction. There is,
however, situations when the server (called in this context a push initiator) should be the initiator, for

2

Chapter 1. Introduction

instance, when it must send a mail notification or a stock quote. For this purpose Wapforum defined
WAP Push.

Push is an application level service, sitting on the top of existing WAP stack. It defines two protocols,
OTA and PAP. OTA is a ligthweigth protocol speaking with WAP stack (to be more specific, with WSP),
PAP speaks with the push initiator. It defines three kind of XML documents, one for the push data itself
and another for protocol purposes (these are called pap document or push control documents).

The server does not simply send push content to the phone, the user would surely not accept, for
instance, interrupting of a voice call. Instead it sends a specific XML document, either Service Indication
or Service Loading. These inform the user about the content becomed available, and it is displayed only
when it is not interrupting anything. It contains an URL specifying the service and a text for user
describing the content. Then the user can decide does he accept push or not.

The push content is sended to the phones over SMS, but the content is fetched by the phone over IP
bearer, for instance CSD or GPRS. Because Push Proxy Gateway tokenises SI and SL documents, it may
fit one SMS message (if not, it is segmented for transfer).

Using two bearers seems to be an unnecessary complication. But quite simply, phones currently operate
this way. Push over GPRS can only simplify matters.

Overview of SMS
SMS, short messaging service, is a way to send short (160 character) messages from one GSM phone to
another. It can also be used to send operator logos, ringing tones, business cards and phone
configurations.

SMS services are content services initiated by SMS message to certain (usually short) phone number,
which then answers with requested content, if available.

When SMS services are used, the client (mobile terminal) sends an SMS message to certain number,
usually a very short specialized number, which points to specific SMS center responsible for that number
(plus possibly many others). This SMS center then sends the message onward to specified receiver in
intra- or Internet, using an SMS center specific protocol. For example, a Nokia SMS center uses CIMD
protocol.

As practically every different kind of SMS center uses different protocol, an SMS gateway is used to
handle connections with SMS centers and to relay them onward in an unified form.

3

Chapter 1. Introduction

Figure 1-2. Logical position of SMS gateway between a phone and a content server.

An SMS gateway can also be used to relay SMS messages from one GSM network to another, if the
networks do not roam messages normally.

Kannel works as an SMS gateway, talking with many different kind of SMS centers, and relaying the
messages onward to content providers, as HTTP queries. Content providers then answer to this HTTP
query and the answer is sent back to mobile terminal, with appropriate SMS center connection using
SMS center specific protocol.

In addition to serving mobile originated (MO) SMS messages Kannel also works as an SMS push
gateway - content providers can request Kannel to send SMS messages to terminals. Kannel then
determines the correct SMS center to relay the SMS message and sends the SMS message to that SMS
center, again using SMS center specific protocol. This way the content provider does not need to know
any SMS center specific protocol, just unified Kannel SMS sending interface.

Features
This section needs to be written.

Requirements
Kannel is being developed on Linux systems, and should be fairly easy to export to other Unix-like
systems. However, we don’t yet support other platforms, due to lack of time. Kannel requires the
following software environment:

• C compiler, development libraries and related tools.

4

Chapter 1. Introduction

• The Gnome XML library (known as gnome-xml and libxml), version 2.2.5 or newer. See
http://xmlsoft.org/xml.html.

• GNU Make.

• Posix threads (pthread.h).

• GNU Bison 1.28 if you modify the WMLScript compiler.

• DocBook markup language tools (jade, jadetex, DocBook stylesheets, etc; see README.docbook), if
you want to format the documentation (pre-formatted versions are available).

Hardware requirements are fluffier. We haven’t benchmarked Kannel yet, so there are no hard numbers,
but a reasonably fast PC workstation (400 MHz Pentium II, 128 MB RAM) should serve several
concurrent users or tens of SMS messages per second without problems.

5

Chapter 2. Installing the gateway
This chapter explains how the gateway can be installed, either from a source code package or by using a
pre-compiled binary version. The goal of this chapter is to get the gateway compiled and all the files in
the correct places; the next chapter will explain how the gateway is configured.

Getting the source code
The source code to Kannel is available for download at http://www.kannel.3glab.org/download.shtml. It
is available in various formats and you can choose to download either the latest release version or the
daily snapshot of the development source tree for the next release version, depending on whether you
want to use Kannel for production use or to participate in the development.

If you’re serious about development, you probably want to use CVS, the version control system used by
the Kannel project. This allows you to participate in Kannel development much more easily than by
downloading the current daily snapshot and integrating any changes you’ve made every day. CVS does
that for you. (See the Kannel web site for more information on how to use CVS.)

Finding the documentation
The documentation for Kannel consists of three parts:

1. User’s Guide, i.e., the one you’re reading at the moment.

2. Architecture and Design, in doc/arch or at http://www.kannel.3glab.org/arch.shtml
(http://www.kannel.3glab.org/arch.shtml)

3. The README and various other text files in the source tree.

We intend to cover everything you need to install and use Kannel is in User’s Guide, but the guide is still
incomplete in this respect. Similarly, the Architecture and Design document should tell you everything
you need to know to dive into the sources and quickly make your own modifications. It’s not a
replacement for actually reading the source code, but it should work as a map to the source code. The
README is not supposed to be very important, nor contain much information. Instead, it will just point at
the other documentation.

You need the following tools to compile Kannel:

• C compiler and libraries for ANSI C, with normal Unix extensions such as BSD sockets.

• An implementation of POSIX threads (pthread.h).

• GNU Bison 1.28, if you want to modify the WMLScript compiler (a pre-generated parser is included
for those who just want to compile Kannel).

• DocBook processing tools: DocBook stylesheets, jade, jadetex, etc; see README.docbook for more
information (pre-formatted versions of the documentation are available, and you can compile Kannel
itself even without the documentation tools).

6

Chapter 2. Installing the gateway

• GNU autoconf, if you want to modify the configuration script.

Compiling the gateway
If you are using Kannel on a supported platform, or one that is similar enough to one, compiling Kannel
is trivial. After you have unpacked the source package of your choosing, or after you have checked out
the source code from CVS, enter the following commands:

./configure

make

The configure script investigates various things on your computer for the Kannel compilation needs,
and writes out the Makefile used to compile Kannel. make then runs the commands to actually
compile Kannel.

If either command writes out an error message and stops before it finishes its job, you have a problem,
and you either need to fix it yourself, if you can, or report the problem to the Kannel project. See Chapter
10 for details.

For detailed instruction on using the configuration script, see file INSTALL. That file is a generic
documentation for configure. Kannel defines a few additional options:

• --with-defaults=type Set defaults for the other options. type is either speed or debug. The
default is debug.

• --enable-docs (default) Build documentation, b.e., converting the User Guide and the
Architecture Guide from the DocBook markup language to PostScript and HTML.

• --disable-docs Don’t build documentation.

• --enable-drafts When building documentation, include the sections marked as draft.

• --disable-drafts (default) When building documentation, don’t include the sections marked
as draft.

• --enable-debug Enable non-reentrant development time debugging of WMLScript compiler.

• --enable-localtime Write log file time stamps in local time, not GMT.

• --disable-assertions Turn off runtime assertion checking. This makes Kannel faster, but gives
less information if it crashes.

• --with-malloc=type Select memory allocation module to use: type is native, checking (the
default), or slow. For production use you probably want native. The slow module is more thorough
than checking, but much slower.

• --enable-mutex-stats Produce information about lock contention.

• --enable-start-stop-daemon Compile the start-stop-daemon program.

• --enable-pam Enable using PAM for authentication of sendsms users for smsbox.

7

Chapter 2. Installing the gateway

You may need to add compilations flags to configure:

CFLAGS=’-pthread’ ./configure

The above, for instance, seems to be required on FreeBSD. If you want to develop Kannel, you probably
want to add CFLAGS that make your compiler use warning messages. For example, for GCC:

CFLAGS=’-Wall -O2 -g’ ./configure

(You may, at your preference, use even stricter checking options.)

Installing the gateway
After you have compiled Kannel, you need to install certain programs in a suitable place. This is most
easily done by using make again:

make bindir=/path/to/directory install

Replace /path/to/directory with the pathname of the actual directory where the programs should
be installed. The programs that are installed are (as filenames from the root of the source directory):

gw/bearerbox
gw/smsbox
gw/wapbox

The version number of the gateway is added to the file names during installation. This makes it easier to
have several versions installed, and makes it easy to go back to an older version if the new version proves
problematic.

Kannel consists of three programs called boxes: the bearer box is the interface towards the phones. It
accepts WAP and SMS messages from the phones and sends them to the other boxes. The SMS box
handles SMS gateway functionality, and the WAP box handles WAP gateway functionality. There can be
several SMS boxes and several WAP boxes running and they don’t have to run on the same host. This
makes it possible to handle much larger loads.

Using pre-compiled binary packages

Installing Kannel from RPM packages
This chapter explains how to install, upgrade and remove Kannel binary RPM packages.

Before you install Kannel, check that you have libxml2 installed on your system:

rpm -q libxml2

8

Chapter 2. Installing the gateway

Installing Kannel

1. Download the binary RPM packet from the Kannel web site.

2. Log in as root:

su -

3. Install the RPM package:

rpm -ivh kannel-VERSION.i386.rpm

Upgrading Kannel

1. Download the binary RPM packet from the Kannel web site.

2. Log in as root

3. Upgrade the RPM package:

rpm -Uvh kannel-VERSION.i386.rpm

Removing Kannel

1. Log in as root:

2. Remove the RPM package:

rpm -e kannel

After you have installed Kannel from the RPM packages you x should now be able to run the Kannel
init.d script that will start Kannel as a WAP gateway. Run the script as root.

/etc/rc.d/init.d/kannel start

To stop the gateway just run the same script with the stop parameter.

/etc/rc.d/init.d/kannel stop

If Kannel is already running and you just want to quickly stop and start the gateway,e.g.to set a new
configuration option, run the script with the restart parameter.

/etc/rc.d/init.d/kannel restart

If you want Kannel to run as a daemon, you need to add a symbolic link to the Kannel script from the
runlevel you want Kannel to run in. E.g. to run Kannel in runlevel 5 add symbolic links to /etc/rc.d/rc5.d/.

9

Chapter 2. Installing the gateway

cd /etc/rc.d/rc5.d/

ln -s ../init.d/kannel S91kannel

ln -s ../init.d/kannel K91kannel

To run Kannel as a SMS gateway you need to edit the configuration file which is at
/etc/kannel/kannel.conf. In the same directory there is an example file called smskannel.conf. It has some
basic examples of the configuration groups needed to run Kannel as a SMS gateway. For more detailed
information please read the section "SMS gateway configuration" later in this same document.

The logging is disabled by default and you can enable it from the kannel.conf file. Just add the log-file
option to the group of which box you want to log.

The documentation will be installed at /usr/share/doc/kannel-VERSION/ or /usr/doc/kannel-VERSION/
depending on if you used the RedHat 7.x or 6.x package.

In the Kannel documentation directory there is a html file called control.html. It is an example file that
shows how to use the Kannel http administration interface. It also has a template for sending SMS
messages.

Installing Kannel from DEB packages
This chapter explains how to install, upgrade and remove Kannel binary DEB packages.

Before you install Kannel, check that you have libxml2 installed on your system:

dpkg -l libxml2

Installing or upgrading Kannel using APT

1. Log in as root:

su -

3. Install or upgrade the package:

apt-get install kannel

See http://kannel.org/download.shtml#debian_repository for informations about kannel repository
sources.list

Installing or upgrading Kannel from a file

1. Download the binary DEB packet from the Kannel web site.

2. Log in as root:

su -

10

Chapter 2. Installing the gateway

3. Install or upgrade the DEB package:

dpkg -i kannel-VERSION.deb

Removing Kannel

1. Log in as root:

2. Remove the package keeping configuration files:

dpkg --remove kannel

3. Remove the package completely:

dpkg --purge kannel

After you have installed Kannel from the DEB packages you should now be able to run the Kannel init.d
script that will start Kannel as a WAP gateway. Run the script as root.

/etc/init.d/kannel start

To stop the gateway just run the same script with the stop parameter.

/etc/init.d/kannel stop

If Kannel is already running and you just want to quickly stop and start the gateway,e.g.to set a new
configuration option, run the script with the restart parameter.

/etc/init.d/kannel restart

If you don’t want Kannel to run as a daemon, run:

update-rc.d -f kannel remove

If you want to restore Kannel runing as a daemon, you need to add a symbolic link to the Kannel script
from the runlevel you want Kannel to run in. E.g. to run Kannel in default runlevel, just run:

update-rc.d kannel defaults

Kannel package starts by default with a wapbox daemon. To activate smsbox or select which box you
want to start, edit /etc/default/kannel and comment/uncomment START_xxxBOX.

To run Kannel as a SMS gateway you need to edit the configuration file which is at
/etc/kannel/kannel.conf. In /usr/share/docs/kannel/examples/ there are example files. They have some
basic examples of the configuration groups needed to run Kannel as a SMS gateway. For more detailed
information please read the section "SMS gateway configuration" later in this same document.

11

Chapter 2. Installing the gateway

The documentation will be installed at /usr/share/doc/kannel/.

In the Kannel documentation directory there is a html file called control.html. It is an example file that
shows how to use the Kannel http administration interface. It also has a template for sending SMS
messages.

Aditionally to kannel-VERSION.deb, there’s now an optional kannel-docs-VERSION.deb with
documentation (userguide et al) and a kannel-extras-VERSION.deb with contrib and test stuff.

If you want to test development version, use the packages called kannel-devel-*.deb.

12

Chapter 3. Using the gateway
This chapter explains how the gateway core, bearerbox, is configured and used. It covers the
configuration file, keeping an eye on the gateway while it is running, and using the HTTP interface to
control the gateway.

After this chapter there is distinct chapter for each kind of gateway use: WAP gateway, SMS gateway and
combined gateway. These chapters explain the configuration and other aspects of gateway of that type.

There is only one configuration file for all parts of Kannel, although when Kannel is distributed to
several hosts some lines from the configuration file can be removed in some hosts.

Configuring the gateway
The configuration file can be divided into three parts: bearerbox configurations, smsbox configurations
and wapbox configurations. Bearerbox part has one ’core’ group and any used SMS center groups, while
wapbox part has only one wapbox group. In smsbox part there is one smsbox group and then number of
sms-service and sendsms-user groups.

Details of each part are in an appropriate section of this documentation. The ’core’ group used by the
bearerbox is explained in this chapter, while ’wapbox’ part is in the next chapter and ’smsbox’, ’smsc’
(SMS center), ’sms-service’ and ’sendsms-user’ groups are in the SMS Kannel chapter.

Configuration file syntax
A configuration file consists of groups of configuration variables. Groups are separated by empty lines,
and each variable is defined on its own line. Each group in Kannel configuration is distinguished with a
group variable. Comments are lines that begin with a number sign (#) and are ignored (they don’t, for
example, separate groups of variables).

A variable definition line has the name of the variable, and equals sign (=) and the value of the variable.
The name of the variable can contain any characters except whitespace and equals. The value of the
variable is a string, with or without quotation marks () around it. Quotation marks are needed if the
variable needs to begin or end with whitespace or contain special characters. Normal C escape character
syntax works inside quotation marks.

Perhaps an example will make things easier to comprehend:

1 # A do-nothing service.
2 group = sms-service
3 keyword = nop
4 text = "You asked nothing and I did it!"
5
6 # Default service.
7 group = sms-service
8 keyword = default
9 text = "No services defined"

The above snippet defines the keyword nop for an SMS service, and a default action for situation when
the keyword in the SMS message does not match any defined service.

13

Chapter 3. Using the gateway

Lines 1 and 6 are comment lines. Line 5 separates the two groups. The remaining lines define variables.
The group type is defined by the group variable value.

The various variables that are understood in each type of configuration group are explained below.

Some variable values are marked as ’bool’. The value for variable can be like true, false, yes, no, on,
off, 0 or 1. Other values are treated as ’true’ while if the variable is not present at all, it is treated as being
’false’.

Inclusion of configuration files
A configuration file may contain a special directive called include to include other file or a directory
with files to the configuration processing.

This allows to segment the specific configuration groups required for several services and boxes to
different files and hence to have more control in larger setups.

Here is an example that illustrates the include statement :

group = core
admin-port = 13000
wapbox-port = 13002
admin-password = bar
wdp-interface-name = "*"
log-file = "/var/log/bearerbox.log"
log-level = 1
box-deny-ip = "*.*.*.*"
box-allow-ip = "127.0.0.1"

include = "wapbox.conf"

include = "configurations"

Above is the main kannel.conf configuration file that includes the following wapbox.conf file with
all required directives for the specific box, and a configurations directory which may include more
files to include.

group = wapbox
bearerbox-host = localhost
log-file = "/var/log/wapbox.log"
log-level = 0
syslog-level = none

The above include statement may be defined at any point in the configuration file and at any inclusion
depth. Hence you can cascade numerous inclusions if necessary.

At process start time inclusion of configuration files breaks if either the included file can not be opened
and processed or the included file has been processed already in the stack and a recursive cycling has
been detected.

14

Chapter 3. Using the gateway

Core configuration
Configuration for Kannel MUST always include a group for general bearerbox configuration. This group
is named as ’core’ in configuration file, and should be the first group in the configuration file.

As its simplest form, ’core’ group looks like this:

group = core
admin-port = 13000
admin-password = f00bar

Naturally this is not sufficient for any real use, as you want to use Kannel as an SMS gateway, or WAP
gateway, or both. Thus, one or more of the optional configuration variables are used. In following list (as
in any other similar lists), all mandatory variables are marked with (m), while conditionally mandatory
(variables which must be set in certain cases) are marked with (c).

Table 3-1. Core Group Variables

Variable Value Description
group (m) core This is a mandatory variable

admin-port (m) port-number

The port number in which the
bearerbox listens to HTTP
administration commands. It is
NOT the same as the HTTP port
of the local www server, just
invent any port, but it must be
over 1023 unless you are running
Kannel as a root process (not
recommended)

admin-port-ssl (o) bool

If set to true a SSL-enabled
administration HTTP server will
be used instead of the default
unsecure plain HTTP server. To
access the administration pacges
you will have to use a HTTP
client that is capable of talking to
such a server. Use the "https://"
scheme to access the secured
HTTP server. Defaults to "no".

admin-password (m) string

Password for HTTP
administration commands (see
below)

status-password string

Password to request Kannel
status. If not set, no password is
required, and if set, either this or
admin-password can be used

15

Chapter 3. Using the gateway

Variable Value Description

admin-deny-ip IP-list

These lists can be used to
prevent connection from given IP
addresses. Each list can have
several addresses, separated with
semicolons (’;’). An asterisk
(’*’) can be used as a wildcard in
a place of any ONE number, so
..*.* matches any IP.

admin-allow-ip

smsbox-port (c) port-number

This is the port number to which
the smsboxes, if any, connect. As
with admin-port, this can be
anything you want. Must be set if
you want to handle any SMS
traffic.

smsbox-port-ssl (o) bool

If set to true, the smsbox
connection module will be
SSL-enabled. Your smsboxes
will have to connect using SSL
to the bearerbox then. This is
used to secure communication
between bearerbox and smsboxes
in case they are in seperate
networks operated and the TCP
communication is not secured on
a lower network layer. Defaults
to "no".

wapbox-port (c) port-number

Like smsbox-port, but for
wapbox-connections. If not set,
Kannel cannot handle WAP
traffic

wapbox-port-ssl (o) bool

If set to true, the wapbox
connection module will be
SSL-enabled. Your wapboxes
will have to connect using SSL
to the bearerbox then. This is
used to secure communication
between bearerbox and
wapboxes in case they are in
seperate networks operated and
the TCP communication is not
secured on a lower network
layer. Defaults to "no".

16

Chapter 3. Using the gateway

Variable Value Description

box-deny-ip IP-list

These lists can be used to
prevent box connections from
given IP addresses. Each list can
have several addresses, separated
with semicolons (’;’). An asterisk
(’*’) can be used as a wildcard in
place of any ONE number, so
..*.* matches any IP.

box-allow-ip

udp-deny-ip IP-list

These lists can be used to
prevent UDP packets from given
IP addresses, thus preventing
unwanted use of the WAP
gateway. Used the same way as
box-deny-ip and
box-allow-ip.

udp-allow-ip

wdp-interface-name (c) IP or ’*’

If this is set, Kannel listens to
WAP UDP packets incoming to
ports 9200-9208, bound to given
IP. If no specific IP is needed, use
just an asterisk (’*’). If UDP
messages are listened to,
wapbox-port variable MUST be
set.

log-file filename

A file in which to write a log.
This in addition to stdout and
any log file defined in command
line. Log-file in ’core’ group is
only used by the bearerbox.

log-level number 0..5

Minimum level of logfile events
logged. 0 is for ’debug’, 1 ’info’,
2 ’warning, 3 ’error’ and 4
’panic’ (see Command Line
Options)

access-log filename

A file in which information
about received/sent SMS
messages is stored. Access-log in
’core’ group is only used by the
bearerbox.

17

Chapter 3. Using the gateway

Variable Value Description

unified-prefix prefix-list

String to unify received phone
numbers, for SMSC routing and
to ensure that SMS centers can
handle them properly. This is
applied to ’sender’ number when
receiving SMS messages from
SMS Center and for ’receiver’
number when receiving messages
from SMSbox (either sendsms
message or reply to original
message). Format is that first
comes the unified prefix, then all
prefixes which are replaced by
the unified prefix, separated with
comma (’,’). For example, for
Finland an unified-prefix
"+358,00358,0;+,00" should do
the trick. If there are several
unified prefixes, separate their
rules with semicolon (’;’), like
"+35850,050;+35840,040". Note
that prefix routing is next to
useless now that there are SMSC
ID entries. To remove prefixes,
use like
"-,+35850,050;-,+35840,040".

white-list URL

Load a list of accepted senders
of SMS messages. If a sender of
an SMS message is not in this
list, any message received from
the SMS Center is discarded. See
notes of phone number format
from numhash.h header file.
NOTE: the system has only a
precision of last 9 or 18 digits of
phone numbers, so beware!

black-list URL

As white-list, but SMS messages
to these numbers are
automatically discarded

18

Chapter 3. Using the gateway

Variable Value Description

store-file filename

A file in which any received
SMS messages are stored until
they are successfully handled. By
using this variable, no SMS
messages are lost in Kannel, but
theoretically some messages can
duplicate when system is taken
down violently.

http-proxy-host hostname
Enable the use of an HTTP

proxy for all HTTP requests.

http-proxy-port port-number

http-proxy-exceptions URL-list

A list of excluded hosts from
being used via a proxy. Separate
each entry with space.

http-proxy-username username

Username for authenticating
proxy use, for proxies that
require this.

http-proxy-password URL-list

Password for authenticating
proxy use, for proxies that
require this.

ssl-client-certkey-file

(c)

filename

A PEM encoded SSL certificate
and private key file to be used
with SSL client connections.
This certificate is used for the
HTTPS client side only, i.e. for
SMS service requests to
SSL-enabed HTTP servers.

ssl-server-cert-file (c) filename

A PEM encoded SSL certificate
file to be used with SSL server
connections. This certificate is
used for the HTTPS server side
only, i.e. for the administration
HTTP server and the HTTP
interface to send SMS messages.

ssl-server-key-file (c) filename

A PEM encoded SSL private
key file to be used with SSL
server connections. This key is
associated to the specified
certificate and is used for the
HTTPS server side only.

19

Chapter 3. Using the gateway

Variable Value Description

ssl-trusted-ca-file filename

This file contains the certificates
Kannel is willing to trust when
working as a HTTPS client. If
this option is not set, certificates
are not validated and those the
identity of the server is not
proven.

dlr-storage type

Defines the way DLRs are
stored. If you have build-in
external DLR storage support,
i.e. using MySQL you may
define here the alternative storage
type like ’mysql’. Supported
types are: internal, mysql. By
default this is set to ’internal’.

maximum-queue-length number of messages

Set maximum size of incoming
message queue. After number of
messages has hit this value,
Kannel began to discard them.
Value 0 means giving strict
priority to outgoing messages.
-1, default, means that the queue
of infinite length is accepted.
(This works with any normal
input, use this variable only
when Kannel message queues
grow very long).

A sample more complex ’core’ group could be something like this:

group = core
admin-port = 13000
admin-password = f00bar
status-password = sTat
admin-deny-ip = "*.*.*.*"
admin-allow-ip = "127.0.0.1;200.100.0.*"
smsbox-port = 13003
wapbox-port = 13004
box-deny-ip = "*.*.*.*"
box-allow-ip = "127.0.0.1;200.100.0.*"
wdp-interface-name = "*"
log-file = "kannel.log"
log-level = 1
access-log = "kannel.access"
unified-prefix = "+358,00358,0;+,00"
white-list = "http://localhost/whitelist.txt"

20

Chapter 3. Using the gateway

Running Kannel
To start the gateway, you need to start each box you need. You always need the bearer box, and
depending on whether you want WAP and SMS gateways you need to start the WAP and SMS boxes. If
you want, you can run several of them, but we’ll explain the simple case of only running one each.

Starting the gateway
After you have compiled Kannel and edited configuration file for your taste, you can either run Kannel
from command line or use supplied start-stop-daemon and run_kannel_box programs to use it as
a daemon service (more documentation about that later).

If you cannot or do not know how to set up daemon systems or just want to test Kannel, you probably
want to start it from command line. This means that you probably want to have one terminal window for
each box you want to start (xterm or screen will do fine). To start the bearerbox, give the following
command:

./bearerbox -v 1 [conffile]

The -v 1 sets the logging level to INFO. This way, you won’t see a large amount of debugging output
(the default is DEBUG). Full explanation of Kannel command line arguments is below.

[conffile] is the name of the configuration file you are using with Kannel. The basic distribution packet
comes with two sample configuration files, smskannel.conf and wapkannel.conf (in gw

subdirectory), of which the first one is for testing out SMS Kannel and the second one for setting up a
WAP Kannel. Feel free to edit those configuration files to set up your own specialized system.

After the bearer box, you can start the WAP box:

./wapbox -v 1 [conffile]

or the SMS box:

./smsbox -v 1 [conffile]

or both, of course. The order does not matter, except that you need to start the bearer box before the other
boxes. Without the bearer box, the other boxes won’t even start.

Command line options
Bearerbox, smsbox and wapbox each accept certain command line options and arguments when they are
launched. These arguments are:

Table 3-2. Kannel Command Line Options

-v <level>

Set verbosity level for stdout (screen) logging.
Default is 0, which means ’debug’. 1 is ’info, 2
’warning’, 3 ’error’ and 4 ’panic’

21

Chapter 3. Using the gateway

--verbosity <level>

-D <places>

Set debug-places for ’debug’ level output.

--debug <places>

-F <file-name>

Log to file named file-name, too. Does not overrun
or affect any logfile defined in configuration file.

--logfile <file-name>

-V <level>

Set verbosity level for that extra logfile (default 0,
which means ’debug’). Does not affect verbosity
level of the logfile defined in configuration file, not
verbosity level of the stdout output.

--fileverbosity <level>

-S

Start the system initially at SUSPENDED state
(see below, bearerbox only)

--suspended

-I

Start the system initially at ISOLATED state (see
below, bearerbox only)

--isolated

-H

Only try to open HTTP sendsms interface; if it
fails, only warn about that, do not exit. (smsbox
only)--tryhttp

Kannel statuses
In Kannel, there are four states for the program (which currently directly only apply to bearerbox):

a. Running. The gateway accepts, proceeds and relies messages normally. This is the default state for
the bearerbox.

b. Suspended. The gateway does not accept any new messages from SMS centers nor from UDP ports.
Neither does it accept new sms and wapbox connections nor sends any messages already in the
system onward.

c. Isolated. In this state, the gateway does not accept any messages from external message providers,
which means SMS Centers and UDP ports. It still processes any messages in the system and can
accept new messages from sendsms interface in smsbox.

d. Full. Gateway does not accept any messages from SMS centers, because maximum-queue-length
is achieved.

e. Shutdown. When the gateway is brought down, it does not accept any new messages from SMS
centers and UDP ports, but processes all systems already in the system. As soon as any queues are
emptied, the system exits

22

Chapter 3. Using the gateway

The state can be changed via HTTP administration interface (see below), and shutdown can also be
initiated via TERM or INT signal from terminal. In addition, the bearerbox can be started already in
suspended or isolated state with -S or -I command line option, see above.

HTTP administration
Kannel can be controlled via an HTTP administration interface. All commands are done as normal HTTP
queries, so they can be easily done from command line like this:

lynx -dump "http://localhost:12345/shutdown?password=bar"

...in which the ’12345’ is the configured admin-port in Kannel configuration file (see above). For most
commands, admin-password is required as a argument as shown above. In addition, HTTP administration
can be denied from certain IP addresses, as explained in configuration chapter.

Note that you can use these commands with WAP terminal, too, but if you use it through the same
Kannel, replies to various suspend commands never arrive nor can you restart it via WAP anymore.

Table 3-3. Kannel HTTP Administration Commands

status or status.txt

Get the current status of the gateway in a text
version. Tells the current state (see above) and
total number of messages relied and queueing in
the system right now. Also lists the total number of
smsbox and wapbox connections. No password
required, unless status-password set, in which
case either that or main admin password must be
supplied.

status.html HTML version of status

status.xml XML version of status

status.wml WML version of status

store-status or store-status.txt

Get the current content of the store queue of the
gateway in a text version. No password required,
unless status-password set, in which case
either that or main admin password must be
supplied.

store-status.html HTML version of store-status

store-status.xml XML version of store-status

suspend

Set Kannel state as ’suspended’ (see above).
Password required.

isolate

Set Kannel state as ’isolated’ (see above).
Password required.

resume

Set Kannel state as ’running’ if it is suspended or
isolated. Password required.

23

Chapter 3. Using the gateway

shutdown

Bring down the gateway, by setting state to
’shutdown’. After a shutdown is initiated, there is
no other chance to resume normal operation.
However, ’status’ command still works. Password
required. If shutdown is sent for a second time, the
gateway is forced down, even if it has still
messages in queue.

flush-dlr

If Kannel state is ’suspended’ this will flush all
queued DLR messages in the current storage
space. Password required.

start-smsc

Re-start a single SMSC link. Password required.
Additionally the smsc parameter must be given to
identify which smsc-id should be re-started.

stop-smsc

Shutdown a single SMSC link. Password
required. Additionally the smsc parameter must be
given (see above).

24

Chapter 4. Setting up a WAP gateway
This chapter tells you how to set Kannel up as a WAP gateway.

WAP gateway configuration
To set up a WAP Kannel, you have to edit the ’core’ group in the configuration file, and define the
’wapbox’ group.

You must set following variables for the ’core’ group: wapbox-port and wdp-interface-name. See
previous chapter about details of these variables.

With standard distribution, a sample configuration file wapkannel.conf is supplied. You may want to
take a look at that when setting up a WAP Kannel.

Wapbox configuration
If you have set wapbox-port variable in the ’core’ configuration group, you MUST supply a ’wapbox’
group.

The simplest working ’wapbox’ group looks like this:

group = wapbox
bearerbox-host = localhost

There is, however, multiple optional variables for the ’wapbox’ group.

Table 4-1. Wapbox Group Variables

Variable Value Description
group (m) wapbox This is mandatory variable

bearerbox-host (m) hostname

The machine in which the
bearerbox is.

timer-freq value-in-seconds

The frequency of how often
timers are checked out. Default is
1

25

Chapter 4. Setting up a WAP gateway

Variable Value Description

map-url URL-pair

The pair is separated with space.
Adds a single mapping for the
left side URL to the given
destination. If you append an
asterisk ‘*’ to the left side URL,
its prefix Is matched against the
incoming URL. Whenever the
prefix matches, the URL will be
replaced completely by the right
side. In addition, if if you append
an asterisk to the right side URL,
the part of the incoming URL
coming after the prefix, will be
appended to the right side URL.
Thus, for a line: map-url =
"http://source/*
http://destination/*" and an
incoming URL of
"http://source/some/path", the
result will be
"http://destination/some/path"

map-url-max number

If you need more than one
mapping, set this to the highest
number mapping you need. The
default gives you 10 mappings,
numbered from 0 to 9. Default: 9

map-url-0 URL-pair

Adds a mapping for the left side
URL to the given destination
URL. Repeat these lines, with 0
replaced by a number up to
map-url-max, if you need several
mappings.

device-home URL

Adds a mapping for the URL
DEVICE:home (as sent by
Phone.com browsers) to the
given destination URL. There is
no default mapping. NOTE: the
mapping is added with both
asterisks, as described above for
the "map-url" setting. Thus, the
above example line is equivalent
to writing map-url =
"DEVICE:home*
http://some.where/*"

26

Chapter 4. Setting up a WAP gateway

Variable Value Description

log-file filename
As with bearerbox ’core’ group.

log-level number 0..5

syslog-level number

Messages of this log level or
higher will also be sent to syslog,
the UNIX system log daemon.
The wapbox logs under the
’daemon’ category. The default is
not to use syslog, and you can set
that explicitly by setting
syslog-level to ’none’.

force-sar bool

If set wapbox will force to
process WTP-SAR connections
even while Kannel does not
support this feature now. Some
real phones seem to break
connection if fallback to non
SAR communication is being
tried by the gateway.

smart-errorsr bool

If set wapbox will return a valid
WML deck describing the eror
that occured while processing an
WSP request. This may be used
to have a smarter gateway and let
the user know what happend
actually.

Running WAP gateway
WAP Gateway is ran as explained in previous chapter.

Checking whether the WAP gateway is alive
You can check whether the WAP gateway (both the bearerbox and the wapbox) is alive by fetching the
URL kannel:alive.

27

Chapter 5. Setting up a SMS Gateway
This chapter is a more detailed guide on how to set up Kannel as an SMS gateway.

Required components
To set up an SMS gateway, you need, in addition to a machine running Kannel, access to (an operator’s)
SMS center, or possibly to multiple ones. The list of supported SMS centers and their configuration
variables is below.

If you do not have such access, you can still use Kannel as an SMS gateway via phone-as-SMSC feature,
by using a GSM phone as a virtual SMS center.

In addition to an SMS center (real or virtual), you need some server to handle any SMS requests
received. This server then has simple or more complex cgi-bins, programs or scripts to serve HTTP
requests generated by Kannel in response to received SMS messages. These services can also initiate
SMS push via Kannel smsbox HTTP sendsms interface.

SMS gateway configuration
To set up a SMS Kannel, you have to edit the ’core’ group in the configuration file, and define an
’smsbox’ group plus one or more ’sms-service’ groups, plus possibly one or more ’sendsms-user’ groups.

For the ’core’ group, you must set the following variable: smsbox-port. In addition, you may be
interested to set unified-prefix, white-list and/or black-list variables. See above for details
of these variables.

A sample configuration file smskannel.conf is supplied with the standard distribution. You may want
to take a look at that when setting up an SMS Kannel.

SMS centers
To set up the SMS center at Kannel, you have to add a ’smsc’ group into configuration file. This group
must include all the data needed to connect that SMS center. You may also want to define an ID
(identification) name for the SMSC, for logging and routing purposes.

SMSC ID is an abstract name for the connection. It can be anything you like, but you should avoid any
special characters. You do not need to use ID, but rely on SMS center IP address and other information.
However, if you use the ID, you do not need to re-define sms-services nor routing systems if the IP of the
SMS Center is changed, for example.

Common ’smsc’ group variables are defined in the following table. The first two (group and smsc) are
mandatory, but rest can be used if needed.

Table 5-1. SMSC Group Variables

Variable Value Description

28

Chapter 5. Setting up a SMS Gateway

Variable Value Description
group (m) smsc This is a mandatory variable

smsc (m) string

Identifies the SMS center type.
See below for a complete list.

smsc-id string

An optional name or id for the
smsc. Any string is acceptable,
but semicolon ’;’ may cause
problems, so avoid it and any
other special non-alphabet
characters. This ’id’ is written
into log files and can be used to
route SMS messages, and to
specify the used SMS-service.
Several SMSCs can have the
same id. The name is
case-insensitive. Note that if
SMS Center connection has an
assigned SMSC ID, it does NOT
automatically mean that
messages with identical SMSC
ID are routed to it; instead
configuration variables
denied-smsc-id,
allowed-smsc-id and
preferred-smsc-id is used
for that.

denied-smsc-id id-list

SMS messages with SMSC ID
equal to any of the IDs in this list
are never routed to this SMSC.
Multiple entries are separated
with semicolons (’;’)

allowed-smsc-id id-list

This list is opposite to previous:
only SMS messages with SMSC
ID in this list are ever routed to
this SMSC. Multiple entries are
separated with semicolons (’;’)

preferred-smsc-id id-list

SMS messages with SMSC ID
from this list are sent to this
SMSC instead than to SMSC
without that ID as preferred.
Multiple entries are separated
with semicolons (’;’)

29

Chapter 5. Setting up a SMS Gateway

Variable Value Description

allowed-prefix prefix-list

A list of phone number prefixes
which are accepted to be sent
through this SMSC. Multiple
entries are separated with
semicolon (’;’). For example,
"040;050" prevents sending of
any SMS message with prefix of
040 or 050 through this SMSC.
If denied-prefix is unset, only
this numbers are allowed. If set,
number are allowed if present in
allowed or not in denied list.

denied-prefix prefix-list

A list of phone number prefixes
which are NOT accepted to be
sent through this SMSC.

preferred-prefix prefix-list

As denied-prefix, but SMS
messages with receiver starting
with any of these prefixes is
preferably sent through this
SMSC. In a case of multiple
preferences, one is selected at
random (also if there are
preferences, SMSC is selected
randomly)

30

Chapter 5. Setting up a SMS Gateway

Variable Value Description

unified-prefix prefix-list

String to unify received phone
numbers, for SMSC routing and
to ensure that SMS centers can
handle them properly. This is
applied to ’sender’ number when
receiving SMS messages from
SMS Center and for ’receiver’
number when receiving messages
from SMSbox (either sendsms
message or reply to original
message). Format is that first
comes the unified prefix, then all
prefixes which are replaced by
the unified prefix, separated with
comma (’,’). For example, for
Finland an unified-prefix
"+358,00358,0;+,00" should do
the trick. If there are several
unified prefixes, separate their
rules with semicolon (’;’), like
"+35850,050;+35840,040". Note
that prefix routing is next to
useless now that there are SMSC
ID entries. To remove prefixes,
use like
"-,+35850,050;-,+35840,040".

alt-charset number

As some SMS Centers do not
follow the standards in character
coding, an alt-charset

character conversion is
presented. This directive acts
different for specific SMSC
tyles. Please see your SMSC
module type you want to use for
more details.

In addition to these common variables there are several variables used by certain SMS center
connections. Each currently supported SMS center type is explained below, with configuration group for
each. Note that many of them use variables with same name, but most also have some specific variables.

NOTE: SMS center configuration variables are a bit incomplete, and will be updated as soon as people
responsible for the protocols are contacted. Meanwhile, please have patience.

Nokia CIMD 1.37 and 2.0

Support for CIMD 1.37 is quite old and will be removed in a future version of Kannel. Please let us know
if you still need it.

31

Chapter 5. Setting up a SMS Gateway

group = smsc
smsc = cimd
host = 100.101.102.103
port = 600
smsc-username = foo
smsc-password = bar

The driver for CIMD2 is a "receiving SME" and expects the SMSC to be configured for that. It also
expects the SMSC to automatically send stored messages as soon as Kannel logs in (this is the normal
configuration).

group = smsc
smsc = cimd2
host = 100.101.102.103
port = 600
smsc-username = foo
smsc-password = bar
keepalive = 5
sender-prefix = "12345"

Variable Value Description

host (m) hostname

Machine that runs the SMSC.
As IP (100.100.100.100) or
hostname (their.machine.here)

port (m) port-number

Port number in the smsc host
machine

smsc-username (m) string

Username in the SMSC
machine/connection account

smsc-password (m) string

Password in the SMSC machine
needed to contact SMSC

keepalive number

SMSC connection will not be
left idle for longer than this many
minutes. The right value to use
depends on how eager the SMSC
is to close idle connections. 5
minutes is a good guess. If you
see many unexplained
reconnects, try lowering this
value. Set it to 0 to disable this
feature.

32

Chapter 5. Setting up a SMS Gateway

Variable Value Description

sender-prefix string

The number that the SMSC will
add in front of the sender number
of all messages sent from
Kannel. If Kannel is asked to
send a message, it will remove
this prefix from the sender
number so that the SMSC will
add it again. If the prefix was not
present, Kannel will log a
warning and will not send the
sender number. If
sender-prefix is not set, or is
set to "never", then Kannel will
not send the sender number to the
SMSC at all. If you want Kannel
to pass all sender numbers to the
SMSC unchanged, then just set
sender-prefix to the empty
string "".

CMG UCP/EMI 4.0

Kannel supports two types of connections with CMG SMS centers: direct TCP/IP connections (emi_ip
or emi2) and ISDN/modem (X.25 over D channel ISDN is called X.31) connection (emi). emi2 is a new
implementation of the EMI protocol that supports more features and should work more reliably than the
old one. It is the recommended one to use with TCP/IP connections. Sample configurations for these are:

group = smsc
smsc = emi2
#smsc = emi_ip to use the old implementation
host = 103.102.101.100
port = 600
smsc-username = foo
smsc-password = bar
keepalive = 55
our-port = 600 (optional bind in our end)
receive-port = 700 (the port in which the SMSC will contact)
idle-timeout = 30

group = smsc
smsc = emi
host = 100.102.100.102
phone = ...
device = /dev/tty0
smsc-username = foo
smsc-password = bar

33

Chapter 5. Setting up a SMS Gateway

Variable Value Description

host (c) hostname

Machine that runs SMSC. As IP
(100.100.100.100) or hostname
(their.machine.here)

port (c) port-number

Port number in the SMSC host
machine

alt-host hostname

Optional alternate Machine that
runs SMSC. As IP
(100.100.100.100) or hostname
(their.machine.here) (If undef but
exists alt-port, emi2 would try
host:alt-port)

alt-port port-number

Optional alternate Port number
in the SMSC host machine (If
undef but exists alt-host, emi2
would try alt-host:port)

smsc-username string

Username in the SMSC
machine/connection account

smsc-password string

Password in the SMSC machine
needed to contact SMSC

device (c) device-name

The device the modem is
connected to, like /dev/ttyS0.
ISDN connection only.

phone (c) string

Phone number to dial to, when
connecting over a modem to an
SMS center.

our-host hostname

Optional hostname in which to
bind the connection in our end.
TCP/IP connection only.

our-port port-number

Optional port number in which
to bind the connection in our
end. TCP/IP connection only.

receive-port port-number

Optional port number we listen
to and to which the SMS center
connects when it has messages to
send. Required if SMS center
needs one connection to send and
other to receive. TCP/IP
connection only.

appname string

Name of a "Send only" service.
Defaults to send. All outgoing
messages are routed through this
service.

34

Chapter 5. Setting up a SMS Gateway

Variable Value Description

connect-allow-ip IP-list

If set, only connections from
these IP addresses are accepted
to receive-port. TCP/IP
connection only.

idle-timeout number (seconds)

If this option is set to a value
larger than 0, then the connection
will be closed after the
configured amount of seconds
without activity. This option
interacts with the keepalive
configuration option. If
keepalive is smaller than
idle-timeout, then the
connection will never be idle and
those this option has no effect. If
keepalive is larger than
idle-timeout, than
keepalive reopens the
connection. This allows one to
poll for pending mobile
originated Short Messages at the
SMSC.

keepalive number (seconds)

A keepalive command will be
sent to the SMSC connection this
many seconds after the last
message. The right value to use
depends on how eager the SMSC
is to close idle connections. 50
seconds is a good guess. If you
see many unexplained
reconnects, try lowering this
value. Set it to 0 to disable this
feature. Requires username or
my-number to be set.

wait-ack number (seconds)

A message is resent if the
acknowledge from SMSC takes
more than this time. Defaults to
60 seconds.

35

Chapter 5. Setting up a SMS Gateway

Variable Value Description

wait-ack-expire number

Defines what kind of action
should be taken if the the ack of
a message expires. The options
for this value are: 0x00 -
disconnect/reconnect, (default)
0x01 - as is now, requeue, but
this could potentially result in the
msg arriving twice 0x02 - just
carry on waiting (given that the
wait-ack should never expire this
is the mst accurate)

flow-control number

This SMSC can support two
types of flow control. The first
type of flow control is a
stop-and-wait protocol, when
this parameter equals to ’1’.
During the handling of
commands, no other commands
shall be sent before the a
response is received. Any
command that is sent before the
reception of the response will be
discarded. The second type of
flow control is windowing,
when this parameter is unset or
equals ’0’. In this case a
maximum of n commands can be
sent before a response is
received.

window number (messages)

When using flow-control=0,
emi works in windowed flow
control mode. This variable
defines the size of the window
used to send messages. (optional,
defaults to the maximum - 100)

throughput number (messages/sec)

If SMSC requires that kannel
limits the number of messages
per second, use this variable.
(optional)

retry boolean

Assuming that kannel is well
configured and we had one
sucessful connection, if retry is
true, kannel will always retry the
connection even if some related
error ocur.

36

Chapter 5. Setting up a SMS Gateway

Variable Value Description

my-number number

If the large account number is
different from the short number,
assign it with this variable. For
example, if short number is
12345 and large account is
0100100100101234 (IP+port),
set my-number to 12345 and
every message received will have
that receiver.

alt-charset number

Defines which character
conversion kludge may be used
for this specific link. Currently
implemented alternative charsets
are defined in "alt_charsets.h"
and new ones can be added.

SMPP 3.4

This implements Short Message Peer to Peer (SMPP) Protocol 3.4 in a manner that should also be
compatible with 3.3. Sample configuration:

group = smsc
smsc = smpp
host = 123.123.123.123
port = 600
receive-port = 700
smsc-username = "STT"
smsc-password = foo
system-type = "VMA"
address-range = ""

Variable Value Description

host (m) hostname

Machine that runs SMSC. As IP
(100.100.100.100) or hostname
(their.machine.here)

port (m) port-number

The port number for the
TRANSMITTER connection to
the SMSC. May be the same as
receive-port. Use value 0 to
disable this I/O thread.

37

Chapter 5. Setting up a SMS Gateway

Variable Value Description

transceiver-mode bool

Attempt to use a
TRANSCEIVER mode
connection to the SM-SC. It uses
the standard transmit ’port’, there
is no need to set ’receive-port’.
This is a SMPP 3.4 only feature
and will not work on an earlier
SM-SC. This will try a
bind_transceiver only and will
not attempt to fall back to doing
transmit and receive on the same
connection.

receive-port port-number

The port number for the
RECEIVER connection to the
SMSC. May be the same as port.
Use value 0 to disable this I/O
thread.

smsc-username (m) string

The ’username’ of the
Messaging Entity connecting to
the SM-SC. If the SM-SC
operator reports that the
"TELEPATH SYSTEM
MANAGER TERMINAL" view
"Control.Apps.View" value
"Name:" is
"SMPP_ZAPVMA_T" for the
transmitter and
"SMPP_ZAPVMA_R" for the
receiver the smsc-username value
is accordingly "SMPP_ZAP".
Note that this used to be called
system-id (the name in SMPP
documentation) and has been
changed to smsc-username to
make all Kannel SMS center
drivers use the same name.

smsc-password (m) string

The password matching the
"smsc-username" your
teleoperator provided you with.

system-type (m) string

Usually you can get away with
"VMA" which stands for Voice
Mail Activation.

38

Chapter 5. Setting up a SMS Gateway

Variable Value Description

interface-version number

Change the "interface version"
parameter sent from Kannel to a
value other then 0x34 (for SMPP
v3.4). the value entered here
should be the hexadecimal
representation of the interface
version parameter. for example,
the default (if not set) is "34"
which stands for 0x34. for SMPP
v3.3 set to "33".

address-range (m) string

According to the SMPP 3.4 spec
this is supposed to affect which
MS’s can send messages to this
account. Doesn’t seem to work,
though.

our-host string

Specicy the outgoing IP address
for connections from a
multi-homed machine. If this is
not defined the default device of
the machine will be used.

my-number number

Optional smsc short number.
Should be set if smsc sends a
different one.

enquire-link-interval number

Optional the time lapse allowed
between operations after which
an SMPP entity should
interrogate whether it’s peer still
has an active session. The default
is 30 seconds.

max-pending-submits number

Optional the maximum number
of outstanding (i.e.
acknowledged) SMPP operations
between an ESME and SMSC.
This number is not specified
explicity in the SMPP Protocol
Specification and will be
goverened by the SMPP
implementation on the SMSC.
As a guideline it is recommended
that no more than 10 (default)
SMPP messages are outstanding
at any time.

39

Chapter 5. Setting up a SMS Gateway

Variable Value Description

reconnect-delay number

Optional the time between
attemps to connect an ESME to
an SMSC having failed to
connect initating or during an
SMPP session. The default is 10
seconds.

source-addr-ton number

Optional, source address TON
setting for the link. (Defaults to
0).

source-addr-npi number

Optional, source address NPI
setting for the link. (Defaults to
1).

source-addr-autodetect boolean

Optional, if defined tries to scan
the source address and set TON
and NPI settings accordingly. If
you don’t want to autodetect the
source address, turn this off, by
setting it to no. (Defaults to yes).

dest-addr-ton number

Optional, destination address
TON setting for the link.
(Defaults to 0).

dest-addr-npi number

Optional, destination address
NPI setting for the link. (Defaults
to 1).

40

Chapter 5. Setting up a SMS Gateway

Variable Value Description

msg-id-type number

Optional, specifies which
number base the SMSC is using
for the message ID numbers in
the corresponding
submit_sm_resp and
deliver_sm PDUs. This is
required to make delivery reports
(DLR) work on SMSC that
behave differently. The number
is a combined set of bit 1 and bit
2 that indicate as follows: bit 1:
type for submit_sm_resp, bit
2: type for deliver_sm. If the
bit is set then the value is in hex
otherwise in decimal number
base. Which means the following
combinations are possible and
valid: 0x00 deliver_sm

decimal, submit_sm_resp
decimal; 0x01 deliver_sm

decimal, submit_sm_resp hex;
0x02 deliver_sm hex,
submit_sm_resp decimal;
0x03 deliver_sm hex,
submit_sm_resp hex. In
accordance to the SMPP v3.4
specs the default will be a C
string literal if no of the above
values is explicitly indicated
using the config directive.

alt-charset string

Defines which character
encoding is used for this specific
smsc link. Uses iconv()
routines to convert from and to
that specific character set
encoding. See your local
iconv_open(3) manual page for
the supported character
encodings and the type strings
that should be presented for this
directive.

Sema Group SMS2000 OIS 4.0 and 5.0

The 4.0 implementation is over Radio PAD (X.28). Following configuration variables are needed, and if

41

Chapter 5. Setting up a SMS Gateway

you find out the more exact meaning, please send a report.

The 5.0 implementation uses X.25 access gateway.

group = smsc
smsc = sema
device = /dev/tty0
smsc_nua = (X121 smsc address)
home_nua = (x121 radio pad address)
wait_report = 0/1 (0 means false, 1 means true)

Variable Value Description
device (m) device ex: /dev/tty0

smsc_nua (m) X121 smsc address

The address of an SMSC for
SEMA SMS2000 protocols using
an X.28 connection.

home_nua (m) X121 radio pad address

The address of a radio PAD
implementing Sema SMS2000
using X.28 connection.

wait_report 0 (false)/1 (true)

Report indicator used by the
Sema SMS2000 protocol.
Optional.

group = smsc
smsc = ois
host = 103.102.101.100
port = 10000
receive-port = 10000
ois-debug-level = 0

Variable Value Description
host (m) ip SMSC Host name or IP
port (m) port number SMSC Port number

receive-port (m) port number

The port in which the SMSC
will contact

ois-debug-level number 0 to 8

extra debug, optional, see
smsc_ois.c

SM/ASI (for CriticalPath InVoke SMS Center 4.x)

This implements Short Message/Advanced Service Interface (SM/ASI) Protocol for the use of
connecting to a CriticalPath InVoke SMS Center. Sample configuration:

group = smsc
smsc = smasi
host = 10.11.12.13
port = 23456

42

Chapter 5. Setting up a SMS Gateway

smsc-username = foo
smsc-password = foo

Variable Value Description

host (m) hostname

Machine that runs SMSC. As IP
(10.11.12.13) or hostname
(host.foobar.com)

port (m) port-number

The port number for the
connection to the SMSC.

smsc-username (m) string

The ’username’ of the
Messaging Entity connecting to
the SMSC.

smsc-password (m) string

The password matching the
"smsc-username" your
teleoperator provided you with.

reconnect-delay number

Optional, the time between
attemps to connect to an SMSC
having failed to connect initating
or during an session. The default
is 10 seconds.

source-addr-ton number

Optional, source address TON
setting for the link. (Defaults to
1).

source-addr-npi number

Optional, source address NPI
setting for the link. (Defaults to
1).

dest-addr-ton number

Optional, destination address
TON setting for the link.
(Defaults to 1).

dest-addr-npi number

Optional, destination address
NPI setting for the link. (Defaults
to 1).

priority number

Optional, sets the default
priority of messages transmitted
over this smsc link. (Defaults to
0, which is the highest priority)

GSM modem

Kannel can use a GSM modem as an SMS center.

group = smsc
smsc = at
modemtype = wavecom
device = /dev/ttyS0

43

Chapter 5. Setting up a SMS Gateway

pin = 2345

Variable Value Description

modemtype string

Modems from different
manufacturers have slightly
different behaviour. We need to
know what type of modem is
used.

device (m) device-name

The device the modem is
connected to, like /dev/ttyS0.

pin string

This is the PIN number of the
SIM card in the GSM modem.
You can specify this option if
your SIM has never been used
before and needs to have the PIN
number entered. The PIN is
usually a four digit number.

validityperiod integer

How long the message will be
valid, i.e., how long the SMS
center (the real one, not the
phone acting as one for Kannel)
will try to send the message to
the recipient. Encoded as per the
GSM 03.40 standard, section
9.2.3.12. Default is 167, meaning
24 hours.

alt-dcs boolean

When encoding DCS field
internally, there are two formats
with similar functionality. The
0x0X (alt-dcs = false or
non-present) or the 0xFX (alt-dcs
= true). If you have a buggy
modem (like Siemens M20) that
don’t like to send binary
messages, try setting alt-dcs to
true.

Modem Type Modems
wavecom Wavecom
premicell Nokia Premicell

siemens

Siemens M20 (this modem have
some bugs)

siemens-tc35 Siemens TC35
falcom Falcom

44

Chapter 5. Setting up a SMS Gateway

Modem Type Modems

nokiaphone

Nokia 6210, 7110, 8210 (tested).
Probably other Nokia phones
too.

ericsson Ericsson

GSM modem 2

This new driver is replacing the old GSM Modem driver from Kannel. It allows a GSM Modem or Phone
to be connected to Kannel and work as a virtual SMSC

group = smsc
smsc = at2
modemtype = auto
device = /dev/ttyS0
speed = 9600
pin = 2345

Variable Value Description

modemtype string

Modems from different
manufacturers have slightly
different behaviour. We need to
know what type of modem is
used. Use "auto" or omit
parameter to have kannel detect
the modem type automatically.
(some types should not be
autodetected like the Nokia
Premicell).

device (m) device-name

The device the modem is
connected to, like /dev/ttyS0.

speed serial speed in bps

The speed in bits per second.
Default value 0 means to try to
use speed from modem
definition, or if it fails, try to
autodetect.

pin string

This is the PIN number of the
SIM card in the GSM modem.
You can specify this option if
your SIM has never been used
before and needs to have the PIN
number entered. The PIN is
usually a four digit number.

45

Chapter 5. Setting up a SMS Gateway

Variable Value Description

validityperiod integer

How long the message will be
valid, i.e., how long the SMS
center (the real one, not the
phone acting as one for Kannel)
will try to send the message to
the recipient. Encoded as per the
GSM 03.40 standard, section
9.2.3.12. Default is 167, meaning
24 hours.

retry boolean

Assuming that kannel is well
configured and we had one
sucessful connection, if retry is
true, kannel will always retry the
connection even if some related
error ocur.

keepalive seconds

Kannel would "ping" the modem
for this many seconds. If the
probe fails, try to reconnect to it.

my-number number Optional phone number.
sms-center number SMS Center to send messages.

sim-buffering boolean

Whether to enable the so-called
"SIM buffering behaviour" of the
GSM module. if assigned a true
value, the module will query the
message storage memory of the
modem and will process and
delete any messages found there.
this does not alter normal
behaviour, but only add the
capability of reading messages
that were stored in the memory
for some reason. The type of
memory to use can be selected
using the ’message-storage’
parameter of the modem
configuration. Polling the
memory is done at the same
interval as keepalive (if set) or 60
seconds (if not set). NOTE: This
behaviour is known to cause
minor or major hicups for a few
buggy modems. Modems known
to work with this setting are
Wavecom WM02/M1200 and the
Siemens M20.

46

Chapter 5. Setting up a SMS Gateway

Modem definitions are now multiple groups present in kannel.conf, either directly or, for example, by
including the example modems.conf. (See Inclusion of configuration files)

Variable Value Description
group modems This is a mandatory variable

id string

This is the the id that should be
used in modemtype variable
from AT2

name string

The name of this modem
configuration. Used in logs

detect-string string

String to use when trying to
detect the modem. See
detect-string2

detect-string2 string

Second string to use to detect the
modem. For example, if the
modem replies with "SIEMENS
MODEM M20",
detect-string could be
"SIEMENS" and
detect-strign2 "M20"

init-string string

Optional initialization string.
Defaults to
"AT+CNMI=1,2,0,1,0"

speed number

Serial port hint speed to use.
Optional. Defaults to smsc group
speed or autodetect

enable-hwhs string

Optional AT command to enable
hardware handshake. Defaults to
"AT+IFC=2,2"

need-sleep boolean

Optional. Defaults to false.
Some modems needs to sleep
after opening the serial port and
before first command

no-pin boolean

Optional. Defaults to false. If the
modem doesn’t support the PIN
command, enable this

no-smsc boolean

Optional. Defaults to false. If the
modem doesn’t support setting
the SMSC directly on the pdu,
enable this. (Default is to include
a "00" at the beginning of the
PDU to say it’s the default smsc,
and remove the "00" when
receiving)

47

Chapter 5. Setting up a SMS Gateway

Variable Value Description

sendline-sleep number (miliseconds)

Optional, defaults to 100
miliseconds. The sleep time after
sending a AT command.

keepalive-cmd string

Optional, defaults to "AT". If
keepalive is activated in AT2
group, this is the command to be
sent. If your modem supports it,
for example, use
"AT+CBC;+CSQ", and see in
logs the reply "+CBC: 0,64"
(0=On batery, 64% full) and
"+CSQ: 14,99" (0-31, 0-7: signal
strenght and channel bit error
rate; 99 for unknown). See 3GPP
27007.

message-storage string

Message storage memory type
to enable for "SIM buffering".
Possible values are: "SM" - SIM
card memory or "ME" - Mobile
equipment memory (may not be
suppoerted by your modem).
check your modem’s manual for
more types. By default, if the
option is not set, no message
storage command will be sent to
the modem and the modem’s
default message storage will be
used (usually "SM").

enable-mms boolean

Optional, defaults to false. If
enabled, kannel would send an
AT+CMMS=2 if it have more
than one message on queue and
hopefully will be quickier
sending the messages.

A note about delivery reports and GSM modems: while it is possible (and supported) to receive delivery
reports on GSM modems, it may not work for you. if you encounter problems, check that your modem’s
init string (if not the default) is set to correctly allow the modem to send delivery reports using unsolicted
notification (check your modem’s manual). If the init-string is not set as si, some modems will store
delivery reports to SIM memory, to get at which you will need to enable sim-buffering. finally your GSM
network provider may not support delivery reports to mobile units.

Fake SMSC

Fake SMSC is a simple protocol to test out Kannel. It is not a real SMS center, and cannot be used to
send or receive SMS messages from real phones. So, it is ONLY used for testing purposes.

48

Chapter 5. Setting up a SMS Gateway

group = smsc
smsc = fake
port = 10000
connect-allow-ip = 127.0.0.1

Variable Value Description

host (m) hostname

Machine that runs the SMSC.
As IP (100.100.100.100) or
hostname (their.machine.here)

port (m) port-number

Port number in smsc host
machine

connect-allow-ip IP-list

If set, only connections from
these IP addresses are accepted.

HTTP-based relay and content gateways

This special "SMSC" is used for HTTP based connections with other gateways and various other relay
services, when direct SMSC is not available.

group = smsc
smsc = http
system-type = kannel
smsc-username = nork
smsc-password = z0rK
port = 13015
send-url = "http://localhost:20022"

Variable Value Description

system-type (m) string

Type of HTTP connection.
’kannel’ is only system currently
supported.

send-url (m) url

Location to send MT messages.
This URL is expanded by used
system, if need to.

no-sender boolean

Do not add variable sender to
the send-url.

no-coding boolean

Do not add variable coding to
the send-url.

no-sep boolean

Represent udh and text as a
numeric string containing the
hexdump. For instance,
text=%2b123 is represented as
text=2b313233.

49

Chapter 5. Setting up a SMS Gateway

Variable Value Description

port (m) port-number

Port number in which Kannel
listens to (MO) messages from
other gateway

connect-allow-ip IP-list

IPs allowed to use this interface.
If not set, "127.0.0.1" (localhost)
is the only host allowed to
connect.

smsc-username string

Username associated to
connection, if needed. ’kannel’
requires this, and it is the same as
send-sms username at other end.

smsc-password string

Password for username, if
needed.

Using multiple SMS centers

If you have several SMS center connections (multiple operators or a number of GSM modems) you need
to configure one smsc group per SMS center (or GSM modem). When doing this, you might want to use
routing systems to rout messages to specific centers - for example, you have 2 operator SMS centers, and
the other is much faster and cheaper to use.

To set up routing systems, first give an unique ID for each SMS center - or if you want to treat multiple
ones completely identical, give them identical ID. Then use preferred-smsc-id and
denied-smsc-id to set up the routing to your taste. See also SMS PUSH settings (’sendsms-user’
groups), below.

Feature checklist

Not all of Kannel’s SMSC drivers support the same set of features. This is because they were written at
different times, and new features are often only added to drivers that the feature author can test.

The table in this section is an attempt to show exactly what features to expect from a driver, and to help
identify areas where drivers need to be updated. Currently most of the entries are marked as "not tested"
because the table is still new.

Table 5-2. SMSC driver features

Featurecimd
cimd2

emi
emi_ip

emi2
smpp

sema ois at at2 http fake

Can use DLR

n y? n n y y? n n n n n n

Can set DCSa

? ? ? ? y ? ? ? ? y ? ?

Can set Alt-DCS

50

Chapter 5. Setting up a SMS Gateway

Featurecimd
cimd2

emi
emi_ip

emi2
smpp

sema ois at at2 http fake

n n n n y n n n n y n n

Can set Validity

? ? ? ? y ? ? ? ? y ? ?

Can set Deferred

? ? ? ? y ? ? ? ? n ? ?

Can set PID

n n n n y y n n n y n n

Can set RPI

n n n n y y n n n n n n

Can send Unicode

? ? ? ? y ? ? ? ? y ? ?

Can send 8 bits

? ? ? ? y ? ? ? ? y ? ?

Correctly send GSM alphabet

? ? ? ? y ? ? ? ? ? ? ?

Notes:
a. To use mclass, mwi, coding and compress fields.

Table 5-3. SMSC driver internal features

Featurecimd
cimd2

emi
emi_ip

emi2
smpp

sema ois at2 at http fake

Can keep idle connections alive

n y? n n y y? ? ? y ? ? ?

Can send octet data without UDH

n y? y? y? y n n y? y? ? n y?a

Can send octet data with UDH

N y? y? y? y y? n ? y? ? y? y?a

Can send text messages with UDH

n y? y? y? y n n ? y? ? n y?

Can receive octet data without UDH

n y? n n y n y?b y? y? ? n n

Can receive unicode messages

n n n n n n n n n ? n n

Can receive octet data with UDH

n y? n n y n n N y? ? y? y?

Can receive text messages with UDH

n y? n n y n n N y? ? n n

51

Chapter 5. Setting up a SMS Gateway

Featurecimd
cimd2

emi
emi_ip

emi2
smpp

sema ois at2 at http fake

Correctly encodes @ when sending

y? y? ? ? y y? ? y? y? ? y? y?

Correctly encodes ä when sending

y? y? ? ? y y? ? y? y? ? y? y?

Correctly encodes { when sending

n y? ? ? y y? ? n Nc ? y? y?

Can receive @ in text messages

y? y? ? ? y y? ? y? y? ? y? y?

Can receive ä in text messages

y? y? ? ? y y? ? y? y? ? y? y?

Can receive { in text messages

n y? ? ? y y? ? n y? ? y? y?

Can shut down idle connections

n n n n y n ? ? ? ? ? ?

Notes:
a. Does not mark it as octet data
b. However, it looks like the sema driver can’t receive text data.
c. Miscalculates message length

Symbol Meaning
? not yet investigated
y driver has this feature, and it has been tested
y? driver probably has this feature, has not been

tested
n driver does not have this feature
N driver claims to have this feature but it doesn’t

work
- feature is not applicable for this driver

Smsbox configuration
You must define an ’smsbox’ group into the configuration file to be able to use SMS Kannel. The
simplest working ’smsbox’ group looks like this:

group = smsbox
bearerbox-host = localhost

...but you would most probably want to define ’sendsms-port’ to be able to use SMS push.

52

Chapter 5. Setting up a SMS Gateway

SMSBox inherits from core the following fields:

smsbox-port
http-proxy-port
http-proxy-host
http-proxy-username
http-proxy-password
http-proxy-exceptions
ssl-certkey-file

Table 5-4. Smsbox Group Variables

Variable Value Description
group (m) smsbox This is a mandatory variable

bearerbox-host (m) hostname

The machine in which the
bearerbox is.

smsbox-id (o) string

Optional smsbox instance
identifier. This is used to identify
an smsbox connected to an
bearerbox for the purpose of
having smsbox specific routing
inside bearerbox. So if you you
own boxes that do pass messages
into bearerbox for delivery you
may want that answers to those
are routed back to your specific
smsbox instance, i.e. SMPP or
EMI proxying boxes.

sendsms-port (c) port-number

The port in which any sendsms
HTTP requests are done. As with
other ports in Kannel, can be set
as anything desired.

sendsms-port-ssl (o) bool

If set to true, the sendsms HTTP
interface will use a SSL-enabled
HTTP server with the specified
ssl-server-cert-file and
ssl-server-key-file from the core
group. Defaults to "no".

sendsms-url (o) url

URL locating the sendsms
service. Defaults to
/cgi-bin/sendsms.

sendota-url (o) url

URL locating the sendota
service. Defaults to
/cgi-bin/sendota.

53

Chapter 5. Setting up a SMS Gateway

Variable Value Description

sendsms-chars string

Only these characters are
allowed in ’to’ field when
send-SMS service is requested
via HTTP. Naturally, you should
allow at least 0123456789. The
space character (’ ’) has special
meaning: it is used to separate
multiple phone numbers from
each other in multi-send. To
disable this feature, do not have
it as an accepted character. If this
variable is not set, the default set
"0123456789 +-" is used.

global-sender phone-number

If set, all sendsms originators are
set as these before proceeding.
Note that in a case of most SMS
centers you cannot set the sender
number, but it is automatically
set as the number of SMSC

log-file filename

As with the bearerbox ’core’
group. Access-log is used to
store information about MO and
send-sms requests. Can be
named same as the ’main’
access-log (in ’core’ group).

log-level number 0..5

access-log filename

white-list URL

Load a list of accepted
destinations of SMS messages. If
a destination of an SMS message
is not in this list, any message
received from the HTTP
interface is rejected. See notes of
phone number format from
numhash.h header file.

black-list URL

As white-list, but SMS messages
to these numbers are
automatically discarded

reply-couldnotfetch string

If set, replaces the SMS message
sent back to user when kannel
could not fetch content. Defaults
to Could not fetch

content, sorry..

54

Chapter 5. Setting up a SMS Gateway

Variable Value Description

reply-couldnotrepresent string

If set, replaces the SMS message
sent back when kannel could not
represent the result as a SMS
message. Defaults to Result

could not be represented

as an SMS message..

reply-requestfailed string

If set, replaces the SMS message
sent back when kannel could not
contact http service. Defaults to
Request Failed.

reply-emptymessage string

If set, replaces the SMS message
sent back when message is
empty. Set to "" to enable empty
messages. Defaults to <Empty

reply from service

provider>.

mo-recode boolean

If true, kannel will try to convert
UCS2 messages received to
ISO-8859-1. If it’s possible, the
message will have coding equal
to 7 bits and charset equal to
iso-8859-1.

http-request-retry integer

If set, specifies how many retries
should be performed for failing
HTTP requests of sms-services.
Defaults to 0, which means no
retries should be performed and
hence no HTTP request queueing
is done.

http-queue-delay integer

If set, specifies how many
seconds should pass within the
HTTP queueing thread for
retrying a failed HTTP request.
Defaults to 10 sec. and is only
obeyed if
http-request-retry is set to
a non-zero value.

A typical ’smsbox’ group could be something like this:

group = smsbox
bearerbox-host = localhost
sendsms-port = 13131
sendsms-chars = "0123456789 "
global-sender = 123456
access-log = "kannel.access"
log-file = "smsbox.log"

55

Chapter 5. Setting up a SMS Gateway

log-level = 0

Smsbox routing inside bearerbox
The communication link between bearerbox and smsbox has been designed for the purpose of
load-balancing via random assignment. Which means, bearerbox holds all smsc connections and passes
inbound message to one of the connected smsboxes. So you have a determined route for outbound
messages, but no determinated route for inbound messages.

The smsbox routing solves this for the inbound direction. In certain scenarios you want that bearerbox to
know to which smsbox instance it should pass messages. I.e. if you implement our own boxes that pass
messages to bearerbox and expect to receive messages defined on certain rules, like receiver number or
smsc-id. This is the case for EMI/UCP and SMPP proxys that can be written easly using smsbox routing
facility.

If you smppbox handles the SMPP specific communication to your EMSEs, and if an client send a
submit_sm PDU, smppbox would transform the message into Kannel message representation and inject
the message to bearerbox as if it would be an smsbox. As you want to assign your clients shortcuts for
certain networks or route any inbound traffic from a certain smsc link connected to bearerbox, you need
to seperate in the scope of bearerbox where the inbound message will be going to. An example may look
like this:

group = smsbox
...
smsbox-id = mysmsc
...

group = smsbox-route
smsbox-id = mysmsc
shortcuts = "1111;2222;3333"

which means and inbound message with receiver number 1111, 2222 or 3333 will be delivered to the
smsbox instance that has identified itself via the id "mysmsc" to bearerbox. Using this routing the
smsbox instance (which may be an EMI/UCP or SMPP proxy) is able to send a deliver_sm PDU

smsbox-route inherits from core the following fields:

Table 5-5. Smsbox-route Group Variables

Variable Value Description
group (m) smsbox-route This is a mandatory variable

smsbox-id (m) string

Defines for which smsbox
instance the routing rules do
apply.

56

Chapter 5. Setting up a SMS Gateway

Variable Value Description

smsc-ids word-list

If set, specifies from which
smsc-ids all inbound messages
should be routed to this smsbox
instance. List contains smsc-ids
seperated by semilon (";"). This
rule may be used to pull any
smsc specific message stream to
an smsbox instance.

shortcuts number-list

If set, specifies which receiver
numbers for inbound messages
should be routed to this smsbox
instance. List contains numbers
seperated by semilon (";"). This
rule may be used to pull receiver
number specific message streams
to an smsbox instance.

SMS-service configurations
Now that you have an SMS center connection to send and receive SMS messages you need to define
services for incoming messages. This is done via ’sms-service’ configuration groups.

These groups define SMS services in the smsbox, so they are only used by the smsbox. Each service is
recognized from the first word in an SMS message and by the number of arguments accepted by the
service configuration (unless catch-all configuration variable is used). By adding a username and
password in the URL in the following manner "http://luser:password@host.domain:port/path?query" we
can perform HTTP Basic authentication.

The simplest service group looks like this:

group = sms-service
keyword = www
get-url = "http://%S"

This service grabs any SMS with two words and ’www’ as the first word, and then does an HTTP request
to an URL which is taken from the rest of the message. Any result is sent back to the phone (or
requester), but is truncated to the 160 characters that will fit into an SMS message, naturally.

Service group default has a special meaning: if the incoming message is not routed to any other
service, default ’sms-service’ group is used. You should always define default service.

Service group black-list has a special meaning: if the incoming message is in service’s black-list, this
service is used to reply to user. If unset, message will be discarded.

Table 5-6. SMS-Service Group Variables

Variable Value Description
group (m) sms-service This is a mandatory variable

57

Chapter 5. Setting up a SMS Gateway

Variable Value Description

keyword (m) word

Services are identified by the
first word in the SMS Each ‘%s’
in the URL corresponds to one
word in the SMS message.
Words are separated with spaces.
A keyword is matched only if the
number of words in the SMS
message is the same as the
number of ‘%s’ fields in the
URL. This allows you to
configure the gateway to use
different URLs for the same
keyword depending on the
number of words the SMS
message contains.

aliases word-list

If the service has aliases, they
are listed as a list with each entry
separated with a semicolon (’;’)

name string

Optional name to identify the
service in logs. If unset,
keyword is used.

get-url (c) URL

Requested URL. The url can
include a list of parameters,
which are parsed before the url is
fetched. See below for these
parameters. Also works with
plain ’url’

post-url (c) URL

Requested URL. As above, but
request is done as POST, not
GET. Always matches the
keyword, regardless of pattern
matching. See notes on POST
otherwhere.

post-xml (c) URL

Requested URL. As above, but
request is done as XML POST.
Always matches the keyword,
regardless of pattern matching.
See notes on POST otherwhere
and XML Post

file (c) filename

File read from a local disc. Use
this variable only if no url is set.
All escape codes (parameters) in
url are supported in filename.
The last character of the file
(usually linefeed) is removed.

58

Chapter 5. Setting up a SMS Gateway

Variable Value Description

text (c) string

Predefined text answer. Only if
there is neither url nor file set.
Escape codes (parameters) are
usable here, too.

exec (c) string

Executes the given shell
command as the current UID of
the running smsbox user and
returns the output to stdout as
reply. Escape codes (parameters)
are usable here, too. BEWARE:
You may harm your system if
you use this sms-service type
without serious caution! Make
sure anyone who is allowed to
use these kind of services is
checked using white/black-list
mechanisms for security reasons.

accepted-smsc id-list

Accept ONLY SMS messages
arriving from SMSC with
matching ID. a Separate multiple
entries with ’;’. For example, if
accepted-smsc is "RL;SON",
accept messages which originate
from SMSC with ID set as ’RL’
or ’SON’

allowed-prefix prefix-list

A list of phone number prefixes
of the sender number which are
accepted to be received by this
service. b Multiple entries are
separated with semicolon (’;’).
For example, "91;93" selects this
service for these prefixes. If
denied-prefix is unset, only this
numbers are allowed. If denied is
set, number are allowed if
present in allowed or not in
denied list.

denied-prefix prefix-list

A list of phone number prefixes
of the sender number which are
NOT accepted to be sent through
this SMSC.

59

Chapter 5. Setting up a SMS Gateway

Variable Value Description

allowed-receiver-prefix prefix-list

A list of phone number prefixes
of the receiver number which are
accepted to be received by this
service. This may be used to
allow only inbound SMS to
certain shortcut numbers to be
allowed to this service.

denied-receiver-prefix prefix-list

A list of phone number prefixes
of the receiver number which are
NOT accepted to be sent through
this SMSC.

catch-all bool
Catch keyword regardless of

’%s’ parameters in pattern.

send-sender bool

Used only with POST. If set to
true, number of the handset is
set, otherwise not.

strip-keyword bool

Used only with POST. Remove
matched keyword from message
text before sending it onward.

faked-sender phone-number

This number is set as sender.
Most SMS centers ignore this,
and use their fixed number
instead. This option overrides all
other sender setting methods.

max-messages number

If the message to be sent is
longer than maximum length of
an SMS it will be split into
several parts. max-messages
lets you specify a maximum
number of individual SMS
messages that can be used. If
max-messages is set to 0, no
reply is sent, except for error
messages.

accept-x-kannel-headers bool

Request reply can include
special X-Kannel headers but
these are only accepted if this
variable is set to true. See
Extended headers.

60

Chapter 5. Setting up a SMS Gateway

Variable Value Description

assume-plain-text bool

If client does not set
Content-Type for reply, it is
normally
application/octet-stream which is
then handled as data in kannel.
This can be forced to be
plain/text to allow backward
compatibility, when data was not
expected.

concatenation bool

Long messages can be sent as
independent SMS messages with
concatenation = false or
as concatenated messages with
concatenation = true.
Concatenated messages are
reassembled into one long
message by the receiving device.

split-chars string

Allowed characters to split the
message into several messages.
So, with "#!" the message is split
from last ’#’ or ’!’, which is
included in the previous part.

split-suffix string

If the message is split into
several ones, this string is
appended to each message except
the last one.

omit-empty bool

Normally, Kannel sends a
warning to the user if there was
an empty reply from the service
provider. If omit-empty is set to
’true’, Kannel will send nothing
at all in such a case.

header string

If specified, this string is
automatically added to each
SMS sent with this service. If the
message is split, it is added to
each part.

footer string
As header, but not inserted into

head but appended to end.

prefix string

Stuff in answer that is cut away,
only things between prefix and
suffix is left. Not case sensitive.
Matches the first prefix and then
the first suffix. These are only
used for url type services, and
only if both are specified.

61

Chapter 5. Setting up a SMS Gateway

Variable Value Description
suffix string

white-list URL

Load a list of accepted senders
of SMS messages. If a sender of
an SMS message is not in this
list, any message received from
the SMSC is rejected, unless a
black-list service is defined.
See notes of phone number
format from numhash.h header
file.

black-list URL

As white-list, but SMS messages
from these numbers are
automatically discarded

Notes:
a. Even if this service is denied, kannel still searches for other service which accepts the message, or
default service.
b. Like in accepted-smsc, kannel still searches for other service which accepts the message. This way
there could be several services with the same keyword and different results.

Table 5-7. Parameters (Escape Codes)

%k the keyword in the SMS request (i.e., the first word
in the SMS message)

%s next word from the SMS message, starting with
the second one (i.e., the first word, the keyword, is
not included); problematic characters for URLs are
encoded (e.g., ’+’ becomes ’%2B’)

%S same as %s, but ’*’ is converted to ’~’ (useful
when user enters a URL) and URL encoding isn’t
done (all others do URL encode)

%r words not yet used by %s; e.g., if the message is
"FOO BAR FOOBAR BAZ", and the has been one
%s, %r will mean "FOOBAR BAZ"

%a all words of the SMS message, including the first
one, with spaces squeezed to one

%b the original SMS message, in a binary form

%t the time the message was sent, formatted as
"YYYY-MM-DD HH:MM", e.g., "1999-09-21
14:18"

%p the phone number of the sender of the SMS
message

62

Chapter 5. Setting up a SMS Gateway

%P the phone number of the receiver of the SMS
message

%q like %p, but a leading ‘00’ is replaced with ‘+’

%Q like %P, but a leading ‘00’ is replaced with ‘+’

%i the smsc-id of the connection that received the
message

%d the delivery report value

%A the delivery report SMSC reply, if any

%n the sendsms-user or sms-service name

%c message coding: 0 (default, 7 bits), 1 (7 bits), 2 (8
bits) or 3 (unicode)

%C message charset: for a "normal" message, it will be
"gsm" (coding=1), "binary" (coding=2) or
"UTF16-BE" (coding=3). If the message was
sucessfully recoded from unicode, it will be
"ISO-8859-1"

%u udh of incoming message

Some sample ’sms-service’ groups:

group = sms-service
keyword = nop
text = "You asked nothing and I did it!"
catch-all = true

group = sms-service
keyword = complex
get-url = "http://host/service?sender=%p&text=%r"
accept-x-kannel-headers = true
max-messages = 3
concatenation = true

group = sms-service
keyword = default
text = "No action specified"

How sms-service interprets the HTTP response
When an sms-service requests a document via HTTP, it will accept one of four types of content types:

text/plain Blanks are squeezed into one, rest is chopped to fit
an SMS message.

63

Chapter 5. Setting up a SMS Gateway

text/html Tags are removed, rest is chopped to fit an SMS
message.

text/vnd.wap.wml Processed like HTML.
text/xml Processed as a POST-XML. See XML Post

application/octet-stream The body will be transmitted as the SMS message,
as 8-bit data. This can be avoided by setting
assume-plain-text variable on for the
SMS-service.

Extended headers

Kannel uses and accepts several X-Kannel headers to be used with SMS-services.

Table 5-8. X-Kannel Headers

SMSPush equivalent X-Kannel Header
username X-Kannel-Username

password X-Kannel-Password

from X-Kannel-From

to X-Kannel-To

text request body

charset charset as in Content-Type: text/html;

charset=ISO-8859-1

udh X-Kannel-UDH

smsc X-Kannel-SMSC

flash X-Kannel-Flash (deprecated, see
X-Kannel-MClass

mclass X-Kannel-MClass

mwi X-Kannel-MWI

coding X-Kannel-Coding. If unset, defaults to 1 (7 bits)
if Content-Type is text/plain , text/html
or text/vnd.wap.wml. On
application/octet-stream, defaults to 8 bits
(2). All other Content-Type values are rejected.

validity X-Kannel-Validity

deferred X-Kannel-Deferred

dlrmask X-Kannel-DLR-Mask

dlrurl X-Kannel-DLR-Url

account X-Kannel-Account

pid X-Kannel-PID

alt-dcs X-Kannel-Alt-DCS

64

Chapter 5. Setting up a SMS Gateway

Kannel POST

Kannel can do POST if service is contains a post-url="...".

Table 5-9. X-Kannel Post Headers

Parameter (escape code)
equivalent

X-Kannel Header Notes

%p (from) X-Kannel-From Only sent if send-sender is
true

%P (to) X-Kannel-To

%t (time) X-Kannel-Time

%u (udh) X-Kannel-UDH in hex format:
06050415820000

%i (smsc) X-Kannel-SMSC

- (mclass) X-Kannel-MClass

- (pid) X-Kannel-PID

- (alt-dcs) X-Kannel-Alt-DCS

- (mwi) X-Kannel-MWI

%c (coding) X-Kannel-Coding 1=7 Bits, 2=8 Bits, 3=UCS2

- (compress) X-Kannel-Compress

- (validity) X-Kannel-Validity

- (deferred) X-Kannel-Deferred

%n (service name) X-Kannel-Service

%a or %r (text) request body kannel send all words (%a)
unless strip-keyword is true

%C (charset) present in Content-Type HTTP Example: Content-Type:
text/plain;

charset=ISO-8859-1

XML Post

Kannel can send and receive XML POST with the following format:

<?xml version="1.0"?>
<!DOCTYPE ...>
<message>
<submit>
<da><number>destination number (to)</number></da>
<oa><number>originating number (from)</number></oa>
<ud>user data (text)</text>
<udh>user data header (udh)</udh>
<dcs>
<mclass>mclass</mclass>
<coding>coding</coding>
<mwi>mwi</mwi>
<compress>compress</compress>

65

Chapter 5. Setting up a SMS Gateway

<alt-dcs>alt-dcs</alt-dcs>
</dcs>
<pid>pid</pid>
<statusrequest>
<dlr-mask>dlr-mask</dlr-mask>
<dlr-url>dlr-url</dlr-url>

</statusrequest>
<from>
<user>username</user>
<username>username</username>
<pass>password</pass>
<password>password</password>
<account>account</account>

</from>
<to>smsc-id</to>
<from>smsc-id</from>
<to>service-name</to>

</submit>
</message>

There could be several da entries for sendsms-user to enable multi-recipient messages. da doesn’t
make sence in sms-service.

ud

Note: Davi: I still have to test binary and unicode <ud> content

udh is the same format as X-Kannel-UDH. Example: <udh>06050415820000</udh>.

On kannel->application, from is the smsc-id that message arrives and to is the service name.

On application->kannel, from contains the credentials (user/username, pass/password and
account and to corresponds to the smsc-id to submit the message.

user and username are equivalent and only one of them should be used. (same for pass and
password.

When application POST in kannel, as in GET, only user, pass and da are required. Everything else is
optional. (oa could be needed too is there’s no default-sender or forced-sender.

Warning
This is experimental code. XML format could and should change to fully met
IETF’s sms-xml standard (yet in draft) and additional tags needed by kannel
should be pondered.

66

Chapter 5. Setting up a SMS Gateway

SendSMS-user configurations
To enable an SMS push, you must set sendsms-port into the ’smsbox’ group and define one or more
’sendsms-user’ groups. Each of these groups define one account, which can be used for the SMS push,
via HTTP interface (see below)

Table 5-10. SendSMS-User Group Variables

Variable Value Description
group (m) sendsms-user This is a mandatory variable

username (m) string Name for the user/account.

password (m) string
Password for the user (see

HTTP interface, below)

name string As in ’sms-service’ groups.

user-deny-ip IP-list

As other deny/allow IP lists, but
for this user (i.e. this user is not
allowed to do the SMS push
HTTP request from other IPs
than allowed ones). If not set,
there is no limitations.

user-allow-IP IP-list

forced-smsc string

Force SMSC ID as a ’string’
(linked to SMS routing, see
’smsc’ groups)

default-smsc string

If no SMSC ID is given with the
send-sms request (see below),
use this one. No idea to use with
forced-smsc.

default-sender phone-number

This number is set as sender if
not set by from get/post
parameter

faked-sender phone-number As in ’sms-service’ groups

max-messages number

concatenation bool

split-chars string

split-suffix string

omit-empty bool

header string

footer string

67

Chapter 5. Setting up a SMS Gateway

Variable Value Description

allowed-prefix prefix-list

A list of phone number prefixes
which are accepted to be sent
using this username. Multiple
entries are separated with
semicolon (’;’). For example,
"040;050" prevents sending of
any SMS message with prefix of
040 or 050 through this SMSC.
If denied-prefix is unset, only
this numbers are allowed. If set,
number are allowed if present in
allowed or not in denied list.

denied-prefix prefix-list

A list of phone number prefixes
which are NOT accepted to be
sent using this username.

white-list URL

Load a list of accepted
destinations of SMS messages. If
a destination of an SMS message
is not in this list, any message
received from the HTTP
interface is rejected. See notes of
phone number format from
numhash.h header file.

black-list URL

As white-list, but SMS messages
from these numbers are
automatically rejected.

dlr-url URL
URL to be fetched if a dlrmask

CGI parameter is present.

Some sample ’sendsms-user’ groups:

group = sendsms-user
username = simple
password = elpmis

group = sendsms-user
username = complex
password = 76ftY
user-deny-ip = "*.*.*.*"
user-allow-ip = "123.234.123.234"
max-messages = 3
concatenation = true
forced-smsc = SOL

The second one is very limited and only allows a user from IP "123.234.123.234". On the other hand, the
user can send a longer message, up to 3 SMSes long, which is sent as concatenated SMS.

68

Chapter 5. Setting up a SMS Gateway

External delivery report (DLR) storage
Delivery reports are supported by default internaly, which means all DLRs are stored in the memory of
the bearerbox process. This is problematic if bearerbox crashes or you take the process down in a
controlled way, but there are still DLRs open. Therefore you may use external DLR storage places, i.e. a
MySQL database.

Following are the supported DLR storage types and how to use them:

Internal DLR storage

This is the default way in handling DLRs and does not require any special configuration. In order to
configure bearerbox to use internal DLR storage use dlr-storage = internal in the core group.

MySQL DLR storage

To store DLR information into a MySQL database you may use the dlr-storage = mysql

configuration directive in the core group.

In addition to that you must have a dlr-db group defined that specifies the table field names that are
used to the DLR attributes and a mysql-connection group that defines the connection to the MySQL
server itself.

Here is the example configuration from doc/examples/dlr-mysql.conf:

group = mysql-connection
id = mydlr
host = localhost
mysql-username = foo
mysql-password = bar
database = dlr

group = dlr-db
id = mydlr
table = dlr
field-smsc = smsc
field-timestamp = ts
field-destination = destination
field-service = service
field-url = url
field-mask = mask
field-status = status
field-boxc-id = boxc

LibSDB DLR storage

To store DLR information into a LibSDB ressource (which is an abstraction of a real database) you may
use the dlr-storage = sdb configuration directive in the core group.

69

Chapter 5. Setting up a SMS Gateway

In addition to that you must have a dlr-db group defined that specifies the table field names that are
used to the DLR attributes and a sdb-connection group that defines the LibSDB ressource itself.

Here is the example configuration from doc/examples/dlr-sdb.conf using a MySQL ressource:

group = sdb-connection
id = mydlr
url = "mysql:host=localhost:db=dlr:uid=foo:pwd=bar"

group = dlr-db
id = mydlr
table = dlr
field-smsc = smsc
field-timestamp = ts
field-destination = destination
field-service = service
field-url = url
field-mask = mask
field-status = status
field-boxc-id = boxc

Beware that you have the DB support build in your LibSDB installation when trying to use a specific DB
type within the URL.

DLR database field configuration

For external database storage of DLR information in relational database management systems (RDMS)
you will have tospecify which table field are used to represend the stored data. This is done via the
dlr-db group as follows:

Table 5-11. DLR Database Field Configuration Group Variables

Variable Value Description
group dlr-db This is a mandatory variable

id (m) string

An id to identify which external
connection should be used for
DLR storage. Any string is
acceptable, but semicolon ’;’
may cause problems, so avoid it
and any other special
non-alphabet characters.

table (m) string

The name of the table that is
used to store the DLR
information.

field-smsc (m) string
The table field that is used for

the smsc data.

70

Chapter 5. Setting up a SMS Gateway

Variable Value Description

field-timestamp (m) string
The table field that is used for

the timestamp data.

field-destination (m) string
The table field that is used for

the destination number data.

field-service (m) string
The table field that is used for

the service username data.

field-url (m) string

The table field that is used for
the DLR URL which is triggered
when the DLR for this message
arrives from the SMSC.

field-mask (m) string

The table field that is used for
the DLR mask that has been set
for a message.

field-status (m) string

The table field that is used to
reflect the status of the DLR for a
specific message.

field-boxc-id (m) string

The table field that is used to
store the smsbox connection id
that has passed the message for
delivery. This is required in cases
you want to garantee that DLR
messages are routed back to the
same smsbox conn instance. This
is done via the smsbox routing. If
you don’t use smsbox routing
simply add this field to your
database table and keep it empty.

A sample ’dlr-db’ group:

group = dlr-db
id = dlr-db
table = dlr
field-smsc = smsc
field-timestamp = ts
field-destination = destination
field-service = service
field-url = url
field-mask = mask
field-status = status

Beware that all variables in this group are mandatory, so you have to specify all fields to enable
bearerbox to know how to store and retrieve the DLR information from the external storage spaces.

71

Chapter 5. Setting up a SMS Gateway

MySQL connection configuration
For several reasons external storage may be required to handle dynamical issues, i.e. DLRs, sms-service,
sendsms-user, ota-setting, ota-bookmark definitions and so on. To define a MySQL database connection
you simple need to specify a mysql-connection group as follows:

Table 5-12. MySQL Connection Group Variables

Variable Value Description
group mysql-connection This is a mandatory variable

id (m) string

An optional name or id to
identify this MySQL connection
for internal reference with other
MySQL related configuration
groups. Any string is acceptable,
but semicolon ’;’ may cause
problems, so avoid it and any
other special non-alphabet
characters.

host (m) hostname or IP

Hostname or IP of a server
running a MySQL database to
connect to.

mysql-username (m) username
User name for connecting to

MySQL database.

mysql-password (m) password
Password for connecting to

MySQL database.

database (m) string
Name of database in MySQL

database server to connect to.

A sample ’mysql-connection’ group:

group = mysql-connection
id = dlr-db
host = localhost
mysql-username = foo
mysql-password = bar
database = dlr

In case you use different MySQL connections for several storage issues, i.e. one for DLR and another
different one for sms-service you may use the include configuration statement to extract the MySQL
related configuration groups to a seperate mysql.conf file.

Over-The-Air configurations
To enable Over-The-Air configuration of phones or other client devices that support the protocol you
need to configure a sendsms-user.ota-setting group is not necessary, you can send settings to the

72

Chapter 5. Setting up a SMS Gateway

phone as a XML document, but this method is perhaps more suitable for continous provisioning.

If you want to send multiple OTA configurations through the smsbox and you do not want to send XML
documents, you will have to declare a ota-id string to the different ota-setting groups.

Table 5-13. OTA Setting Group Variables

Variable Value Description
group ota-setting This is a mandatory variable

ota-id string

An optional name or id for the
ota-setting. Any string is
acceptable, but semicolon ’;’
may cause problems, so avoid it
and any other special
non-alphabet characters.

location URL

The address of the HTTP server
for your WAP services, i.e.
http://wap.company.com

service string Description of the service

ipaddress IP

IP address of your WAP gateway

phonenumber phone-number

Phone number used to establish
the PPP connection

speed number

Connection speed: 9600 or
14400. Defaults to 9600.

bearer string

Bearer type: data or sms.
Defaults to data.

calltype string

Call type: isdn or analog.
Defaults to isdn.

connection string

Connection type: cont or temp.
Cont uses TCP port 9201 and
Temp uses UDP port 9200.
Defaults to cont.

pppsecurity on or off

Enable CHAP authentication if
set to on, PAP otherwise

authentication

normal or secure. Indicates
wether WTLS should be used or
not. Defaults to normal.

login string Login name.

secret string Login password

A sample ’ota-setting’ group:

group = ota-setting
location = http://wap.company.com
service = "Our company’s WAP site"
ipaddress = 10.11.12.13

73

Chapter 5. Setting up a SMS Gateway

phonenumber = 013456789
bearer = data
calltype = analog
connection = cont
pppsecurity = off
authentication = normal
login = wapusr
secret = thepasswd

And a ’sendsms-user’ to use with it. With concatenation enabled:

group = sendsms-user
username = otauser
password = foo
max-messages = 2
concatenation = 1

Table 5-14. OTA Bookmark Group Variables

Variable Value Description
group ota-bookmark This is a mandatory variable

ota-id string

An optional name or id for the
ota-bookmark. Any string is
acceptable, but semicolon ’;’
may cause problems, so avoid it
and any other special
non-alphabet characters.

url URL

The address of the HTTP server
for your WAP services, i.e.
http://wap.company.com

name string Description of the service

A sample ’ota-bookmark’ group:

group = ota-bookmark
ota-id = wap-link
url = "http://wap.company.com"
service = "Our company’s WAP site"

And a ’sendsms-user’ to use with it, with the same conditions as for the ’ota-setting’ group.

Setting up more complex services
The basic service system is very limited - it can only answer to original requester and it cannot send UDH
data, for example. This chapter explains some more sophisticated and complex SMS service setups.

74

Chapter 5. Setting up a SMS Gateway

Redirected replies

The basic service system always sends the answer back to original requester, but sometimes the content
server needs to send something to other terminals or delay the answer. To create such systems, an SMS
push is used.

The idea is to get the initial request, but then send no reply. Instead, the reply (if any) is sent via HTTP
sendsms-interface as SMS Push. This way the service application has full control of the return content,
and can do all needed formatting beforehand.

Note that when no reply is wanted, remember to set the variable max-messages to zero (0) so that no
reply is sent, unless an error occurs. Simple sample:

group = sms-service
keyword = talk
get-url = "http://my.applet.machine/Servlet/talk?sender=%p&text=%r"
max-messages = 0

Setting up operator specific services

Those running Kannel with several SMS centers might need to define services according to the relying
SMS center. To achieve this, first you need to give an ID name for SMS center connections (see above).
Then use the accepted-smsc variable to define which messages can use that service.

group = sms-service
keyword = weather
accepted-smsc = SOL
get-url = "http://my.applet.machine/Servlet/weather?sender=%p&operator=SOL&text=%r"

Setting up multi-operator Kannel

Sometimes there is a need for Kannel to listen to two (or more) distinct SMS centers, and messages must
be routed to services according to where they came from, and replies likewise must return to same
SMSC. This is done via smsc-id magic. Here is a shortened sample configuration, which handles to
distinct SMS servers and services:

group = smsc
smsc-id = A
denied-smsc-id = B
...

group = smsc
smsc-id = B
denied-smsc-id = A
...

group = sms-service
accepted-smsc = A
get-url = "..."

group = sms-service

75

Chapter 5. Setting up a SMS Gateway

accepted-smsc = B
get-url = "..."

As can be seen, the smsc-id is used to identify the SMS center from which the message came. Then, the
denied-smsc-id variable is used to prevent messages originally from the other SMS center from being
sent through the other one. Finally ’sms-service’ groups are defined with accepted-smsc so that they
only accept messages from certain SMS center.

If you want to use SMS push services, requesters should then set the smsc request parameter, or
’sendsms-user’ groups should be defined like this:

group = sendsms-user
username = operator_A
password = foo
forced-smsc = A

group = sendsms-user
username = operator_B
password = bar
forced-smsc = B

Note that if your SMS centers do not set the sender phone number but rely on number transmitted, you
should set faked-sender to all ’sendsms-user’ groups.

Running SMS gateway

Using the HTTP interface to send SMS messages
After you have configured Kannel to allow the sendsms service, you can send SMS messages via HTTP,
e.g., using a WWW browser. The URL looks something like this:

http://smsbox.host.name:13013/cgi-bin/sendsms?
username=foo&password=bar&to=0123456&text=Hello+world

Thus, technically, you make an HTTP GET request. This means that all the information is stuffed into
the URL. If you want to use this often via a browser, you probably want to make an HTML form for this.

Table 5-15. SMS Push (send-sms) CGI Variables

username (or user) string

Username or account name.
Must be username of the one
’sendsms-user’ group in the
Kannel configuration, or results
in ’Authorization failed’ reply.

76

Chapter 5. Setting up a SMS Gateway

password (or pass) string

Password associated with given
username. Must match
corresponding field in the
’sendsms-user’ group of the
Kannel configuration, or
’Authorization failed’ is
returned.

from string

Phone number of the sender.
This field is usually overridden
by the SMS Center, or it can be
overridden by faked-sender

variable in the sendsms-user
group. If this variable is not set,
smsbox global-sender is
used.

to phone number list

Phone number of the receiver.
To send to multiple receivers,
separate each entry with space (’
’, ’+’ url-encoded) - but note that
this can be deactivated via
sendsms-chars in the
’smsbox’ group.

text string

Contents of the message, URL
encoded as necessary. The
content can be more than 160
characters, but then
sendsms-user group must have
max-messages set more than 1.

charset string

Charset of text message. Used to
convert to a format suitable for 7
bits or to UCS2. Defaults to
ISO-8859-1 if coding is 7bits and
UTF16BE if coding is UCS2.

udh string

Optional User Data Header
(UDH) part of the message. Must
be URL encoded.

77

Chapter 5. Setting up a SMS Gateway

smsc string

Optional virtual smsc-id from
which the message is supposed
to have arrived. This is used for
routing purposes, if any denied
or preferred SMS centers are set
up in SMS center configuration.
This variable can be overridden
with a forced-smsc
configuration variable. Likewise,
the default-smsc variable can
be used to set the SMSC if it is
not set otherwise.

flash number Deprecated. See mclass.

mclass number

Optional. Sets the Message
Class in DCS Field. Accepts
values between 1 and 4, for
Message Class 0 to 3, A value of
1 sends the message directly to
display. mclass=2 sends to
mobile, 3 do SIM and 4 to SIM
Toolkit.

mwi number

Optional. Sets Message Waiting
Indicator bits in DCS field. If
given, the message will be
encoded as a Message Waiting
Indicator. The accepted values
are 1,2,3 and 4 for activating the
voice, fax, email and other
indicator, or 5,6,7,8 for
deactivating, respectivly. This
option excludes the flash
option. a

coding number

Optional. Sets the coding
scheme bits in DCS field.
Accepts values 1 to 3, for 7bit,
8bit or UCS2. If unset, defaults
to 7 bits unless a udh is defined,
which sets coding to 8bits.

78

Chapter 5. Setting up a SMS Gateway

validity number (minutes)

Optional. If given, kannel will
inform SMS Center that it should
only try to send the message for
this many minutes. If the
destination mobile is off other
situation that it cannot receive
the sms, the smsc discards the
message. Note: you must have
your kannel box time
syncronized with the SMS
Center.

deferred number (minutes)

Optional. If given, the SMS
center will postpone the message
to be delivered at now plus this
many minutes. Note: you must
have your kannel box time
syncronized with the SMS
Center.

dlrmask number (bit mask)

Optional. Request for delivery
reports with the state of the sent
message. The value is a bit mask
composed of: 1: Delivered to
phone, 2: Non-Delivered to
Phone, 4: Queued on SMSC, 8:
Delivered to SMSC, 16:
Non-Delivered to SMSC. Must
set dlr-url on sendsms-user

group or use the dlrurl CGI
variable.

dlrurl string (url)

Optional. If dlrmask is given,
this is the url to be fetched.
(Must be urlencoded)

pid byte

Optional. Sets the PID value.
(See ETSI Documentation). Ex:
SIM Toolkit messages would use
something like
&pid=127&coding=2&alt-dcs=1&mclass=3

alt-dcs number

Optional. If unset, kannel uses
the alt-dcs defined on smsc
configuration, or 0X per default.
If equals to 1, uses FX. If equals
to 2, force 0X.

rpi number

Optional. Sets the Return Path
Indicator (RPI) value. (See ETSI
Documentation).

79

Chapter 5. Setting up a SMS Gateway

account string

Account name or number to
carry forward for billing
purposes. This field is logged as
ACT in the log file so it allows
you to do some accounting on it
if your front end uses the same
username for all services but
wants to distinguish them in the
log. In the case of a HTTP
SMSC type the account name is
prepended with the servicename
(username) and a colon (:) and
forwarded to the next insta ce of
kannel. This allows hierarchical
accounting.

Notes:
a. To set number of messages, use mwi=[1-4]&coding=1&udh=%04%01%02%<XX>%<YY>, where
YY are the number of messages, in HEX, and XX are mwi-1 plus 0xC0 if text field is not empty.

Using the HTTP interface to send OTA configuration
messages
OTA messages can be sent to mobile phones or devices to auto-configure the settings for WAP. They are
actually complex SMS messages with UDH and sent as concatenated messages if too long (and compiled
if necessary).

You may either pass an HTTP request as GET method or POST method to the HTTP interface.

If you want to send a configuration that is defined within Kannel’s configuration file itself you have to
pass a valid ota-id value otherwise the content of the request will be compiled to as OTA message.

GET method for the OTA HTTP interface

An example URL (OTA configuration defined in the Kannel configuration file):

http://smsbox.host.name:13013/cgi-bin/sendota?

otaid=myconfig&username=foo&password=bar&to=0123456

URL containing XML document looks like this (you must URL encode it before sending it over HTTP):

http://smsbox.host.name:13013/cgi-bin/sendota?

username=foo&password=bar&to=0123456&

text=MyURLEncodedXMLdocument&type=settings

80

Chapter 5. Setting up a SMS Gateway

You can send either settings or bookmark, set CGI variable type accordingly. Default for this variable is
settings.

Here is an example XML document (this one contains CSD settings for logging in to a mobile service;
note that you must store DTD locally):

<?xml version="1.0"?>
<!DOCTYPE CHARACTERISTIC-LIST SYSTEM "file://gw/settings.dtd">
<CHARACTERISTIC-LIST>

<CHARACTERISTIC TYPE="ADDRESS">
<PARM NAME="BEARER" VALUE="GSM/CSD"/>
<PARM NAME="PROXY" VALUE="10.11.12.13"/>
<PARM NAME="PORT" VALUE="9201"/>
<PARM NAME="CSD_DIALSTRING" VALUE="+12345678"/>
<PARM NAME="PPP_AUTHTYPE" VALUE="PAP"/>
<PARM NAME="PPP_AUTHNAME" VALUE="yourusername"/>
<PARM NAME="PPP_AUTHSECRET" VALUE="yourauthsecret"/>
<PARM NAME="CSD_CALLTYPE" VALUE="ISDN"/>
<PARM NAME="CSD_CALLSPEED" VALUE="9600"/>

</CHARACTERISTIC>

<CHARACTERISTIC TYPE="URL"
VALUE="http://wap.company.com/"/>

<CHARACTERISTIC TYPE="NAME">
<PARM NAME="NAME" VALUE="Your WAP Company"/>

</CHARACTERISTIC>

</CHARACTERISTIC-LIST>

A bookmark document looks like this:

<?xml version="1.0"?>
<!DOCTYPE CHARACTERISTIC_LIST SYSTEM "file://gw/settings.dtd">
<CHARACTERISTIC-LIST>
<CHARACTERISTIC TYPE="BOOKMARK">
<PARM NAME="NAME" VALUE="WAP Company"/>
<PARM NAME="URL" VALUE="http://wap.company.com/"/>

</CHARACTERISTIC>
</CHARACTERISTIC-LIST>

Document type definition (DTD) for these documents is not available , from Internet, you must supply it
as a file. Kannel gw directory contains an example, settings.dtd.

Table 5-16. OTA CGI Variables

81

Chapter 5. Setting up a SMS Gateway

otaid string

Name or ID of the ’ota-setting’
group in Kannel configuration
that should be sent to the phone.
This variable is optional. If it is
not given the first ’ota-setting’
group is sent. This is unnecessary
when a XML document is
sended to the phone.

username string

Username of the ’sendsms-user’
group in Kannel configuration,
that has been configured to send
OTA messages.

password string

Password associated with given
username. Must match
corresponding field in
’sendsms-user’ group in Kannel
configuration, or ’Authorization
failed’ is returned.

to number

Number of the phone that is to
receive the OTA configuration
message.

from string

Phone number of the sender.
This field is usually overridden
by the SMS Center, or it can be
overridden by faked-sender
variable in the sendsms-user
group. If this variable is not set,
smsbox global-sender is used.

smsc string

Optional virtual smsc-id from
which the message is supposed
to have arrived. This is used for
routing purposes, if any denied
or preferred SMS centers are set
up in SMS center configuration.
This variable can be overridden
with a forced-smsc
configuration variable. Likewise,
the default-smsc variable can
be used to set the SMSC if it is
not set otherwise.

text XML document

An URL encoded XML
document, containing either
settings or bookmarks.

type string

Type of the XML document,
either "settings" or "bookmarks".
Default is "settings".

82

Chapter 6. Setting up a SMS&WAP gateway
This chapter tells you how to set Kannel up as a combined WAP and SMS gateway.

SMS&WAP gateway configuration
Configuration is done as explained in previous chapters, you simply have to include all the data from
both chapters into the configuration file.

Running SMS&WAP gateway
There are no special tricks to this, just launch both the smsbox and the wapbox in addition to the
bearerbox, using multiple hosts if needed.

83

Chapter 7. Setting up Push Proxy Gateway
This chapter explains how to set up a push proxy gateway (PPG). An example configuration file are
given. A working push proxy gateway is described.

Configuring ppg core group, for push initiator (PI)
interface

PPG configuration group defines gateway’s service interface. Configuring a PPG working with a trusted
PI is easiest. Actually, you need no configuration at all: in this case a PPG with default values will be set
up. Do not rely on this, default values may change. For PPG core configuration variables, see table 7.1.

An example of a core configuration for PPG working only with specific addresses follows. Note that
ppg-deny-ip-list is not actually necessary, but does make configuring simpler: IPs here are always denied,
even when they are mentioned in the allowed IPs list.

Ppg-url is a simple stamp, used for routing requests to the right service. You can change this stamp by
setting push-url configuration variable.

group = ppg
ppg-url = /wappush
ppg-port = 8080
concurrent-pushes = 100
users = 1024
ppg-allow-ip = 194.100.32.125;127.0.0.1
ppg-deny-ip = 194.100.32.89;194.100.32.103
trusted-pi = false

Table 7-1. PPG core group configuration variables

Variable Value Description

group ppg
Mandatory value. Tells that we

are configuring the PPG group.

ppg-port number
The port PPG is listening at.

Default 8080.

ppg-ssl-port (o) number

Mandatory value for PPG
HTTPS support. The port at
which PPG listens for HTTPS
requests. There are no defaults;
you must set the value separately.

ssl-server-cert-file string

Mandatory value for PPG
HTTPS support. The file
containing server’s ssl certificate.

84

Chapter 7. Setting up Push Proxy Gateway

Variable Value Description

ssl-server-key-file string

Mandatory value for PPG
HTTPS support. The file
containing server’s ssl private
key.

ppg-url url
URL locating PPG services.

Default /wappush .

global-sender string
Sender phone number required

by some protocols.

concurrent-pushes number

Number of concurrent pushes
expected. Note that PPG does
work even value is too low; it
will only be slower. Default 100.

users number

Number of actually configured
user accounts. Note that PPG
does work even value is too low;
it will only be slower. Default
1024.

trusted-pi boolean

If true, PI does authentication
for PPG. Obviously, both of them
must reside inside same firewall.
Default true. If this variable is
true, all security variables are
ignored (even though they may
be present).

ppg-deny-ip ip-list

PPG will not accept pushes from
these IPs. Wildcards are allowed.
If this attribute is missing, no IP
is denied by this list .

ppg-allow-ip ip-list

PPG will accept pushes from
these, and only these, IPs.
Wildcards are allowed. Adding
this list means that IPs not
mentioned are denied, too.

default-smsc string

If no SMSC ID is given with the
wappush HTTP request (see
below), use this one as default
route for all push messages.

Configuring PPG user group variables
In addition of pi lists similar to the core group, ppg configuration spesific to a certain user contains
variables used for authentication and enforcing restrictions to phone numbers pi may contact. All

85

Chapter 7. Setting up Push Proxy Gateway

variables are elaborated in table 7.2.

As an example, let us see how to configure a ppg user (a pi, named here ’picom’) allowed to send pushes
only from a specified ip.

group = wap-push-user
wap-push-user = picom
ppg-username = foo
ppg-password = bar
allow-ip = 62.254.217.163

It goes without saying that in real systems you must use more complex passwords than bar.

Table 7-2. PPG user group configuration variables

Variable Value Description

group wap-push-user
Mandatory value. Tells that we

are configuring the users group.

wap-push-user string
(More) human readable name of

an user.

ppg-username string Username for this user.

ppg-password string Password for this user.

allowed-prefix number-list

Phone number prefixes allowed
in pushes coming from this pi.
These prefixes must conform
international phone number
format.

denied-prefix number-list

Phone number prefixes denied in
pushes coming from this pi.
These prefixes must conform
international phone number
format.

white-list url

Defines an url wherefrom the
whitelist can be fetched. White
list itself contains list of phone
numbers accepting pushes from
this pi.

black-list url

Defines an url wherefrom the
blacklist can be fetched.
Blacklist itself contains list of
phone number not accepting
pushes from this pi.

allow-ip ip-list

Defines ips wherefrom this pi
can do pushes. Adding this list
means that ips not mentioned are
denied.

86

Chapter 7. Setting up Push Proxy Gateway

Variable Value Description

deny-ip ip-list

Defines ips wherefrom this pi
cannot do pushes. Ips not
mentioned in either list are
denied, too.

default-smsc string

If no SMSC ID is given with the
wappush HTTP request (see
below), use this one as default
route for this specific push user.

forced-smsc string

Allow only routing to a defined
SMSC ID for this specific push
user.

Finishing ppg configuration
PPG uses SMS for sending SI to the phone and an IP bearer to fetch content specified by it (see chapter
Overview of WAP Push). This means both wapbox and bearer smsc connections are in use. So your push
proxy gateway configuration file must contain groups core, wapbox, smsc and smsbox. These are
configured normal way, only smsc group may have push-specific variables. Note that following
configurations are only an example, you may need more complex ones.

Bearerbox setup does not require any new variables:

group = core
admin-port = 13000
smsbox-port = 13001
wapbox-port = 13002
admin-password = b
wdp-interface-name = "*"
log-file = "filename"
log-level = 1
box-deny-ip = "*.*.*.*"
box-allow-ip = "127.0.0.1"
unified-prefix = "00358,0"

You mut set up wapbox, for pulling (fetching) the wap data, and of course starting the push itself. No
new variables here, either.

group = wapbox
bearerbox-host = localhost
log-file = "filename"
log-level = 0
syslog-level = none

To set up smsc connections, for pushing SI or SL over SMS. Here HTTP SMSC is used as an example.
Variables no-sender and no-coding simplify HTTP request generated by Kannel. Send-url specifies
content gateway, or sendsms service.

group = smsc

87

Chapter 7. Setting up Push Proxy Gateway

smsc = http
smsc-id = HTTP
port = 10000
system-type = kannel
smsc-username = foo
smsc-password = bar
no-sender = true
no-coding = true
send-url = http://host:port/path

To set up smsbox. This group will eventually disappear, use here only necessary configuration variables.

group = smsbox
bearerbox-host = localhost

Kannel sources contain a sample push configuration file gw/pushkannel.conf.

Running a push proxy gateway
Push proxy gateway is started by simply typing, using separate windows:

gw/bearerbox [conffile]

gw/wapbox [conffile]

You can, of course, use more complex command line options.

An example using HTTP SMSC
An easy way to test and implement push services is to put ppg in the front of an existing sendsms service
capable to send SMS data messages and to to understand HTTP requests generated by HTTP SMSC.
(See next chapter.) Then you need only configure SMSC configuration send-url to point to sendsms
service.

An example push (tokenised SI) document
HTTP SMSC generates a HTTP get request when it get a sendmessage event, expressed in unicode. The
content gateway, or the sendsms service must, of course, understand this URL. So here is an example, cgi
variable text contains the url escaped form of a SI document. It is usable for testing prototype phones.

http://matrix:8080/phplib/kannelgw.php?user=*deleted*&

pass=*deleted*=to=%2B358408676001&text=3D%02%06%17%AE%96localhost

%3A8080%00%AF%80%8D%CF%B4%80%02%05j%00E%C6%0C%03wap.iobox.fi%00%11%03

1%40wiral.com%00%07%0A%C3%07%19%99%06%25%15%23%15%10%C3%04+%02%060%01

%03Want+to+test+a+fetch%3F%00%01%01&udh=%06%05%04%0B%84%23%F0

88

Chapter 7. Setting up Push Proxy Gateway

Default network and bearer used by push proxy gateway
If network and bearer attributes of the pap control document are missing or set any, Kannel uses address
type for routing purposes: if the address type is a phone number (TYPE=PLMN), network defaults to
GSM and bearer to SMS; if it is a IP-address (TYPE=IPv4), network defaults to GSM and bearer to
CSD. So following minimal pap document works:

<?xml version="1.0"?>
<!DOCTYPE pap PUBLIC "-//WAPFORUM//DTD PAP//EN"

"http://www.wapforum.org/DTD/pap_1.0.dtd">
<pap>
<push-message push-id="9fjeo39jf084@pi.com">
<address address-value="WAPPUSH=+358408676001/TYPE=PLMN@ppg.carrier.com"/>

</push-message>
</pap>

89

Chapter 8. Using SSL for HTTP
This chapter explains how you can use SSL to ensure secure HTTP communication on both, client and
server side.

Beware that the gateway, is acting in both roles of the HTTP model:

1. as HTTP client, i.e. for requesting URLs while acting as WAP gateway and while fetching
information for the SMS services.

2. as HTTP server, i.e. for the administration HTTP interface, the PPG and for the sendsms HTTP
interface.

That is why you can specify seperate certification files within the core group to be used for the HTTP
sides.

You can use one or both sides of the SSL support. There is no mandatory to use both if only one is
desired.

Using SSL client support
To use the client support please use the following configuration directive within the core group

group = core
...
ssl-client-certkey-file = "filename"

Now you are able to use https:// scheme URLs within your WML decks and SMS services.

Using SSL server support for the administration HTTP
interface

To use the SSL-enabled HTTP server please use the following configuration directive within the core
group

group = core
...
admin-port-ssl = true
...
ssl-server-cert-file = "filename"
ssl-server-key-file = "filenane"

90

Chapter 8. Using SSL for HTTP

Using SSL server support for the sendsms HTTP
interface

To use the SSL-enabled HTTP server please use the following configuration directive within the core and
smsbox groups

group = core
...
ssl-server-cert-file = "filename"
ssl-server-key-file = "filenane"

group = smsbox
...
sendsms-port-ssl = true

Using SSL server support for PPG HTTPS interface
If you want use PAP over HTTPS, (it is, a https scheme) add following directives to the ppg core group:

group = ppg
...
ppg-ssl-port = 8090
ssl-server-cert-file = "/home/aarno/kannelcvs/gateway/gw/cert1.pem"
ssl-server-key-file = "/home/aarno/kannelcvs/gateway/gw/key1.pem"

PPG uses a separate port for HTTPS traffic, so so you must define it. This means that you can use both
HTTP and HTTPS, when needed.

91

Chapter 9. Delivery Reports
This chapter explains how to set up kannel to deliver delivery reports.

Delivery reports are a method to tell your system if the message has arrived on the destination phone.
There are different things which can happen to a message on the way to the phone which are:

• Message gets rejected by the SMSC (unknown subscriber, invalid destination number etc).

• Message gets accepted by the SMSC but the phone rejects the message.

• Message gets accepted by the SMSC but the phone is off or out of reach. The message gets buffered.

• Message gets successfully delivered.

When you deliver SMS to Kannel you have to indicate what kind of delivery report messages you would
like to receive back from the system. The delivery report types currrently implemented are:

• 1: delivery success

• 2: delivery failure

• 4: message buffered

• 8: smsc submit

• 16: smsc reject

If you want multiple report types, you simply add the values togeter. For example if you want to get
delivery success and/or failure you set the dlrmask value to 1+2. and so on. If you specify dlrmask on the
URL you pass on to kannel you also need to specify dlrurl. dlrurlshould contain the URL to which kannel
should place a HTTP requests once the delivery report is ready to be delivered back to your system.

An example transaction would work as following.

• 1. you send a message using dlrmaks=7 and dlrurl=www.xyz.com/cgi/dlr.php?type=%d

• 2. Kannel forwards the message to the SMSC and keeps track of the message

• 3. The SMSC can not reach the phone and thus returns a buffered message

• 4. Kannel calls http://www.xyz.com/cgi/dlr.php?type=4 to indicate the message being buffered

• 5. The phone is switched on and the SMS gets delivered from the SMSC. The SMSC reports this to
Kannel

• 4. Kannel calls http://www.xyz.com/cgi/dlr.php?type=2 to indicate the final success

Depending on the SMSC type not all type of messages are supported. For example a CIMD SMSC does
not support buffered messages. Also some SMSC drivers have not implemented all DLR types.

92

Chapter 10. Getting help and reporting bugs
This chapter explains where to find help with problems related to the gateway, and the preferred
procedure for reporting bugs and sending corrections to them.

The Kannel development mailing list is devel@kannel.3glab.org. To subscribe, send mail to
devel-subscribe@kannel.3glab.org (mailto:devel-subscribe@kannel.3glab.org). This is currently the best
location for asking help and reporting bugs. Please include configuration file and version number.

93

Appendix A. Using the fake WAP sender
This appendix explains how to use the fake WAP sender to test the gateway.

94

Appendix B. Using the fake SMS center
Fakesmsc is a simple testing tool to test out Kannel and its SMS services. It cannot be used to send
messages to mobile terminals, it is just a simulated SMS center with no connection to real terminals.

Setting up fakesmsc
This section sums up needed steps to set up system for fakesmsc use.

Compiling fakesmsc
The fake SMS center should compile at the same time as main Kannel compiles. The outcoming binary,
fakesmsc, is in test directory. The source code is quite simple and trivial, and is easily edited.

Configuring Kannel
To use fakesmsc to test out Kannel, you have to add it to main configuration file (see above). The
simplest form for this configuration group is like this:

group = smsc
smsc = fake
port = 10000

The fakesmsc configuration group accepts all common ’smsc’ configuration group variables, like
smsc-id, preferred-smsc-id or denied-smsc-id, which can be used to test out routing systems
and diverted services, before setting up real SMS center connections. If you include a fakesmsc group
when bearerbox is connected to real SMS centers, you should add the connect-allow-ip variable to
prevent unauthorized use.

To set up multiple fakesmsc’es, just add new groups. Remember to put a different port number to each
one.

Running Kannel with fakesmsc connections
After configuring Kannel, you can start testing it. The bearerbox will listen for fakesmsc client
connections to the port(s) specified in the configuration file.

Starting fake SMS center
Each fakesmsc is started from command line, with all sent messages after command name. If any options
are used (see below), they are put between the command and the messages. The usage is as follows:

test/fakesmsc [options] <message1> [message2 ...]

95

Appendix B. Using the fake SMS center

Options and messages are explained below, but as a quick example, a typical startup can go like this:

test/fakesmsc -i 0.1 -m 100 "100 200 text nop" "100 300 text echo this"

This tells fakesmsc to connect to bearerbox at localhost:10000 (default) and send a hundred messages
with an interval of 0.1 seconds. Each message is from number 100, and is either to number 200 with
message ’nop’ or to 300 with message ’echo this’.

Messages received from bearerbox are shown in the same format (described below).

Fake messages

Each message consists of four or five parts: sender number, receiver number, type, udh (if present) and
main message itself. Sender and receiver numbers do not mean anything except for log files and
number-based routing in Kannel.

The parts of a message are separated with spaces. As each message is taken as one argument, it must be
put in quotation marks.

Message type must be one of the following: "text", "data" and "udh". Here’s an example of using each:

test/fakesmsc -i 0.01 -v 1 -m 1000 "100 300 text echo this message"
test/fakesmsc -i 0.01 -m 1000 "100 300 data echo+these+chars%03%04%7f"
test/fakesmsc -m 1 "100 500 udh %0eudh+stuff+here main+message"

For "text", the rest of the argument is taken as the literal message. For "data", the next part must be the
urlcoded version of the message. Space is coded as ’+’. For "udh", the next 2 parts are the UDH and
main message. Both must be in urlcoded form.

If multiple messages are given, fakesmsc randomly chooses one for each sending.

Fakesmsc command line options

Fake SMS center can be started with various optional command line arguments.

Table B-1. Fakesmsc command line options

Switch Value Description

-H host
Use host host instead of default
localhost.

-p port
Use port number port instead of

default 10000.

-i interval

Use message interval interval (in
seconds, fractions accepted)
instead of default interval 1.0
seconds.

96

Appendix B. Using the fake SMS center

Switch Value Description

-m max

Send a maximum of max
messages. Value -1 means that an
unlimited number of messages is
sent. Default -1. Using 0 can be
useful to listen for messages sent
via other channels.

In addition, fakesmsc accepts all common Kannel Command line options like --verbosity.

97

Appendix C. Setting up a test environment for
Push Proxy Gateway

This appendix explains how to set a test environment for PPG. This contains a simulated SMSC, for
instance a http server simulation (this is used as example, because it is simplest) and a simulated push
initiator. Between them, there is the push proxy gateway to be tested. This means that you must configure
HTTP SMSC.

Creating push content and control document for testing
Here is an example of a push control document, which gives PPG instructions how to do the pushing.

<?xml version="1.0"?>
<!DOCTYPE pap PUBLIC "-//WAPFORUM//DTD PAP//EN"

"http://www.wapforum.org/DTD/pap_1.0.dtd">
<pap>
<push-message push-id="9fjeo39jf084@pi.com"

deliver-before-timestamp="2001-09-28T06:45:00Z"
deliver-after-timestamp="2001-02-28T06:45:00Z"
progress-notes-requested="false">

<address address-value="WAPPUSH=+358408676001/TYPE=PLMN@ppg.carrier.com"/>
<quality-of-service priority="low"

delivery-method="unconfirmed"
network-required="true"
network="GSM"
bearer-required="true"
bearer="SMS"/>

</push-message>
</pap>

Because the push content is sended to the phone over SMS, rigth value for network-required and
bearer-required is true, for network GSM and for bearer SMS. However, you can omit these
values alltogether, if you use a phone number as an address. Address value is international phone number
and it must start with plus. It is used here as an unique identifier, SMSC, or sendsms script must
transform it to an usable phone number.

Here is an example of Service Indication, a type of push content. Essentially, the phone displays, when it
receives this SI, the text "Want to test a fetch" and if the user wants, fetches the content located by URL
http://wap.iobox.fi.

<?xml version="1.0"?>
<!DOCTYPE si PUBLIC "-//WAPFORUM//DTD SI 1.0//EN"

"http://www.wapforum.org/DTD/si.dtd">
<si>
<indication href="http://wap.iobox.fi"

si-id="1@wiral.com"
action="signal-high"
created="1999-06-25T15:23:15Z"

98

Appendix C. Setting up a test environment for Push Proxy Gateway

si-expires="2002-06-30T00:00:00Z">
Want to test a fetch?

</indication>
</si>

Note that the date value of the si-expires attribute contains trailing zeroes. They are OK here, because SI
tokenizer removes them. But phones does not accept them in the final SMS data message. You should
probably use action="signal-high" for testing purposes, for it causes an immediate presentation of
the push message. Production usage is a quite another matter.

Another example of push content is Service Loading. In principle, the phone should fetch immediately
content from URL http://wap.iobox.fi when it receives this document. This sounds quite
unsecure, and indeed, user invention is probably required before fetching.

<?xml version="1.0"?>
<!DOCTYPE sl PUBLIC "-//WAPFORUM//DTD SL 1.0//EN"

"http://www.wapforum.org/DTD/sl.dtd">
<sl href="http://wap.iobox.fi"

action="execute-high">
</sl>

Starting necessary programs
PPG test environment contains, in addition of wapbox and bearerbox, two test programs, test_ppg
(simulating push initiator) and test_http_server (simulating a SMSC center accepting pushed
content sended over SMS. You can find both of these programs in test directory, and they both are short
and easily editable.

To set up a test environment, you must first configure a push proxy gateway (setting flag trusted-pi true
makes testing easier). This explained in Chapter "Setting up push proxy gateway". Then issue following
commands, in Kannel’s root directory and in separate windows:

gw/bearerbox [conffile]

gw/wapbox [conffile]

Of course you can use more complicated wapbox and bearerbox command line options, if necessary.

To run a http smsc, start http server simulation:

test/test_http_server -p port

You can, of course, select the port at will. Remember, though, that PPG listens at the port defined in the
ppg configuration file. Other test_http_server options are irrelevant here.

Lastly, start making push requests, for instance with a test program test_ppg. Its first argument is a
URL specifying location of push services. Other arguments are two file names, first one push content and

99

Appendix C. Setting up a test environment for Push Proxy Gateway

second one pap control document. (For command line options, see Table C.1.). For example doing one
push(you can simplify push url by setting a ppg configuration variable, see "Setting up push proxy
gateway"; q flag here prevents dumping of test_ppg program debugging information):

test/test_ppg -q http://ppg-host-name:ppg-port/ppg-url [content_file]

[control_file]

This presumes that you have set trusted-pi true.

If you want use authentication in a test environment, you can pass username and password either using
headers (setting flag -b) or url (you must have set trusted-pi false and added wap-push-user configuration
group):

test/test_ppg -q http://ppg-host-name:ppg-port?username=ppg-username’&’

password=ppg-password [content_file] [control_file]

Table C-1. Test_ppg’s command line options

Switch Value Description

-c string

Use content qualifier string
instead of default si (service
indication). Allowed values are
wml, si, sl, sia, multipart, nil and
scrap. Nil and scrap are used for
debugging purposes. Wml does
work with some older phone
simulators.

-a string

Use application id string instead
of default any. Application
identifies the application in the
phone that should handle the
push request. Sia, ua, mms, nil
and scrap are accepted. Nil and
scrap are used for debugging
purposes.

-e string

Use tranfer encoding when
sending a push content. Only
base64 is currently supported.

-b boolean
Use headers for authentication,

instead of url. Default off.

-i number
Wait interval number instead of

default 0 between pushes.

-r number
Do number requests instead of

default 1.

-t number
Use number threads instead of

default 1.

100

Appendix C. Setting up a test environment for Push Proxy Gateway

Using Nokia Toolkit as a part of a developing
environment

This chapter describes a developing environment using Nokia Toolkit instead of test_http_server
program.

You cannot use a real phone for testing a push server. Sending random messages to a phone does not
work, because its only feedback (if it works properly) in error situations is dropping the offending
message.

Nokia Toolkit, instead, displays push headers, decompiles tokenised documents and outputs debugging
information. It is not, of course, a carbon copy of a real phone. But it is still usefull for checking spec
conformance of push servers.

Toolkit runs on Windows, the first thing you must is to install a virtual machine (VMWare is one
possibility) in the machine where Kannel runs. Then you must configure Toolkit for working with a push
gateway.

Then start bearerbox and wapbox similar way as told before. You must set the correct client address
in the push document sended by test_ppg program. Use IP address of our virtual machine (easiest way
to get this is to ping your virtual machine name in the dos prompt window). Your bearer is in this case IP.
An example pap document follows:

<?xml version="1.0"?>
<!DOCTYPE pap PUBLIC "-//WAPFORUM//DTD PAP//EN"

"http://www.wapforum.org/DTD/pap_1.0.dtd">
<pap>
<push-message push-id="9fjeo39jf084@pi.com"

deliver-before-timestamp="2001-09-28T06:45:00Z"
deliver-after-timestamp="2001-02-28T06:45:00Z"
progress-notes-requested="false">

<address address-value="WAPPUSH=192.168.214.1/TYPE=IPV4@ppg.carrier.com"/>
<quality-of-service priority="low"

delivery-method="unconfirmed"
</quality-of-service>

</push-message>
</pap>

Note address-value format. It is contains type and value, because PAP protocol supports different address
formats.

You must use test_ppg’s -a and -c flags when pushing messages to Toolkit. -A defines the client
application handling pushes, right value for it is ua. -C defines the content type of your push message. SI
works with all Toolkits, wml only with some older versions.

Testing PAP protocol over HTTPS
When testing HTTPS connection to PPG, you probably want use test_ppg’s configuration file, because
number of required parameters is quite high. Here is a example test_ppg configuration file:

101

Appendix C. Setting up a test environment for Push Proxy Gateway

group = test-ppg
retries = 2
pi-ssl = yes
ssl-client-certkey-file = /home/aarno/kannelcvs/gateway/gw/certkey.pem

group = configuration
push-url = https://localhost:8900/wappush
pap-file = /home/aarno/test/ipnoqos.txt
content-file = /home/aarno/test/si.txt
username = foo
password = bar

With a configuration file, you can do a push by typing:

test/test_ppg -q [configuration_file]

Table C-2. Test_ppg’s configuration file directives

Directive Value Description

group test_ppg
Mandatory parameter. Start of

test_ppg’s core group.

retries number

The client tries to log in to PPG
number times before discarding
the push request. Default is 2.

pi-ssl boolean

Mandatory parameter for
HTTPS connection. Does the
client use HTTPS connection.
Default is no.

ssl-client-certkey-file filename

Mandatory parameter for
HTTPS connection. File
containing the client’s ssl
certificate and private key.

ssl-trusted-ca-file filename

Mandatory paramenter for
HTTPS connection.This file
contains the certificates test_ppg
is willing to trust. If this directive
is not set, certificates are not
validated and HTTPS would not
be tested.

group configuration
Mandatory parameter. Start of

test_ppg’s test group.

push-url url
Mandatory value. URL locating

PPG’s services.

pap-file filename

Mandatory value. File
containing pap request’s control
document.

102

Appendix C. Setting up a test environment for Push Proxy Gateway

Directive Value Description

content-file filename

Mandatory value. File
containing pap request’s content
document.

username string
Mandatory value. PPG service

user’s username.

password string
Mandatory value. PPG service

user’s password.

103

Appendix D. Setting up a dial-up line
This appendix explains how to set up a dial-up line in Linux for use with the Kannel WAP gateway. In
order for it to work you need a Linux kernel with PPP capabilities. Most distributions provides PPP
kernel support by default. For more information how to compile PPP support into the kernel please read
the "Linux Kernel HOWTO" at http://www.linuxdoc.org/.

Analog modem
This section explains how to set up a dial-up line with an analog modem.

Download and install the mgetty package.

rpm -ivh mgetty-VERSION-rpm

To run mgetty as a daemon, add the following line to /etc/inittab.

Read man inittab for more detailed information. In this example we assume your modem is connected to
the serial port ttyS0 (COM 1).

S0:2345:respawn:/sbin/mgetty ttyS0 -x 6 -D /dev/ttyS0

We need to start the pppd automatically when mgetty receives an AutoPPP request. Add the next line to
/etc/mgetty+sendfax/login.config

/AutoPPP/ - - /usr/sbin/pppd file /etc/ppp/options.server

In /etc/mgetty+sendfax/mgetty.config you might need to change the connect speed between the computer
and the modem. Note: this is not the connect speed between the WAP client and the server modem. If
you are e.g. going to use a Nokia 7110 as the server side modem you need to change the speed to 19200.
Usually you can just leave the speed to the default value (38400).

speed 38400

Add the following lines to /etc/ppp/options.server

refuse-chap

require-pap

lock

modem

crtscts

passive

192.168.1.10:192.168.1.20

debug

104

Appendix D. Setting up a dial-up line

In /etc/ppp/pap-secrets add the username and password for the ppp account. The IP address is the one
assigned to the phone.

wapuser * wappswd 192.168.0.20

Configure your phone (this example is for Nokia 7110)

homepage http:/yourhost/hello.wml

connection type continuous

connection security off

bearer data

dial up number (your phone number)

ip address (IP of host running bearerbox)

auth type normal

data call type analogue

data call speed 9600

username wapuser

password wappswd

ISDN terminal
This section needs to be written

105

Appendix E. Log files
This appendix describes the log file format.

Bearerbox Access Log
2001-01-01 12:00:00 Sent SMS [SMSC:smsc] [SVC:sms] [from:12345]

[to:67890] [flags:0:1:0:0:0] [msg:11:Hello World] [udh:0]

Variable Value Description
Date 2001-01-01 12:00:00 Date

Result Sent SMS
Result: Send, failed, DLR

(deliver report), Received, etc.

SMSC smsc
Smsc id (smsc-id) defined in

configuration group smsc

SVC sms

Service name (name) defined in
configuration group
sendsms-user

from 12345 Sender
to 67890 Recipient

Flags 0:1:0:0:0
Flags: MClass, Coding, MWI,

Compress, DLRMask

Message Text 11:Hello World

Size of message and message
dump (in text or hex if it’s
binary)

User Data Header 0:
Size of UDH and UDH Hex

dump

Log rotation
If Kannel is configured so that the bearerbox, wapbox and/or smsbox log to file each of these log files
will continue to grow unless administered in some way (this is especially true if access logs are created
and/or the log level is set to debug).

A typical way of administering log files is to ’rotate’ the logs on a regular basis using a tool such as
logrotate. A sample logrotate script (to be added to /etc/logrotate.d) is shown below. In this example the
Kannel log files found in /var/log/kannel are rotated and compressed daily over 365 days. See the
documentation for logrotate for more details. Of particular note however is the postrotate command, this
killall -HUP issues a HUP command to each kannel box running. The HUP signal has the effect of
reopening the log file, without this command Kannel will continue to write to the rotated log file.

/var/log/kannel/*.log {

106

Appendix E. Log files

daily

missingok

rotate 365

compress

delaycompress

notifempty

create 640 kannel adm

sharedscripts

postrotate

killall -HUP bearerbox smsbox wapbox || true > /dev/null 2> /dev/null

endscript

}

107

Glossary

M
MO

Mobile Originated - a SMS from mobile to application

MT

Mobile Terminated - a SMS from application to mobile

MWI

Message Waiting Indicator (See [BIBLIO-3GPP-23038])

MClass

Message Class (See [BIBLIO-3GPP-23038])

Coding

Message Coding (See [BIBLIO-3GPP-23038])

108

Bibliography

RFC 2616 - Hypertext Transfer Protocol -- HTTP/1.1,
http://www.w3.org/Protocols/rfc2616/rfc2616.html, Request for Comments: 2616, The Internet
Society, 1999.

3GPP 23.038, http://www.3gpp.org/ftp/Specs/latest/Rel-5/23_series/23038-500.zip, ..., 3GPP, ?.

3GPP 23.040, http://www.3gpp.org/ftp/Specs/latest/Rel-5/23_series/23040-530.zip, ..., 3GPP, ?.

109

	Kannel 1.3.1 User's Guide
	Table of Contents
	List of Tables
	Chapter 1. Introduction
	Overview of WAP
	Overview of WAP Push
	Overview of SMS
	Features
	Requirements

	Chapter 2. Installing the gateway
	Getting the source code
	Finding the documentation
	Compiling the gateway
	Installing the gateway
	Using precompiled binary packages
	Installing Kannel from RPM packages
	Installing Kannel from DEB packages

	Chapter 3. Using the gateway
	Configuring the gateway
	Configuration file syntax
	Inclusion of configuration files
	Core configuration

	Running Kannel
	Starting the gateway
	Command line options
	Kannel statuses
	HTTP administration

	Chapter 4. Setting up a WAP gateway
	WAP gateway configuration
	Wapbox configuration

	Running WAP gateway
	Checking whether the WAP gateway is alive

	Chapter 5. Setting up a SMS Gateway
	Required components
	SMS gateway configuration
	SMS centers
	Nokia CIMD 1.37 and 2.0
	CMG UCP/EMI 4.0
	SMPP 3.4
	Sema Group SMS2000 OIS 4.0 and 5.0
	SM/ASI (for CriticalPath InVoke SMS Center 4.x)
	GSM modem
	GSM modem 2
	Fake SMSC
	HTTPbased relay and content gateways
	Using multiple SMS centers
	Feature checklist

	Smsbox configuration
	Smsbox routing inside bearerbox
	SMSservice configurations
	How smsservice interprets the HTTP response
	Extended headers
	Kannel POST
	XML Post

	SendSMSuser configurations
	External delivery report (DLR) storage
	Internal DLR storage
	MySQL DLR storage
	LibSDB DLR storage
	DLR database field configuration

	MySQL connection configuration
	OverTheAir configurations
	Setting up more complex services
	Redirected replies
	Setting up operator specific services
	Setting up multioperator Kannel

	Running SMS gateway
	Using the HTTP interface to send SMS messages
	Using the HTTP interface to send OTA configuration messages
	GET method for the OTA HTTP interface

	Chapter 6. Setting up a SMSWAP gateway
	SMSWAP gateway configuration
	Running SMSWAP gateway

	Chapter 7. Setting up Push Proxy Gateway
	Configuring ppg core group, for push initiator (PI) interface
	Configuring PPG user group variables
	Finishing ppg configuration
	Running a push proxy gateway
	An example using HTTP SMSC
	An example push (tokenised SI) document
	Default network and bearer used by push proxy gateway

	Chapter 8. Using SSL for HTTP
	Using SSL client support
	Using SSL server support for the administration HTTP interface
	Using SSL server support for the sendsms HTTP interface
	Using SSL server support for PPG HTTPS interface

	Chapter 9. Delivery Reports
	Chapter 10. Getting help and reporting bugs
	Appendix A. Using the fake WAP sender
	Appendix B. Using the fake SMS center
	Setting up fakesmsc
	Compiling fakesmsc
	Configuring Kannel

	Running Kannel with fakesmsc connections
	Starting fake SMS center
	Fake messages
	Fakesmsc command line options

	Appendix C. Setting up a test environment for Push Proxy Gateway
	Creating push content and control document for testing
	Starting necessary programs
	Using Nokia Toolkit as a part of a developing environment
	Testing PAP protocol over HTTPS

	Appendix D. Setting up a dialup line
	Analog modem
	ISDN terminal

	Appendix E. Log files
	Bearerbox Access Log
	Log rotation

	Glossary
	M
	MO
	MT
	MWI
	MClass
	Coding

	Bibliography

